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WHY IMAGE PRIVACY PREDICTION?

I Rapid increase in social media can cause threat to user’s privacy

I Many users are quick to share private images without realizing the
consequences of an unwanted disclosure of these images.

I Users rarely change default privacy settings, which could jeopardize their
privacy [Zerr et al., 2012].

I Current social networking sites do not assist users in making privacy
decisions for images that they share online.

I Manually assigning privacy settings to each image every time can be
cumbersome.

I Image Privacy Prediction predicts privacy setting for images and avoid a
possible loss of users’ privacy.

PREVIOUS APPROACHES TO IMAGE PRIVACY
PREDICTION

I Most existing privacy prediction techniques used user tags and image
content features such as SIFT (or Scale Invariant Feature Transform) and
RGB (or Red Green Blue) [Zerr et al., 2012, Squicciarini et al., 2014]

I Buschek et al. [Buschek et al., 2015] presented an approach to assigning
privacy settings to shared images using metadata (location, time, shot
details) and visual features (faces, colors, edges).

I Several works were conducted in the context of tag-based access control
policies for images
[Yeung et al., 2009, Klemperer et al., 2012, Vyas et al., 2009]
I However, the scarcity of tags [Sundaram et al., 2012] precluded accurate analysis of

images’ sensitivity.

I We posit that, given large dataset of labeled images e.g., the ImageNet
dataset [Russakovsky et al., 2015], user tags and SIFT features may not
work well. However, deep neural networks are now able to learn powerful
deep features [Jia et al., 2014] that go beyond SIFT and RGB, and have
potential to improve privacy prediction.

OUR CONTRIBUTIONS

I In this study, we explore an approach to image privacy prediction based on
deep visual features and deep tags.

I Empirically, deep features and deep tags outperforms baseline approaches
SIFT, GIST, and user provided tags.

I Models trained on “SIFT” and “GIST” yield very low performance with
respect to the private class.

I Combination of deep tags and user tags performs better than their individual
performance.

I We evaluate our approach on Flickr images sampled from the PiCalert
dataset [Zerr et al., 2012].

I Tag analysis can assist in understanding the characteristics of the private
and public classes.

DATASETS

I We evaluated our approach on a subset of Flickr images sampled from the
PiCalert dataset [Zerr et al., 2012].

I PiCalert consists of Flickr images on various subjects, which are manually
labeled as public or private by external viewers.

I We selected 5, 000 images from PiCalert randomly, out of which only 4, 700
have user provided tags and these 4, 700 images were used for our privacy
prediction task.

I The public and private images are in the ratio of 3:1.

(a) Private (b) Public

Figure: Examples of private and public images from PiCalert dataset.

Private: Private image discloses sensitive information about a user. E.g.,
images with portraits, people on the beach, family photos, etc.

Public: Public images generally depict scenery, objects, animals, etc., which
do not provide any personal information about a user.

PROPOSED APPROACH: PRIVACY PREDICTION

I Feature Extraction
We extracted visual features and tags for differentiating between private and
public classes.

I Deep Visual Features
I In the convolutional neural network (CNN) architecture, features are extracted from

images through each layer in a feed-forward fashion.
I The architecture consists of eight layers; the first five layers are convolutional and the

remaining three are fully-connected (FC).
I The last two fully connected layers are referred as FC7 and FC8. and used as deep visual

features for images.
I The output layer “Prob” is obtained from the output of FC8 via a softmax function,

which produces a probability distribution over the 1000 object categories.

I Deep Tag Features
I for an image, we predict top k object categories from the probability distribution over

categories, i.e., the “Prob” layer of the deep neural network.
I The k predicted categories are used as tags to describe an image.

I Feature Classification
Using above feature representations, we train maximum margin (SVM)
classifiers and use them to predict the class of an image as private or public

PROPOSED APPROACH: FEATURE EXTRACTION
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Figure: Proposed approach - Feature Extraction (Deep Features and Deep Tags): CNNs are used
to extract deep visual features and deep image tags for input images.

PROPOSED APPROACH: FEATURE
CLASSIFICATION
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Figure: Proposed approach - Feature Classification (Deep Features and Deep Tags): The features
from the fully-connected (fc) layers and deep tags are used to predict the class of an image as
public or private using SVM.

DEEP TAGS VS. USER TAGS
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Figure: Deep Tags vs. User Tags. For deep tags, we consider top K = 5 object labels as tags.

IMPORTANT LINKS

I Extended Abstract: http:
//www.cse.unt.edu/˜ccaragea/posters/aaai16.pdf

I Dataset: https://www.dropbox.com/s/ydfpu51dec51krh/
idsAndPrivacy.csv?dl=0

I Full-length Paper: http://arxiv.org/abs/1510.08583

EXPERIMENTS AND RESULTS

HOW DO DEEP VISUAL FEATURES COMPARE WITH OTHER EXISTING
STATE-OF-THE-ART METHODS SIFT AND GIST?

Features Accuracy F1-Measure Precision Recall
Test (PiCalert783)

FC7 81.23% 0.805 0.804 0.812
FC8 82.63% 0.823 0.822 0.826
SIFT + GIST 72.67% 0.661 0.672 0.727

Table: Performance of SVM using deep features in comparison with the combination of SIFT
and GIST, on Test. For SIFT, we constructed a vocabulary of 128 visual words. For GIST, we
considered feature vector of 512 (16 averaged value ×32 gabor filters) length.

HOW DO TAG FEATURES PERFORM ON THE PRIVACY PREDICTION TASK?
Features Accuracy F1-Measure Precision Recall

Test (PiCalert783)
User Tags 79.82% 0.782 0.786 0.798
Deep Tags 80.59% 0.801 0.799 0.806
User + Deep Tags 83.14% 0.827 0.826 0.831

Table: Results obtained on tag features. For deep tags, we consider top K = 10 object labels as
tags.

HOW DO DEEP FEATURES PERFORM FOR PRIVATE CLASS COMPARED TO
SIFT AND GIST?

Figure: Precision and recall curves of different features for private class.

WHICH USER TAGS AND DEEP TAGS ARE USEFUL FOR PRIVACY
PREDICTION TASK?

Rank 1-5 Rank 6-10 Rank 11-15
Portrait Maillot Bathing Cap

Neck Brace Wig Swimming Cap
Two-piece Bow-tie Oxygen Mask

Bikini Girl Swimming Trunks
Tank Suit Woman Band Aid

Table: Tags with high information gain calculated using 5-fold cross validation. Bold words
indicate user provided tags, while the others are deep tags.

(a) Private (b) Public

Figure: Tag clouds contains top 100 high frequency tags with respect to private and public
images. High frequency tags represents frequently occurring tags to describe images for a
particular privacy setting.

CONCLUSIONS

I We proposed an approach based on deep features and tags for privacy
prediction.

I Deep features are explored at various network layers and also used top layer
(probability) for auto-annotation mechanism.

I We examined user annotated tags and deep tag features.
I Our experiments shows that proposed method outperforms all baseline

approaches.
I Future directions.

I Refine user tags by using keyword extraction mechanism.
I Combine visual features and tag features to get improved results.
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