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Data Everywhere
I B EENEE WS R e

m Lots of data is being collected and warehoused

m News articles and news comments
m Weblogs, e-commerce data, customer reviews, forum threads
m Scientific documents
® PubMed currently has over 24 million documents
® Google Scholar is estimated to have 160 million documents
m Social network data

m Facebook passes 1.23 billion monthly active users, 945 million
mobile users, and 757 million daily users

m Twitter usage: 284 million monthly active users, 500 million tweets
sent per day, 80% of Twitter active users are on mobile
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Big Data - What 1s 1t?
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m A term used to describe the exponential growth and
availability of data in almost all domains.

m Types of data:
m Relational data (Tables / Transaction)
m Text data (Web)
m Semi-structured data (XML)
m Graph data
m Social networks, Semantic Web (RDF)
m Streaming data
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The Three Vs of Big Data
EEN ) EENOVEE WS R e

m Volume — Huge data volumes stored
m Due, in part, to the decrease of storage costs.

m Velocity — Drink from a fire hose!

m Data is now streaming in at unprecedented speed
m |t must be dealt with in a timely manner.

m Variety — Large number of diverse data sources to integrate

m Data comes in all forms:
m structured
numeric data such as weather data, sensor data
unstructured text
video
audio
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Big Data - Why 1t Matters?
A A EEDOEE WE R e

m Big Data has become as important as the Internet

m A source of great benefits to discovery, learning, and staying
informed

m It may lead to more accurate analyses, leading to more confident
decision making

m Better decisions => reduced risk / improved revenue.
m Quickly identify customers who matter the most.
m Detect fraudulent behavior in real time.

m It can make our lives easier and more productive, if we can infer
the relationships of interest to us from the data.

m It has the potential to save lives during disaster events.
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Potential Pitfalls of Big Data

Defend Your Private Information from Unauthorized
Access by Using Data Security Software

p
USB Safeguard v2.0

| 6 USB Flash drive locked!

E Enter the password 1o urkock the ush flash dive

Input passwerd: Ty e

L

M Lg Machine Learning Group -@ shlmmm!,! ID,NIE,I;!.E',S%

UNT Computer Science and Engineering 6



Big Data - Challenges
EIEN B BN W R e

m To make effective use of these data

— E.g., how to reduce false positives in medical data, which may lead
to unnecessary surgeries.
m Need to understand how to mine it effectively
m Do we store it all?
m Do we analyze it all?
= How can we mine it to our best advantage?

m What if the data volume is so large and varied that we do not know how
to deal with it?

m How to ensure sensitive information cannot be inferred
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Implications of Big Data on Research Methodologies
EEE B EEOUEE WS B e

m Move from simple (SQL) analytics to complex (non-SQL)
analytics:
m Knowledge Discovery
m Discovery of useful, possibly unexpected, patterns in data

m Data Mining
m Machine Learning

m Incorporate massive data and modalities in analysis
m Use high-performance technologies, e.g., Hadoop, MapReduce, etc.

m Determine upfront which data is relevant
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Example Scenarios using Big Data
EAEE B BB WS R e

m Extracting Keyphrases from Document Networks
m Understanding Disaster Events through Social Media

m Analyzing Images’ Privacy for the Modern Web
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Extracting Keyphrases from
Document Networks

Project funded by NSF
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Why Keyphrase Extraction?
EIEN B BN W R e

m Keyphrase extraction is the task of automatically extracting
descriptive phrases or “concepts” from a document.

m Keyphrases:
m Allow for efficient processing of more information in less
time
m Are useful in many applications:

m topic tracking, information filtering and search,
classification, clustering, and recommendation.
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Previous Approaches to Keyphrase Extraction
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m Use generally only the textual content of the target document
[Mihalcea and Tarau, 2004], [Liu et al., 2010].

m Recently, models are proposed that incorporate a local
neighborhood of a document [wan and Xiao, 2008].
— Obtained improvements over models that use only textual content.
— However, their neighborhood is limited to textually-similar documents.

During these “Big Data” times — access to giant document networks

m /n addition to a document’s textual content and textually-
similar neighbors, are there other informative neighborhoods
that exist in research document collections?

m Can these neighborhoods improve keyphrase extraction?

M L Machine Learning Group
g UNT Computer Science and Engineering 1 2



From Data to Knowledge
I A EENEE WS e e

m A typical scientific research paper:

— Proposes new problems or extends the state-of-the-art for existing
research problems

— Cites relevant, previously-published papers in appropriate confexts

m The citations between research papers gives rise to an
interlinked document network, commonly referred to as the
citation network.
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Citation Networks
HE » B EE " e maoammw

m In a citation network, information flows from one paper to
another via the citation relation [Shi et al., 2010].

m The influence of one paper on another as well as the flow
of information are captured by means of citation contexis
(short text segments surrounding a paper's mention)

B They serve as “micro summaries” of a cited paper!
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A Small Citation Network
EAEE B BB WS R e

Paper 1

Steffen Rendle, Christoph Freudenthaler, Lars Schmidt-Thieme:
Factorizing personalized Markov chains for next-basket
recommendation, WWW 2010

Author-specified keywords: basket recommendation, markov chain,
matrix factorization.

