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Short Abstract 
 
Motif-based bioinformatics tools allow users to set threshold values for specific motifs, 
even though users may not know how these values affect performance. We propose 
statistical measures for assessing "motif quality" and the relationship between p-values 
and true positive rate, using phosphorylation site prediction as a test case. 
 
Long Abstract 
 
Protein phosphorylation is an important post-translational modification that can dramatic 
alter the biological activity of proteins. Several computational methods for predicting 
phosphorylation sites for specific protein kinases have been proposed, including motif-
based approaches that rely on Position Specific Scoring Matrices (PSSMs) and Hidden 
Markov Models (HMMs). A PSSM or HMM motif is constructed from an ungapped 
multiple-sequence alignment that is expected to carry some signal. This motif can be used 
to score new sequences and the higher the score, the more likely that the new sequence 
carries the same signal modeled by the motif. In general, each motif has a predetermined 
threshold score that maximizes the prediction accuracy of the motif on a validation set. 
However, many motif-based tools allow users to set a different threshold score or to 
specify a certain false positive rate, p-value, for the motif. For instance, Scansite [1] and 
KinasePhos [2], two popular tools (that use PSSMs and HMMs respectively) to predict 
kinase-specific phosphorylation sites, provide several options to modify the threshold 
score for motifs. A major problem with this approach is that for a chosen p-value, or false 
positive rate, the user has no way of knowing what the corresponding true positive rate is 
because the reported performance of the motif corresponds to that obtained using 
predetermined threshold scores. Against this background, we explore statistical measures 
for assessing the quality of a motif and the relation between p-values and the true positive 
rate. These statistical measures are the Receiver Operating Characteristic (ROC) curve 
and the area under ROC (AUC) which are widely used by machine learning researchers 
to report the performance of their classifiers.  
 
 
Because Scansite and KinasePhos motifs are not publicly available to users (except 
through the online servers that generate predictions based on the motifs), and both 
methods do not return scores for negative predictions, it is not straightforward to compare 
the ROC curves for their motifs. Hence, we explored an alternative approach to compare 



the two methods. We considered only kinase families with more than 50 reported 
phoshporylation sites in Phospho.ELM [3]; thus, six kinase families, CDK, CK2, MAPK, 
PKA, PKB, and PKC, were considered in our experiments. For each family, we extracted 
positive examples using 15-residue amino acid sequence window centered at known 
phosphorylated Ser/Thr sites and negative examples using the same window centered at 
Ser/Thr residues that are not annotated as phosphorylation sites in the same proteins. We 
created a dataset for each family consisting of positive examples for that family and 
randomly selected negative examples equal to the number of positive examples in that 
family. We used ProfileWeight [4] to build PSSM motifs and HMMER [5] to build 
HMM motifs using only the positive examples for each family. We computed the ROC 
curve and AUC obtained by the 5-fold cross validation: The data set for each kinase 
family is randomly partitioned into 5 parts of equal size such that the ratio of the positive 
and negative examples in each part is the same. On each cross validation experiment, we 
used positive instances in four of the five subsets for building PSSM and HMM motifs 
and the remaining subset for evaluating the motifs. The reported performance is based on 
averages across the five cross validation runs. It should be noted that our HMM motifs 
are different from KinasePhos motifs since KinasePhos uses a window of 9 amino acids 
and usually builds more than one motif per kinase family by clustering the sequences of 
large families and building a motif from each cluster. 
  
Our results show that HMM motifs are superior on PSSM motifs for predicting protein 
phosphorylation sites for the CK2, PKA, and PKC protein kinase families. For the CDK 
family, both PSSM and HMM motifs have nearly the same AUC, but the HMM has a 
better true positive rate for p-values ranging from 0% to 6%. In the case of PKB and 
MAPK, PSSM motifs perform better than HMM motifs.  In all cases, visualizing the 
ROC curve of the motif can assist users in selecting a proper threshold and in interpreting 
the resulting predictions. Furthermore, the reported quality of the motif based on an 
evaluation procedure such as the one outlined here can help users in choosing the better 
performing motif-based prediction tool for a given task. 
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