What is Data Clustering?

- Data Clustering is an **unsupervised learning** problem
- Given: \(N \) **unlabeled** examples \(\{x_1, \ldots, x_N\} \); the number of partitions \(K \)
- Goal: Group the examples into \(K \) partitions

![Input data vs Desired clustering](image)

- The only information clustering uses is the **similarity between examples**
- Clustering groups examples based on their mutual similarities
- A good clustering is one that achieves:
 - High **within-cluster similarity**
 - Low **inter-cluster similarity**

Data Clustering: Some Real-World Examples

- Clustering images based on their perceptual similarities
- Image segmentation (clustering pixels)

- Clustering webpages based on their content
- Clustering web-search results
- Clustering people in social networks based on user properties/preferences
- .. and many more..

Picture courtesy: http://people.cs.uchicago.edu/~pff/segment/
Types of Clustering

1. **Flat or Partitional clustering** (e.g., K-means, Gaussian mixture models, etc.)
 - Partitions are independent of each other

2. **Hierarchical clustering** (e.g., agglomerative clustering, divisive clustering)
 - Partitions can be visualized using a tree structure (a dendrogram)
 - Does not need the number of clusters as input
 - Possible to view partitions at different levels of granularities (i.e., can refine/coarsen clusters) using different K
Flat Clustering: \(K \)-means algorithm (Lloyd, 1957)

- **Input:** \(N \) examples \(\{x_1, \ldots, x_N\} \) \((x_n \in \mathbb{R}^D) \); the number of partitions \(K \)
- **Initialize:** \(K \) cluster centers \(\mu_1, \ldots, \mu_K \). Several initialization options:
 - Randomly initialized anywhere in \(\mathbb{R}^D \)
 - Choose any \(K \) examples as the cluster centers
- **Iterate:**
 - Assign each of example \(x_n \) to its closest cluster center
 \[
 C_k = \{ n : k = \arg \min_k ||x_n - \mu_k||^2 \}
 \]
 \((C_k \) is the set of examples closest to \(\mu_k \))
 - Recompute the new cluster centers \(\mu_k \) (mean/centroid of the set \(C_k \))
 \[
 \mu_k = \frac{1}{|C_k|} \sum_{n \in C_k} x_n
 \]
 - Repeat while not converged
- A possible convergence criteria: cluster centers do not change anymore
K-means: Initialization (assume $K = 2$)
K-means iteration 1: Assigning points
K-means iteration 1: Recomputing the cluster centers
K-means iteration 2: Assigning points
K-means iteration 2: Recomputing the cluster centers
K-means iteration 3: Assigning points
K-means iteration 3: Recomputing the cluster centers
K-means iteration 4: Assigning points
K-means iteration 4: Recomputing the cluster centers
The K-means objective function

- Let μ_1, \ldots, μ_K be the K cluster centroids (means).

- Let $r_{nk} \in \{0, 1\}$ be indicator denoting whether point x_n belongs to cluster k.

- K-means objective minimizes the total distortion (sum of distances of points from their cluster centers):

$$J(\mu, r) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

- Note: Exact optimization of the K-means objective is NP-hard.

- The K-means algorithm is a heuristic that converges to a local optimum.
K-means: Choosing the number of clusters K

One way to select K for the K-means algorithm is to try different values of K, plot the K-means objective versus K, and look at the "elbow-point" in the plot.

For the above plot, $K = 2$ is the elbow point.
K-means: Initialization issues

- *K*-means is **extremely sensitive to cluster center initialization**
- Bad initialization can lead to
 - Poor convergence speed
 - Bad overall clustering
- **Safeguarding measures:**
 - Choose first center as one of the examples, second which is the farthest from the first, third which is the farthest from both, and so on.
 - **Try multiple initializations** and choose the **best result**