Data Clustering

Compiled by: Sujatha Das G. and Cornelia Caragea

Acknowledgments: Rai, Manning

August 20, 2014

What is Data Clustering?

- Data Clustering is an unsupervised learning problem
- Given: N unlabeled examples $\{x_1, \dots, x_N\}$; the number of partitions K
- Goal: Group the examples into K partitions

- The only information clustering uses is the similarity between examples
- Clustering groups examples based of their mutual similarities
- A good clustering is one that achieves:
 - High within-cluster similarity
 - Low inter-cluster similarity

Data Clustering: Some Real-World Examples

- Clustering images based on their perceptual similarities
- Image segmentation (clustering pixels)

- Clustering webpages based on their content
- Clustering web-search results
- Clustering people in social networks based on user properties/preferences
- .. and many more..

Types of Clustering

- Flat or Partitional clustering (K-means, Gaussian mixture models, etc.)
 - · Partitions are independent of each other

- Hierarchical clustering (e.g., agglomerative clustering, divisive clustering)
 - Partitions can be visualized using a tree structure (a dendrogram)
 - Does not need the number of clusters as input
 - Possible to view partitions at different levels of granularities (i.e., can refine/coarsen clusters) using different K

Flat Clustering: K-means algorithm (Lloyd, 1957)

- Input: N examples $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$ $(\mathbf{x}_n\in\mathbb{R}^D)$; the number of partitions K
- Initialize: K cluster centers μ_1, \ldots, μ_K . Several initialization options:
 - ullet Randomly initialized anywhere in \mathbb{R}^D
 - Choose any K examples as the cluster centers
- Iterate:
 - Assign each of example x_n to its closest cluster center

$$C_k = \{n: \quad k = \arg\min_k ||\mathbf{x}_n - \mu_k||^2\}$$

 $(C_k$ is the set of examples closest to μ_k)

• Recompute the new cluster centers μ_k (mean/centroid of the set C_k)

$$\mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n$$

- Repeat while not converged
- A possible convergence criteria: cluster centers do not change anymore

K-means: Initialization (assume K = 2)

K-means iteration 1: Assigning points

K-means iteration 1: Recomputing the cluster centers

K-means iteration 2: Assigning points

K-means iteration 2: Recomputing the cluster centers

K-means iteration 3: Assigning points

K-means iteration 3: Recomputing the cluster centers

K-means iteration 4: Assigning points

K-means iteration 4: Recomputing the cluster centers

K-means: The Objective Function

The K-means objective function

- Let μ_1, \ldots, μ_K be the K cluster centroids (means)
- Let $r_{nk} \in \{0,1\}$ be indicator denoting whether point \mathbf{x}_n belongs to cluster k
- K-means objective minimizes the total distortion (sum of distances of points from their cluster centers)

$$J(\mu, r) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

- Note: Exact optimization of the K-means objective is NP-hard
- The K-means algorithm is a heuristic that converges to a local optimum

K-means: Choosing the number of clusters K

 One way to select K for the K-means algorithm is to try different values of K, plot the K-means objective versus K, and look at the "elbow-point" in the plot

• For the above plot, K = 2 is the elbow point

K-means: Initialization issues

- K-means is extremely sensitive to cluster center initialization
- Bad initialization can lead to
 - Poor convergence speed
 - Bad overall clustering
- Safeguarding measures:
 - Choose first center as one of the examples, second which is the farthest from the first, third which is the farthest from both, and so on.
 - Try multiple initializations and choose the best result