Typical ML goals

* Two inference problems

* Given a set of observations find parameters that
best explain the observations

* Find probability of a new observation, predict
missing part of observation

 What do we mean by 1.I.d (Independent and
identically distributed)?

 Why Maximum Likelihood?



Coin toss example

X ; .. . .
The data set X = {_rf}'le can be considered a sequence of independent and identi-
cally distributed (i.1.d.) realisations of a random variable (r.v.) X. The parameters  are
. . . . - . 2
dependent on the distributions considered, e.g., for a Gaussian, @ = {u, o=}

p(X|i?) - p(id)
p(X) posterior =

p(NX) = likelihood - prior

evidence

» Assume deformed coin with probability p of
throwing a heads: HHTHTTHTHHTH

Intuitively, what could p be?




p(C=clp) = p° (1 = p)I¢ £ Bern(clp) (8)

where we define c=1 for heads and ¢=0 for tails®.
Building an ML estimator for the parameter p can be done by expressing the (log)

likelithood as a function of the data:
N N
L=1log ‘ p(C=¢ilp) = Z log p(C=cjlp) (9)
i=1

i=1
= 'V log p(C=1|p) + n? log p(C=0]p)
= H“}]Dg p+ n'V log(1 - p) (10)

where n' is the number of times a Bernoulli experiment yielded event c. Differentiating
with respect to (w.r.t.) the parameter p yields:

aL a0 n) n'D

— = - =0 & pu= = .
ap p 1-p PML =0 570 = N

(11)



Classification Models

* Training Data { (X, y) 1I}...
Test Data { (X, ?) J}
e Discriminant functions:

y(x)=f ( Ty 4+ U‘o) class C; if y(x) = 0 and to class C5 otherwise

* Find parameters that optimize
(minimize/maximize) some function on the
training data.

Example loss functions: L1, L2, hinge loss,
probabilistic...



Generative Models

* Generative models (eg. Naive Bayes, HMMs, topic
models). Come up with a step-by-step process for
generating the data: assumptions on dependence,
underlying distributions

« Quantities of interest . ,(x,¢.) » p(Cy)+ p(xICk)




Multinomial Naive Bayes for text
classification

 How to generate a document?

* First pick a class, with probability p(y)

« Sample each word in the document using Mult(y)
(class-specific multinomial distribution)

* Glven independence assumptions, MLE estimates
yield probabilities proportional to frequencies in the

training data!

ply,x) = ply) Hp Tr|y)



| atent Dirichlet Allocation

// topic plate
for all topics k € [1,K] do
L sample mixture components ¢ ~ Dir(ﬁ}

// document plate:

for all documents m € [1, M] do

sample mixture proportion ﬁm ~ Dir(@)

sample document length N,, ~ Poiss(&)

// word plate:

for all words n € [1.N,,] in document m do
sample topic index z,, ~ Mu]t(ﬁ,n)
sample term for word wy,, ~ Mult(g., )

Fig. 7. Generative model for latent Dirichlet allocation.




LDA equations

document plate (1 document)

N?‘N

= - -+ - -

PWins Zns O, @k?e ) = l_[ !3(1"nr,f:|93z,,r_,, ) P(ZmnlPm) -P(I @) - p(PIB)
n=1 e
- g _ topic plate
word plate
W -
p(Z ) [1.2, p(zi.wi)

p(Zw) = — =
pOv)  T1L, iy p(zi=hk, wi)

W

W
pOW|Z, D) = l_l p(wilzi) = I_l Pzi i
i=1

=1



Discriminative Models

* Model the posterior probabilities (p(C|x))
directly!

 Example: logistic regression,
log(odds-ratio) = In[p(Ci|x)/p(Cz|x)] IS @ linear
function on variables, i.e. w'x + wo

plGileel = G(WTX + wp)



Finding parameters
log-loss over the data set L: _

Ly — Z log (1 5 E,—uTxy)

(x,y)eL

« Or maximize (conditional) likelihood on training data

For a data set {¢,,,t,}, where t,, € {0,1} and @, = &(x,), with n =

1..... NN, the likelihood function can be written
p(tlw) = H yin {1 — y, }' 0 (4.89)
wheye 3 = Wi e tn)t and y, = p(Ci|e,,). As usual, we can define an error

function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

N
E(w) = —Inpw) = =3 {talngn + (1 —ta) (1 —y)}  (4.90



Generative/Discriminative pairs

logistic regression classifier can be converted into a naive Bayes classifier with the
same decision boundary, and vice versa. Another way of saying this is that the naive
Bayes model (1.5) defines the same family of distributions as the logistic regression
model (1.7), if we interpret it generatively as

ol x) = 2P L Ay, )}
. Zgﬁi €Xp {Zk Mefr(y. %)}

This means that if the naive Bayes model (1.5) is trained to maximize the con-

(1.9)

ditional likelihood, we recover the same classifier as from logistic regression. Con-
versely, if the logistic regression model is interpreted generatively, as in (1.9), and is
trained to maximize the joint likelihood p(y, x), then we recover the same classifier
as from naive Bayes. In the terminology of Ng and Jordan [2002], naive Bayes and
logistic regression form a generative-discriminative pair.



