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Information Extraction
and Named Entity
Recognition

Slides from Christopher Manning

http://web.stanford.edu/class/cs124/lec/Inf
ormation_Extraction_and_Named Entity R

ecognition.ppt
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Goal of Information
Extraction

Extracting structured information
out of unstructured text
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Information Extraction

* Information extraction (IE) systems

* Goal: produce a structured representation of relevant
information:

* relations (in the database sense), a.k.a.,
* a knowledge base

* Objectives:
* Organize information so that it is useful to people

* Put information in a semantically precise form that
allows further inferences to be made by computer
algorithms
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Information Extraction (IE)

E systems extract clear, factual information
— « Roughly: Who did what to whom when?
- E.qg.,

* Gathering earnings, profits, board members, headquarters, etc.
from company reports

* The headquarters of BHP Billiton Limited, and the global
headquarters of the combined BHP Billiton Group, are located in
Melbourne, Australia.

* headquarters(“BHP Biliton Limited”, “Melbourne, Australia”)

* Learn drug-gene product interactions from medical research
literature

 Extract citations from a research article
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Low-level information extraction

Is now available - and | think popular - in applications like
Apple or Google mail, and web indexing

The Los Altos Robotics Board of Directors is having a potluck dinner Friday

January 6, 20128 - S ind the upcoming Botball
and FRC (Mvig Create New iCal bvent.. .10 ke Robotics)

seasons. You are  ~°now This DateiniCal...  ,f these dinners three years
back and it was a

Copy

Often seems to be based on regular expressions and name
lists



Low-level information
extraction

GOM ;8[@ |I:rhp billiton headquarters

Search

Everything Best guess for BHP Billiton Ltd. Headquarters is Melbourne, London
Mentioned on at least 9 websites including wikipedia.org, bhpbilliton.com and

Images bhpbilliton.com - Feedback

Maps ot i :
BHP Billiton - Wikipedia, the free encyclopedia

Videos en.wikipedia.orgiwikiBHP Billiton
Merger of BHF & Billiton 2001 (creation of a DLC). Headquarters, Melbourne,

News Australia (BHP Billiton Limited and BHP Billiton Group) London, United Kingdom ...

Shopping History - Corporate affairs - Operations - Accidents



A book,
Not a toy

Title

Need this
price

Why is IE hard on the web?

P\~

Established Phoenix 1994

English Books > AntiquesiCollectibles > Toys * Luckys Collectors Guide To 20th Century

Luckys Collectors Guide To 20th Century Yo-Yos:
History And Values
# English Books
» German Books
¥ Spanish Books

k Sheet Music
F Musical Supplies

¥o-Yos: History And Values

<< PREVIOUS TITLE | NEXT TITLE >> <<HEW RELEASES >=>

EMAIL THIS PAGE TO A FRIEND

» USWorld Maps
» Sports Memorabilia
k Videos/Posters

— T

ADVANCED SEARCH ==

Luckys Collectors Guide To 20th Century Yo- O]
Yos: History And Values CHECK THE
Author: Meisenheimer, Lucky J.; Editor: T Brown 2 M'g"'_-‘:';'ll-s”*
Associates

SRODUC
Paperback FROBUET

Published: October 1999
Lucky 1's Swim 8 Surf
ISBM: 0966761200

PRODUCT CODE: 0966761200

» USA/Canada: Us$ 43.40
+ Australia/NZ: A% 124.50 VIEW CART
» Other Countries: Uss$ 80.90 CHECKOUT

convert to wour currency

ADD TO CART

Home

To Order
Privacy
Affiliates Coop
Education

Government
About us
Contact
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How is IE useful?
Classified Advertisements (Real Estate)

<ADNUM=>2067206v1</ADNUM>

BaCkground' <DATE>March 02, 1998</DATE>

* Plain text <ADTITLE>MADDINGTON
advertisements $89,000</ADTITLE>

. L ; <ADTEXT>

owest common OPEN 1.00 - 1.45<BR>

denominator: only U11/10 BERTRAM ST<BR>
thing that 70+ NEW TO MARKET Beautiful<BR>
newspapers using 3 brm freestanding<BR>

. villa, close to shops & bus<BR>
man_y dllfferent Owner moved to Melbourne<BR>
publishing systems ideally suit 1st home buyer,<BR>
can all handle investor & 55 and over.<BR>

Brian Hazelden 0418 958 996<BR>
R WHITE LEEMING 9332 3477
</ADTFXT>
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Why doesn’t text search (IR)
work?

