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Data Everywhere 

n  Lots of data is being collected and warehoused 
n  News articles and news comments 
n  Weblogs, e-commerce data, customer reviews, forum threads 
n  Scientific documents 

n  PubMed currently has over 24 million documents 
n  Google Scholar is estimated to have 160 million documents  

n  Social network data 
n  Facebook passes 1.23 billion monthly active users, 945 million 

mobile users, and 757 million daily users 
n  Twitter usage: 284 million monthly active users, 500 million tweets 

sent per day, 80% of Twitter active users are on mobile 
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Big Data - What is it? 

n  A term used to describe the exponential growth and 
availability of data in almost all domains. 

n  Types of data:   
n  Relational data (Tables / Transaction)  
n  Text data (Web) 
n  Semi-structured data (XML) 
n  Graph data 

n Social networks, Semantic Web (RDF) 
n  Streaming data 
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The Three Vs of Big Data 

n  Volume – Huge data volumes stored 
n  Due, in part, to the decrease of storage costs.  

n  Velocity – Drink from a fire hose!  
n  Data is now streaming in at unprecedented speed  

n  It must be dealt with in a timely manner.  

n  Variety – Large number of diverse data sources to integrate 
n  Data comes in all forms:  

n  structured  
n  numeric data such as weather data, sensor data  
n  unstructured text  
n  video 
n  audio  
n  … 
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Big Data - Why it Matters? 

n  Big Data has become as important as the Internet  
n  A source of great benefits to discovery, learning, and staying 

informed  

n  It may lead to more accurate analyses, leading to more confident 
decision making  
n Better decisions => reduced risk / improved revenue. 

n  Quickly identify customers who matter the most.  
n  Detect fraudulent behavior in real time.  

n  It can make our lives easier and more productive, if we can infer 
the relationships of interest to us from the data. 

n  It has the potential to save lives during disaster events.  
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Potential Pitfalls of Big Data 
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Big Data - Challenges 

n  To make effective use of these data  
–  E.g., how to reduce false positives in medical data, which may lead 

to unnecessary surgeries.  
n  Need to understand how to mine it effectively 

n  Do we store it all? 
n  Do we analyze it all? 
n  How can we mine it to our best advantage? 
n  What if the data volume is so large and varied that we do not know how 

to deal with it? 
n  How to ensure sensitive information cannot be inferred 
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Implications of Big Data on Research Methodologies 
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n  Move from simple (SQL) analytics to complex (non-SQL) 
analytics:  
n  Knowledge  Discovery  

n Discovery of useful, possibly unexpected, patterns in data 

n Data Mining  
n Machine Learning 

n  Incorporate massive data and modalities in analysis  
n  Use high-performance technologies, e.g., Hadoop, MapReduce, etc. 

n  Determine upfront which data is relevant 
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Example Scenarios using Big Data  

n  Extracting Keyphrases from Document Networks 

n  Understanding Disaster Events through Social Media 

n  Analyzing Images’ Privacy for the Modern Web 
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Extracting Keyphrases from  
Document Networks 
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Why Keyphrase Extraction? 

n  Keyphrase extraction is the task of automatically extracting 
descriptive phrases or “concepts” from a document.  

n  Keyphrases:  
n  Allow for efficient processing of more information in less 

time 
n  Are useful in many applications: 

n topic tracking, information filtering and search, 
classification, clustering, and recommendation. 
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Previous Approaches to Keyphrase Extraction 

n  In addition to a document’s textual content and textually-
similar neighbors, are there other informative neighborhoods 
that exist in research document collections? 

n  Can these neighborhoods improve keyphrase extraction? 
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n  Use generally only the textual content of the target document 
[Mihalcea and Tarau, 2004], [Liu et al., 2010].  

n  Recently, models are proposed that incorporate a local 
neighborhood of a document [Wan and Xiao, 2008]. 
–  Obtained improvements over models that use only textual content.  
–  However, their neighborhood is limited to textually-similar documents. 