Simple example for Markov Models

 label space ={ rainy, windy, sunny }
Data from several periods in time
e For e.g. RWWSRRSWW, SSRRRRW...

 Your goal: predict the probability of seeing a particular
label (pattern)

Intuitively: what could effect this pattern? probability of
seeing a particular weather independent of other things
(e.g. depending on weather patterns in a city),
“dependent” probabillity (probabillity of raining today given
that it has rained yesterday, all of last week...)

 visualize as a probabilistic state machine



First-order Markov Chain

To express such effects in a probabilistic model, we need to relax the 1.1.d. as-
sumption, and one of the simplest ways to do this is to consider a Markov model.
First of all we note that, without loss of generality, we can use the product rule to
express the joint distribution for a sequence of observations in the form

'P(XL-«-:XN):HP(XH\XL---«.Xn—l)- (13.1)

[f we now assume that each of the conditional distributions on the right-hand side
is independent of all previous observations except the most recent, we obtain the
first-order Markov chain, which is depicted as a graphical model in Figure 13.3. The

joint distribution for a sequence of /N observations under this model is given by

N
p(xi.....xn) = p(x1) | | pxnlxn-1). (13.2)

n=>2



First-order Markov Chains

 Parameters of interest: start probability of a
state, p(x_I) and transition probability between

states, p(x_j|x_1)

* As expected, MLE estimates boil down to
counting the frequencies In the training data...

the previous-but-one value, we obtain a second-order Markov chain, represented by
the graph in Figure 13.4. The joint distribution is now given by

N
215. ST XN ) = p(X1)p(x2|X1) H P(Xp|Xn—1,Xp_2). (13.4)

n=3



Hidden Markov Models

* Intuition, states vs. observables
Example (slightly changed)
e State space { Rainy, Windy, Sunny }

* Observable (features, arbitrary), sample
boolean for our example

« Grass Is wet
 Dayu wears a hat
o Sky Is clear



First-order HMMSs

 Each observation has a probability depending
on the state

 p(D wears a hat|rainy) = 0.45, p(D wears a hat|
sunny) = 0.45, p(D wears a hat|windy) = 0.1

e p(grass is wet|rainy) = 0.7, p(grass Is wet|windy) =
0.3

The joint distribution for this model is given by

N N

P(Zn ‘Zn—l )] H p(xn‘zn ) .
2

n=1

P(X1s-e s XN 21y zZy) = p(z1) [

n—=



Viterbi paths for predicting state patterns

Suppose we are given a Hidden Markov Model (HMM) with state space §, initial probabilities ; of being in state ; and transition probabilities @i j of transitioning from
state 4 to state ] . Say we observe outputs Y1, - . . , Y. The most likely state sequence I, ..., I that produces the observations is given by the recurrence
relations: 2’

Vig = PEyl | !f)‘ﬂ'ﬁ;
V;,A' - P Yt ‘ ‘t‘-) ’ maerS(“:r,k ’ Lff—l,r)

Here V;_k is the probability of the most probable state sequence responsible for the first { observations that has ; as its final state. The Viterbi path can be retrieved by
saving back pointers that remember which state 1 was used in the second equation. Let Pt.r(!;1 t.) be the function that returns the value of 1 used to compute I-i‘k if

t > 1 orkift =1.Then:
rr = argmaXges(Vraz)
vy = Ptr(xy,t)

Here we're using the standard definition of arg max.
The complexity of this algorithm is O(T X |S|2).



Discriminative counterpart: CRFs

1 K 1 K
P(ylx) = 75 P Ny + D AuiTi 0 plylx) = 7 EXP{Z *h-fw-xl}'
k—1

7=1

fyi(y,x) = 1{1.f’=y}*'f"j Jur(y,x) = 1{1:"211}

Let Y. X be random vectors, A = {A;} € R¥ be a parameter vector, and

{fr(y.y'.x¢)} 5, be a set of real-valued feature functions. Then a linear-chain
conditional random field is a distribution p(y|x) that takes the form

k=1

K
p(y|x) = Z(lx) exp {Z A fr(ve. ytl.xf)} . (1.16)

where Z(x) is an instance-specific normalization function

K
Z(x) =) exp {Z e foe (Yt Y1, xt)} . (1.17)

v k=1



Parameter estimation is typically performed by penalized maximum likelihood.
Because we are modeling the conditional distribution, the following log likelihood,
sometimes called the conditional log likelihood, is appropriate:

N
() = logp(y™x""). (1.18)

i=1

One way to understand the conditional likelihood p(y|x:#) is to imagine combining
it with some arbitrary prior p(x;6') to form a joint p(y,x). Then when we optimize
the joint log likelihood

log p(y, x) = log p(y|x; 0) + log p(x; '), (1.19)
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