What you search for in real estate advertisements:

« Town/suburb. You might think easy, but:
* Real estate agents: Coldwell Banker, Mosman
* Phrases: Only 45 minutes from Parramatta
* Multiple property ads have different suburbs in one ad

- Money: want a range not a textual match
* Multiple amounts: was $155K, now $145K
* Variations: offers in the high 700s [but not rents for $270]

* Bedrooms: similar issues: br, bdr, beds, B/R
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Named Entity Recognition
(NER)

* A very important sub-task: find and
classify names in text, for example:

* The decision by the independent MP Andrew
Wilkie to withdraw his support for the minority
Labor government sounded dramatic but it
should not further threaten its stability. When,
after the 2010 election, Wilkie, Rob Oakeshott,
Tony Windsor and the Greens agreed to support
Labor, they gave just two guarantees:
confidence and supply.
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Named Entity Recognition
(NER)

* A very important sub-task: find and
classify names in text, for example:

* The decision by the independent MP Andrew
Wilkie to withdraw his support for the minority
Labor government sounded dramatic but it
should not further threaten its stability. When,
after the 2010 election, Wilkie, Rob Oakeshott,
Tony Windsor and the Greens agreed to support
Labor, they gave just two guarantees:
confidence and supply.
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Named Entity Recognition
(NER)

* A very important sub-task: find and
classify names in text, for example:

- The decision by the independent MP Andrew Person
Wilkie to withdraw his support for the minority Date
Labor government sounded dramatic but it
should not further threaten its stability. When, Organi-
after the 2010 election, Wilkie, Rob Oakeshott, zation

Tony Windsor and the Greens agreed to support
Labor, they gave just two guarantees:
confidence and supply.
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Named Entity Recognition (NER)

= «»°he uses:
 Named entities can be indexed, linked off, etc.
* Sentiment can be attributed to companies or products
* A lot of IE relations are associations between named entities
* For question answering, answers are often named entities.
«  Concretely:

 Many web pages tag various entities, with links to bio or topic
pages, etc.
« Reuters’ OpenCalais, Evri, AlchemyAPI, Yahoo's Term Extraction,

* Apple/Google/Microsoft/... smart recognizers for document
content
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Evaluation of
Named Entity
Recognition

Precision, Recall, and
the F measure:

their extension to
sequences
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The 2-by-2 contingency table

correct Nnot correct
selected tp fp
not fn tn

selected
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Precision and recall

* Precision: % of selected items that are correct
Recall: % of correct items that are selected

correct Nnot correct
selected tp fp
not selected fn tn
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The Named Entity Recognition
Task

Task: Predict entities in a text

Foreign ORG
Ministry  ORG

spokesman Ostandard
Shen PER) evaluation
Guofang PERf s per

told O entity, not

Reuters ORG Per token
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Precision/Recall/F1 for IE/NER

* Recall and precision are straightforward for tasks like IR and
text categorization, where there is only one grain size
(documents)

 The measure behaves a bit funnily for IE/NER when there are
boundary errors (which are common):

* First announced earnings ...
* This counts as both a fp and a fn
« Selecting nothing would have been better

* Some other metrics (e.g., MUC scorer) give partial credit
(according to complex rules)
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Three standard approaches to
NER (and IE)

1. Hand-written regular expressions
* Perhaps stacked

1. Using classifiers
* Generative: Naive Bayes
* Discriminative: Maxent models

1. Sequence models
« HMMs
* CMMs/MEMMs
* CRFs
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Hand-written Patterns for
Information Extraction

* If extracting from automatically generated web pages, simple
regex patterns usually work.

* Amazon page
« <div class="buying"><hl class="parseasinTitle"><span
id="btAsinTitle" style="">(.*?)</span></h1>
* For certain restricted, common types of entities in
unstructured text, simple regex patterns also usually work.

* Finding (US) phone numbers
* (7\(?[0-9]{3}V)?[ -.D?[0-9]{3} -.1?[0-9]{4}
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Natural Language Processing-based
Information Extraction

 For unstructured human-written text, some NLP
may help

Part-of-speech (POS) tagging
* Mark each word as a noun, verb, preposition, etc.