During these “Big Data” times – access to giant document networks 
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From Data to Knowledge 
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n  A typical scientific research paper: 
–  Proposes new problems or extends the state-of-the-art for existing 

research problems 
–  Cites relevant, previously-published papers in appropriate contexts 

n  The citations between research papers gives rise to an 
interlinked document network, commonly referred to as the 
citation network. 
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Citation Networks 

n  In a citation network, information flows from one paper to 
another via the citation relation [Shi et al., 2010]. 

n  The influence of one paper on another as well as the flow 
of information are captured by means of citation contexts 
(short text segments surrounding a paper's mention)  
n  They serve as “micro summaries” of a cited paper! 
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A Small Citation Network 

n  Citation contexts are very informative! 
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[Das G. and Caragea, 2014]; [Caragea et al., 2014] 
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Understanding Disaster Events  
through Social Media 
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Social Media 

n  Social media is now part of our daily lives and everyday 
communication patterns.  

n  Scholars of disasters see hope in social media 
–  Used around crises, it can produce accurate results, often in 

advance of official communications. 

n  However, social media data has not been incorporate 
much in emergency response systems.  
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Proof of Concept 

n  Using Twitter data from Hurricane Sandy, we identify the 
sentiment of tweets and then measure the distance of each 
categorized tweet from the epicenter of the hurricane.  

n  Sandy Hurricane Twitter Data: 
–  We crawled 12,933,053 tweets between 10-26-2012 and 

11-12-2012.  
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Why Sentiment Analysis in Disaster Events? 

n  Can help understand the dynamics of the social network  
–  The main users’ concerns and panics 
–  The emotional impacts of interactions among users.  

n  Can help obtain a holistic view about the general mood and 
the situation on the ground.  

n  Strong value to those experiencing the disaster and those 
seeking information about the disaster, as well as to the 
responder organizations. 
–  Extracting sentiments during a disaster could help responders 

develop stronger situational awareness of the disaster zone itself.  
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Geo-Tagged Tweets Sentiment Analysis 

n  Could be integrated into systems to help response organizations have a real time map to 
display the physical disaster and the spikes of intense emotional activity in its proximity.  

n  Using “Big Data”: 
–  Automatically infer tweets geo-location 
–  Automatically identifying trustworthy information spread around disaster events 

[Caragea, Squiciarrini, Stehle, Neppalli, Tapia; 2014] 
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Analyzing Images’ Privacy  
for the Modern Web 
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http://www.sociallystacked.com/2014/01/the-growth-of-social-media-in-2014-40-surprising-stats-infographic/ 

n  Yahoo! Claims 880 billion 
images are shared in ‘14. 

n  30K images per minute in 
Instagram.  

n  200K images per minute 
in Facebook. 

n  Sharing sensitive images 
is also on a rise. 

Why Online Image Privacy? 
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http://www.wordstream.com/articles/google-privacy-internet-privacy 
SocialNetworkSecurityPrivacy. Barracudalabs.com 

Why Online Image Privacy? 
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n  Social network privacy policies are complex 
–  Facebook explains 61 content privacy settings across 7 pages 
–  Linkedin explains 52 content privacy settings across 18 pages 

n  Great need for methods to detect sensitivity of an image and 
recommend privacy policies.  

Why Online Image Privacy? 

n  With the advancements in mobile technology and Web 2.0 
–  online image sharing is very easy. 

n  Many users are ignorant of privacy policies and risks of 
image sharing. 
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n  Metadata types 
–  Tags 
–  Comments 
–  People  
–  Notes/Description 

n  Contextual information 
–  Type of objects 
–  Names of people 
–  Place of photo etc. 

Image Analysis for Privacy Setting 

n  Image features 
–  Content and tag feature, e.g., 

RGB, SIFT, Edge direction, 
and Face detection.  

n  Using thousands of Flickr images!! 
[Squiciarrini, Caragea, Balakavi; 2014]; [Godea, Caragea, Squiciarrini; 2014] 

MLg Machine Learning GroupUNT Computer Science and Engineering 25 



Implications of “Big Data”on Research Funding 

n  Great opportunities for complex data analytics 
n  Great funding opportunities 
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NSF awards for BIGDATA shown geographically 
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Conclusions 
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n  Machine learning for “Big Data” is an exciting field of research 
with limitless practical application: 

n  Finance, robotics, vision, machine translation, medicine, etc.  

n  Open field, lots of room for new work  

n   12 IT skills that employers cannot say “No” to  
–  Machine Learning is #1  

n  “The beauty of machine learning? It never stops learning!” 
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Thank you! 
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Andreea Godea 

Kishore Neppalli Florin Bulgarov 
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