Improving VNC Performance with the Smart Proxy Architecture

Cynthia Taylor, Joe Pasquale
UCSD
Introduction
 - What is Thin Client Computing?
 - Why Thin Clients?
 - What is VNC?
 - Latency and Performance
 - Defining Performance

The Smart Proxy Architecture
Results & Conclusion
What is Thin Client Computing?
What is Thin Client Computing?
What is Thin Client Computing?

User input

Screen updates

internet
Why Thin Clients?
Lightweight Devices
Why Thin Clients?
Intensive Applications

- Machine Learning/Vision
 - Object recognition
 - Speech recognition
- Graphics
 - Rendering
- Data Storage
 - Video
Why Thin Clients?
Security & Data Loss

- A lost laptop doesn’t mean lost data
- Helps companies stay compliant with privacy laws such as HIPAA
What Is VNC

- VNC is a widely-used thin client system with several available open-source implementations.
Latency and Performance

Desktop

Thin Client

internet
Defining Performance

1. Client requests new update
 - Client
 - Server
 - request

2. Client waits
 - Client
 - Server

3. Server sends update
 - Client
 - Server
 - update

4. Client processes update
 - Client
 - Server
Introduction

The Smart Proxy Architecture
 - Resource Assumptions
 - The Smart Proxy Architecture
 - The Proxy & VNC
 - Example

Results & Conclusion
Resource Assumptions: Active Wireless Spaces
Smart Proxy Architecture

- GPS
- video
- earpiece
- PDA
 - client
- wireless
- smart proxy
- internet
- server
 - web server
 - game server
 - web server
 - world
The Proxy and VNC

- The Smart Proxy sends requests to the server at the rate the client is processing them, without waiting for an update from the server.
- This lets the Smart Proxy adjust for time delays between the client and server.
Example

- Client sends request - 200 ms
- Server processes - 5 ms
- Server sends update - 200 ms
- Client processes - 5 ms

Total time = 410 ms
Example

- Proxy processes - 5 ms
- Proxy sends update to Client - 15 ms
- Client processes - 5 ms
- Client sends request - 15 ms

Total time = 40 ms
Example

- The proxy sends requests to the server at the same rate the client is processing them, without waiting for a response from the server.
Results
Conclusion

- We can improve VNC performance by having a Smart Proxy mediate the update rate over network delays.
- Faster thin clients can help us integrate powerful computing into our mobile lives.