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Abstract

In this paper we address the problem of learning Sup-
port Vector Machine (SVM) classifiers from distributed data
sources. We identify sufficient statistics for learning SVMs
and present an algorithm that learns SVMs from distributed
data by iteratively computing the set of sufficient statistics.
We prove that our algorithm isexactwith respect to its cen-
tralized counterpart andefficientin terms of time complexity.

Introduction
With the recent advances in technology, it is possible to
gather and store large volumes of data. This data contain
valuable information that can help people characterize spe-
cific domains and make predictions about new data from
those domains.

Many machine learning algorithms have been proposed
and have proven to be very effective in the case of central-
ized data. Formally, the problem of learning from centralized
data can be summarized as follows (Mitchell 1997): Given
a data setD, a hypothesis classH , and a performance crite-
rionP , the learning algorithmL outputs a hypothesish ∈ H
that optimizesP . In pattern classification applications,h is
a classifier (e.g., a Naive Bayes classifier, a Decision Tree,a
Support Vector Machine, etc.). The dataD typically consists
of a set of training examples. Each training example is an
ordered tuple of attribute values, where one of the attributes
corresponds to a class label and the remaining attributes rep-
resent inputs to the classifier. The goal of learning is to pro-
duce a hypothesis that optimizes the performance criterion
of minimizing some function of the classification error (on
the training data) and the complexity of the hypothesis. Un-
der appropriate assumptions, this is likely to result in a clas-
sifier that assigns correct labels to unlabeled instances.

Unavoidably, in many application domains, data are phys-
ically distributed. We assume that the data of interestD are
distributed over the data sourcesD1, · · · , DN , where each
data sourceDi contains sub-tuples of data tuples. The dis-
tributed setting typically imposes a set of constraintsZ on
the learner that are absent in the centralized setting. Herewe
assume that due to communication complexity issues, it is
not feasible to ship all the raw data but only small subsets
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of the distributed data sources. Thus the problem of learning
classifiers from distributed data can be formulated as fol-
lows (Caragea, Silvescu, & Honavar 2004): given the data
fragmentsD1, · · · , DN of a data setD distributed acrossN
sites, a set of constrainsZ, a hypothesis classH , and a per-
formance criterionP the task of the learnerLd is to output
a hypothesish ∈ H that optimizesP using only operations
allowed byZ. As in the case of centralized learning, this is
likely to result in aclassifierthat can be used to classify new
unlabeled data.

We say that an algorithmLd for learning from distributed
data setsD1, · · · , DN is exact relative to its centralized
counterpartL if the hypothesis produced byLd is identical
to that obtained byL from the complete data setD obtained
by appropriately combining the data setsD1, · · · , DN .

Having defined the framework of learning from dis-
tributed data, we proceed to describe our iterative algorithms
for learning exact SVMs from distributed data sources.

Support Vector Machine Algorithm
Support Vector Machines (SVM) algorithm (Burges 1998)
has been shown to be one of the most effective machine
learning algorithms. It gives very good results in terms of
accuracy when the data are linearly or non-linearly separa-
ble. When the data are linearly separable, the SVM result
is a separating hyperplane, which maximizes the margin of
separation between classes, measured along a line perpen-
dicular to the hyperplane. If data are not linearly separable,
the algorithm works by mapping the data to a higher dimen-
sionalfeaturespace (where the data becomes separable) us-
ing an appropriate kernel functionφ and a maximum mar-
gin separating hyperplane is found in this space. Thus the
weight vector that defines the maximal margin hyperplane
is asufficient statisticfor the SVM algorithm (it contains all
the information needed for constructing the separating hy-
perplane). Since this weight vector can be expressed as a
weighted sum of a subset of training instances, calledsup-
port vectors, it follows that the support vectors and the asso-
ciated weights also constitute sufficient statistics for learning
SVM from centralized data.