Cites Citing context v
Paper 2 Three recent methods for item recommendation are based on the
matrix factorization model that factorizes the matrix of user-item
Chen Cheng, Haigin Yang, Michael R. Lyu, Irwin King: Where correlations. Both Hu et al. [2] and Pan and Scholz [6] optimize the
you like to go next: successive point-of-interest factorization on user-item pairs (u, i)
recommendation, ||CAl 2013

Cited context 1

“Tensor Factorization(BPTF)[Xiong et al., 2010], factorized
personalized_Markov chains (FPMC)[Rendle et al.,2010],.. ”

Cited context 2

“...Markov chain (FPMC) for solving the task of next basket
recommendation [Rendle et al., 2010]”

m Citation contexts are very informative!

[Das G. and Caragea, 2014]; [Caragea et al., 2014]
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Understanding Disaster Events
through Social Media

Project funded by NSF
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Social Media
HEE B EEYEE W om0 e

m Social media is now part of our daily lives and everyday
communication patterns.

m Scholars of disasters see hope in social media

— Used around crises, it can produce accurate results, often in
advance of official communications.

m However, social media data has not been incorporate
much in emergency response systems.
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Proof of Concept
HAEN B EEDOEE WS R e

m Using Twitter data from Hurricane Sandy, we identify the
sentiment of tweets and then measure the distance of each
categorized tweet from the epicenter of the hurricane.

m Sandy Hurricane Twitter Data:

— We crawled 12,933,053 tweets between 10-26-2012 and
11-12-2012.

M L Machine Learning Group
g UNT Computer Science and Engineering 1 8



Why Sentiment Analysis in Disaster Events?
NN B EENUEE WS RS e

m Can help understand the dynamics of the social network
— The main users’ concerns and panics
— The emotional impacts of interactions among users.

m Can help obtain a holistic view about the general mood and
the situation on the ground.

m Strong value to those experiencing the disaster and those
seeking information about the disaster, as well as to the
responder organizations.

— Extracting sentiments during a disaster could help responders
develop stronger situational awareness of the disaster zone itself.
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Geo-Tagged Tweets Sentiment Analysis

%

w0~ - . ) g Z 7 “a.#x
1 Standard Deviation Ellipse ¢ Tweets with Positive Sentiment ( ‘,;_ 2

I sandy 34-knot Windswath at 9:00 PM (estim) = Tweets with Neutral Sentiment ! Y7
Sandy 34-knot Windswath at 12:00 AM (estim) ¢  Tweets with Negative Sentiment 7

® Mean Center of Tweets

m  Could be integrated into systems to help response organizations have a real time map to
display the physical disaster and the spikes of intense emotional activity in its proximity.

m Using “Big Data™
— Automatically infer tweets geo-location
— Automatically identifying trustworthy information spread around disaster events

[Caragea, Squiciarrini, Stehle, Neppalli, Tapia; 2014]
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Analyzing Images’ Privacy
for the Modern Web

Project funded by NSF
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Why Online Image Privacy?
EEN ) EENOVEE WS R e
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© INSTAGRAM

Yahoo! Claims 880 billion
images are shared in “14.

30K images per minute in
Instagram.

200K images per minute
in Facebook.

Sharing sensitive images
is also on arise.

http://www.sociallystacked.com/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/



Why Online Image Privacy?
HAEE B EEDOCEE WS R e

U.S. Users Who Are Concerned with The Privacy of Their Personal Information

®
&
Undersiand Privacy Seiftings Breach In Privacy
68T =
32% 50

DON'T UNDERSTAND
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Why Online Image Privacy?
AN B EENOEE WS R mmeeaswom

m With the advancements in mobile technology and Web 2.0
— online image sharing is very easy.

m Many users are ignorant of privacy policies and risks of
Image sharing.

m Social network privacy policies are complex
— Facebook explains 61 content privacy settings across 7 pages
— Linkedin explains 52 content privacy settings across 18 pages

m Great need for methods to detect sensitivity of an image and
recommend privacy policies.
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Image Analysis for Privacy Setting

HIEE B EEDOEE WS e mmesssw o

= Image features

— Content and tag feature, e.qg.,
RGB, SIFT, Edge direction,
and Face detection.

m Metadata types

L "
- Tags - Her ears ook just like Max's! - ¢ Joung B ... u .,-_QO
— Comments pvories
- People nom nom nom Peopie in this photo (ad¢ a perscr
— NoteS/Description Hope really only pays attention to me when | make fake farting noiset - pkingDesig
. . Comments and faves
=  Contextual information e Tags (sssa e
- Type of ObjeCtS a what lens was used here? great shot, biw
— Names of people et

Hope Is beautiful-so healthy looking

— Place of photo etc.

m Using thousands of Flickr images!!

[Squiciarrini, Caragea, Balakavi; 2014]; [Godea, Caragea, Squiciarrini; 2014]
M Lg Machine Learning Group
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Implications of “Big Data”on Research Funding

m =

m Great opportunities for complex data analytics
m Great funding opportunities

WHERE DISCOVERIES BEGIN
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Conclusions
HINEE ) EEDOVEE WS R mmeeeswow

m Machine learning for “Big Data” is an exciting field of research

with limitless practical application:
m Finance, robotics, vision, machine translation, medicine, etc.

m Open field, lots of room for new work

m 12 IT skills that employers cannot say “No” to
— Machine Learning is #1

m “The beauty of machine learning? It never stops learning!”
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