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1 Introduction

Representational commitments i.e., the choice of features or attributes that are used to describe the data
presented to a learner, and the level of detail at which they describe the data, can have a major impact on
the difficulty of learning, and the accuracy, complexity, and comprehensibility of the learned predictive model.
The representation has to be rich enough to capture the distinctions that are relevant from the standpoint of
learning, but not so rich as to make the task of learning infeasible due to overfitting.

We present an approach to exploiting the complementary strengths of feature construction (constructing
complex features by combining existing features) and feature abstraction (grouping of similar features to generate
a more abstract feature) or feature selection to adapt the data representation used by the learner. In particular,
consider a special case of topologically constrained feature construction, namely, super-structuring. Super-
structuring provides a way to increase the predictive accuracy of the learned models by enriching the data
representation (and hence increasing the complexity of the learned model) whereas abstraction or selection help
reduce the model size by simplifying the data representation.

2 Combining Abstraction and Super-structuring

The classification problem: Given a data set D= {di = (si, ci)}i=1,n where si is a sequence over a finite
alphabet G = {g1, · · · , gt}, that is si ∈ G∗ and ci is the class associated with the sequence si that belongs to a
finite set C, ci ∈ C, the learning algorithm is asked to produce a model that is able to predict the class c for a
novel sequence s [3].

Let s be a sequence over the alphabetG. The super-structures of sequence s are all the contiguous (potentially
overlapping) sub-sequences of a certain length, a.k.a. k-grams [1].

The idea of our algorithm is to first create an expanded feature set (the k-gram set, |KG|= m) from the
sequences in D using super-structuring in order to improve the modeling performance, and then to shrink down
this feature set in order to reduce the model size to a fixed number of features nf . The reduction can be
accomplished in two ways:

• (ABS) by constructing abstractions over the k-grams: partitioning the set of k-grams into nf non-
overlapping sets ABS = {a1 : set1, · · · , anf

: setnf
} where ai denotes the label for the i-th abstraction

and seti denotes the set of k-grams which are grouped together into the i-th abstraction.

• (FSEL) by feature selection over the k-grams: selecting a set of nf k-grams FSEL ⊆ {kg1, · · · , kgm}.

2.1 Constructing Abstractions

Our algorithm for constructing abstractions works as follows: we start by initializing each abstraction by a
primary feature (k-gram). Then we recursively group the abstractions until we obtain nf abstractions. Specif-
ically, m− nf times we find a pair of abstractions that are most “similar” to each other, group them, add the
abstraction resulting from their union to the set of abstractions ABS and delete the individual abstractions
from ABS. After m− nf steps, the result of our algorithm is a set of nf groups/abstractions.

In order to complete the description of our algorithm we need to show how to compute the similarity measure
between two abstractions. Our general criteria for establishing similarity between items and thus deriving useful
abstractions is based on the following functionalist claim: similar items occur within similar contexts. Thus,
one way to define the similarity between two abstractions is to specify what we mean by the context of an
abstraction aj and then define a distance between these contexts.

1Yahoo! Labs. E-mail: silvescu@yahoo-inc.com
2Computer Science Department, Iowa State University, IA, USA. E-mail: cornelia@cs.iastate.edu
3Computer Science Department, Iowa State University, IA, USA. E-mail: honavar@cs.iastate.edu



2

Class Context for Abstractions. Given an abstraction aj = {fj1 , · · · , fjq
} we define

CContextD(aj = {fj1,...,fjq
}) := [#aj , P (C|aj)] =

[
q∑

l=1

#fjl
,

q∑
l=1

πlP (C|fjl
)

]
,where π

l
:=

#fjl∑q
l=1 #fjl

Thus, the Class Context of an abstraction aj = {fj1 , · · · , fjq
} is the sum of the frequency counts of the features

fjl
in the data set D along with the weighted sum of the conditional probability of the class given the features

fjl
, P (C|fjl

).
Distance Between Abstractions. Let ai and aj be two abstractions. We use the Weighted Jensen-Shannon
Distance (WJS) [2] between two probability distributions to define the distance between two abstractions.

D(ai, aj) := WJS(CContext(ai), CContext(aj)) = WJS([#ai, P (C|ai), [#aj , P (C|aj)])

2.2 Feature Selection

Feature Selection is performed by selecting a set of nf features FSEL ⊆ {f1, ..., fm}, |FSEL| = nf . The
features are ranked according to a scoring function Score and then the top nf best ranked features are selected.
We used information gain [3] between the probability of the class variable P (C) and the probability of the
feature f , which measures how dependent the two variables are.

3 Experiments and Results

We performed experiments that compare Naive Bayes Multinomial classifiers constructed using the original
features with those constructed using feature selection, feature abstraction, and the combination of abstraction
and super-structuring and feature selection and super-structuring on two datasets from the bioinformatics
domain: Eukaryotes and Prokaryotes. The tasks are to classify sequences according to their subcellular
localization.

The results of our experiments on both data sets show that adapting data representation by combining
abstraction and super-structuring makes possible to construct predictve models that use significantly smaller
(1-3 orders of magnitude) number of features than those that are obtained using super-structuring alone without
sacrificing predictive accuracy (Figure 1).
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Figure 1: Comparison of Abstraction+SuperStructuring (ABS+SS) with Feature Selection+SuperStructuring
(FSEL+SS), SuperStructuring only (SS ONLY), and Unigram (UNIGRAM) on the Eukaryotes (left) and
Prokaryotes (right) data sets using unigrams and 3-grams. For the same number of features used to train the
classifiers, ABS+SS is superior in performance to FSEL+SS, and UNIGRAM. After a relatively small number of
features, ABS+SS achieves the performance of SS ONLY. For a small drop in performance on both Eukaryotes
and Prokaryotes, we obtain a a reduction of model sizes by three orders of magnitude.
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