Learning SVMs from Distributed Data
We assume without loss of generality that the training in-
stances are represented (if necessary, using a suitable kernel



function) in a (feature) space in which dataD = ∪N

k=1
Dk is

linearly separable.
A naive approach to learning SVMs from distributed data

(Syed, Liu, & Sung 1999) works as follows: apply the SVM
algorithm for each data sourceDk(k = 1, N), and send
the resulting support vectorsSVk(k = 1, N) to the central
location. At the central location, apply SVM algorithm to
∪N

k=1
SVk. Use the final set of support vectors and their cor-

responding weights to generate the separating hyperplane.
Although this algorithm may work reasonably well in

practice if the data setsD1, · · · , DN are individually repre-
sentative of the entire setD, if that is not the case, Caragea
et al. (Caragea, Silvescu, & Honavar 2000) showed that
SV (∪N

k=1
Dk) 6= SV (∪N

k=1
SVk), i.e. union of the set of

support vectors obtained from each data source does not rep-
resent sufficient statistics for the learning from distributed
data. Thus, the naive approach to learning SVM from dis-
tributed data is notexact.

Caragea, Silvescu, & Honavar (2000) showed that the
convex hulls of the instances that belong to the two
classes represent sufficient statistics for learning SVMs from
distributed data. LetV Conv(D) denote the training in-
stances that uniquely define the convex hull of the con-
vex set D. The algorithm for learning SVMs from dis-
tributed data using convex hulls works as follows: compute
V Conv(Dk(+)) andV Conv(Dk(−)) for each data source
Dk, k = 1, N and send these sets to the central location.
At the central location the SVM algorithm is applied to
the union of positive and negative convex hull vertices re-
ceived from all distributed sites. It can be easily seen that:
V Conv(∪N

k=1
V Conv(Dk)) = V Conv(∪N

k=1
Dk) (Gruber

& Wills 1993), therefore this algorithm is exact. However, it
is exponential in the number of dimensions, which makes it
impractical in general.

Thus, we have seen two algorithms for learning SVMs
from distributed data, but one of them is notexactand the
other one is notefficient. We will show that it is possible to
desing anefficientandexactalgorithm for learning SVM-
like classifiers from distributed data.

We transform SVM from centralized data into an algo-
rithm for learning from distributed data similar to the Lin-
ear Programming Chunking Algorithm (LPC) described in
(Bradley & Mangasarian 2000). More precisely, this ap-
proach is similar to the naive approach described above
(Syed, Liu, & Sung 1999), except that several iterations
through the distributed data sets are made. At each iteration
i, the central location sends the current (global) set of sup-
port vectorsGSVi to the distributed data sources (initially,
GSV0 = φ). Each data sourceDk addsGSVi to its data and
applies the SVM algorithm to find a new set of local sup-
port vectorsSVi(Dk) = SVi(Dk ∪ GSVi) given the global
set of support vectorsGSVi. The resulting setSVi(Dk) is
sent back to the central location. The sets of support vec-
tors received from all distributed data sources are combined
and the SVM algorithm is applied to determine the new set
GSVi+1 of global support vectors. The process is repeated
until no changes in the set of global support vectors appear.

Theorem 1 (Exactness) Our strategy yields a provably ex-

act algorithm for learning SVM classifiers from distributed
data, which terminates in a finite number of iterations.

Proof sketch: We have: GSVi+1 = SV M(GSVi ∪
SVi(D1∪GSVi) · · ·∪SVi(DK∪GSVi)). We first notice that
GSVi+1 contains only border points, otherwise there would
exist misclassified instances, which contradicts the linear
separability assumption. Second, we observe thatGSVi+1

contains only the border points of a class that are “visible”
from the other class; the invisible points could never be on
the border between the two classes, so they could never be
selected as support vectors. Thus, the final global set of sup-
port vectors represents an extended set of support vectors
(subset of convex hull) which is a set of sufficient statistics
learning from distributed data. Therefore,SV (D) ⊆ GSV
which impliesSV (D) = SV (GSV ). This proves that our
algorithm isexact. Note also that at each iterationi we add
more points toGSVi, thereforeGSVi is nondecreasing in
size. Since the set of (extended) support vectors represents
a small fraction of the whole data set and is finite, the algo-
rithm terminates in a finite number of steps.

Preliminary experimental results have shown that our al-
gorithm converges to the exact solution in a relatively small
number of iterations.

Summary and further work
We designed an algorithm for learning SVMs from dis-
tributed data and showed theoretically and experimentally
that our algorithm is exact with respect to its centralized
counterpart and also efficient. This makes it preferable to
previous algorithms as those described in (Caragea, Sil-
vescu, & Honavar 2000) (inefficient) and (Syed, Liu, & Sung
1999) (inexact). We assumed that data are horizontally frag-
mented. Future work directions include design and analysis
of algorithms for learning SVMs from other kinds of data
fragmentation, e.g.,relational data fragmentation.
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