Syntactic parsing
|dentify phrases: NP, VP, PP

Semantic word categories (e.g. from WordNet)
KILL: kill, murder, assassinate, strangle, suffocate
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Rule-based Extraction
Examples

Determining which person holds what office in what organization

* [person], [office] of [org]
 Vuk Draskovic, leader of the Serbian Renewal Movement

* [org] (named, appointed, etc.) [person] Prep [office]
 NATO appointed Wesley Clark as Commander in Chief

Determining where an organization is located
* [org] in[loc]
 NATO headquarters in Brussels

« [org] [loc] (division, branch, headquarters, etc.)
+ KFOR Kosovo headquarters
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Naive use of text classification
for IE

- Use conventional classification algorithms to
classify substrings of document as “to be
extracted” or not.

* In some simple but compelling domains, this

naive technique is remarkably effective.
* But do think about when it would and wouldn’t work!



‘Change of Address’ email

From: Robert Kubinsky <robert@lousycorp.com >
Subject: Email update

Hi all - I'm moving jobs and wanted to stay in touch
with everyone so....

My new email address is : robert@cubemedia.com
Hope all is well :)

==
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Change-of-Address detection
[Kushmerick et al., ATEM 2001]

From: Robert i{uhinsky <robert@Qlousycorp.com> message
Subject: Email update #nalve BaPIeSﬁn Ot COA
Hi all - I'm[moving jobs and wanted to stay in touch mo e
with evervonelso....|
My new email address 1s : robert@cubemedia.com YeS
Hope all is well :)
==>R

everyone so.... My new email address is: robert@cubemedia.com Hope all is well ;) >

From: Robert Kubinsky <robert@lousycorp.com> Subject: Email update Hi all - I’'m

}

“address” Plrobert@lousycorp.com] = 0.28

nal\r%eogg €S "Arobert@cubemedia.com] = 0.72
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e Change-of-Address detection results
733\ [Kushmerick et al., ATEM 2001]

Corpus of 36 CoA emails and 5720 non-CoA emails

 Results from 2-fold cross validations (train on half, test on
other half)

* Very skewed distribution intended to be realistic

* Note very limited training data: only 18 training CoA
messages per fold

« 36 CoA messages have 86 email addresses; old, new, and

Message 98% 97% 98%
classification
Address 98% 68% 80%

classification
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Recognition
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The ML sequence model
approach to NER

Training

1. Collect a set of representative training documents

2. Label each token for its entity class or other (O)

3. Design feature extractors appropriate to the text and classes
4. Train a sequence classifier to predict the labels from the data

Testing

1. Receive a set of testing documents

2. Run sequence model inference to label each token
3. Appropriately output the recognized entities
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Encoding classes for sequence
labeling

|O encoding |IOB encoding
Fred PER B-PER
showed O O
Sue PER B-PER
Mengqgiu PER B-PER
Huang PER I-PER
‘'S O O
new O O

painting O O
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Features for sequence labeling

 Words

* Current word (essentially like a learned dictionary)
* Previous/next word (context)

« Other kinds of inferred linguistic classification
* Part-of-speech tags

* Label context
* Previous (and perhaps next) label
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Features: Word substrings

oxa : field

0
CoERO B0 @D, ms 90 m8

a6

708 68

Cotrimoxazole® Wethersfield

@18

Alien Fury: Countdown to Invasion
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rahability, Features: Word shapes

* Word Shapes

* Map words to simplified representation
that encodes attributes such as length,
capitalization, numerals, Greek letters,
Internal punctuation, etc.

Varicella-zoster Xx-xxx
MRNA XXXX

CPAl XXXd
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Binary Relation Association as
Binary Classification

Christos Faloutsos conferred with Ted Senator, the

Person-Role (Christos Faloutsos, ) 2 NO

Person-Role ( Ted Senator, ) 2 YES
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Resolving coreference
(both within and across documents)

Scout to become President).[8] Kennedy spent summers with his family®
their home in Hyannisport, Massachusetts, and Christmas and Easter holidays

with his family at their winter home in Palm Beach, Florida. For the 5th
throuah 7th arade
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Rough Accuracy of Information
Extraction

Information Accuracy

type

Entities 90-98%
Attributes 80%
Relations 60-70%
Events 50-60%

 |E tasks are hard!

Errors cascade (error in entity tag = error in relation extraction)
These are very rough, actually optimistic, numbers

* Hold for well-established tasks, but lower for many specific/novel IE
tasks
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