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ABSTRACT
With the proliferation of location-based services, mobile de-
vices, and embedded wireless sensors, more and more appli-
cations are being developed to improve the efficiency of the
transportation system. In particular, new applications are
arising to help vehicles locate open parking spaces. Never-
theless, while engaged in driving, travelers are better suited
being guided to a particular and ideal parking slot, than
looking at a map and choosing which spot to go to. Then
the question of how an application should choose this ideal
parking spot becomes relevant.

Vehicular parking can be viewed as vehicles (players) com-
peting for parking slots (resources with different costs). Based
on this competition, we present a game-theoretic framework
to analyze parking situations. We introduce and analyze
Parking Slot Assignment Games (Psag) in complete and in-
complete information contexts. For both models we present
algorithms for individual players to choose parking spaces
ideally. To evaluate the more realistic incomplete informa-
tion Psag, simulations were performed to test the perfor-
mance of various proposed algorithms.

Categories and Subject Descriptors
J.m [Computer Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Parking, Game Theory

1. INTRODUCTION
Finding parking can be a major hassle for drivers in some

urban environments. For example in [18], studies conducted
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in 11 major cities revealed that the average time to search
for curbside parking was 8.1 minutes and cruising for these
parking spaces accounted for 30% of the traffic congestion
in those cities on average. Even if the average time to find
parking was smaller, it would still account for a large amount
of traffic. Suppose that the average time to find parking were
3 minutes (as opposed to 8.1), each parking space would still
generate 1,825 vehicle miles traveled (VMT) per year [19].
That number would of course be multiplied by the number
of parking spaces in the city. For example, in a city like
Chicago with over 35,000 curbside parking spots [21], the
total number of VMT becomes 63 million VMT per year
due to cruising while searching for parking. Furthermore,
this would account for waste of over 3.1 million gallons of
gasoline and over 48,000 tons of CO2 emissions.

With the advent of location-based services and embedded
wireless sensors, applications that enable mobile devices to
find open parking spots in urban environments are being
developed. A prime example of this type of application is
SFPark [1]. It uses wireless sensors embedded in the streets
and parking garages of the city of San Francisco, that can
tell if a parking spot has opened up. When a user wants to
find a parking spot in some area of the city, the application
shows a map with marked locations of the open parking
spots in the area.

While this type of application may be useful for finding
the open parking spots around you, it does raise some safety
concerns for travelers. The drivers have to shift their focus
from the road, to the mobile device they are using. Then
they have to look at the map and make a choice about which
parking space to choose from all the available spots that are
shown in the map. It would be better (safer) if the app
just guided the driver to an exact location where they are
most likely to find an open parking spot. Then the question
arises, which algorithm should the mobile app use to choose
such an ideal parking location?

In this paper, our main concern is to answer the preceding
question. To that end, we study the parking problem in
various contexts. The first model we study is a centralized
model in which some centralized authority makes parking
choices for travelers and assigns each to a specific parking
slot. We then study a model with distributed selfish agents
that are competing for the parking slots. This competition
for resources (slots) lends itself for modeling this situation
in a game-theoretic framework. We then introduce parking
slot assignment games (Psag) for studying this model.

Two categories of Psag will be considered, complete and
incomplete information Psag. For the complete information



game, an algorithm for computing the Nash equilibrium is
presented. There is a relationship between the complete in-
formation Psag and the stable marriage problem [6] which
we establish in the paper. Also, we show that the price of
anarchy (defined in section 4.3 as the ratio between Nash
Equilibrium and System Optimal) for the vehicular park-
ing problem is unbounded. For the incomplete information
game, the model that is most realistic and directly applica-
ble to real-life applications of parking slot choice, examples
are shown to compute the Nash Equilibrium with expected
costs and the Gravity-based Parking algorithm (GPA) is in-
troduced. The algorithm is evaluated through simulations.
In various cases the algorithm shows an improvement of over
25% compared to the Näıve parking algorithm. This im-
provement amounts to savings of up to 785,000 gallons of
gasoline and 12,000 tons of CO2 emissions per year in a ma-
jor city like Chicago.

The rest of the paper is organized as follows. In section 2
we present the general setup of the problem and some no-
tations to be followed in the rest of the paper. In section 3
we present the centralized model and present an algorithm
for computing the welfare-optimizing parking assignment.
In section 4 we define the Parking Slot Assignment game
and prove various properties of the game for the complete
information model. In section 5 we introduce Psag with
incomplete information, look at some simple examples that
help us define the Gravity-based Parking algorithm. In sec-
tion 6 we present results and evaluation of simulations that
were ran to test the performance of the Gravity-based al-
gorithm over the Näıve parking algorithm. In section 7 we
discuss some related work and in section 8 we present some
concluding remarks.

2. GENERAL SETUP AND NOTATION
The general setup of the parking problem is as follows:

• There are two types of objects as follows.

– A set of n vehicles V = {v1, v2, . . . , vn}.
– A set of m open parking slots S = {s1, s2, . . . , sm}.

• dist : (V ∪ S) × S → R is a distance function. It
denotes the distance between a vehicle and a slot, or
the distance between two slots.

• Each vehicle is assumed to be moving independently
of all other vehicles at a fixed velocity. Without loss
of generality, we assume that the speeds of all vehicles
are the same1.

• A valid assignment of vehicles to slots is one where
each vehicle is assigned to exactly one slot. It can be
defined as a function g : V → S, where g(v) is the
assigned slot for vehicle v ∈ V .2

• The cost of an assignment g for a player v ∈ V , Cg(v),
is defined as dist(v, g(v)) if of all players assigned to
slot g(v), v is the closest to it; i.e.

v = argmin
v′∈V :g(v′)=g(v)

{dist(v′, g(v))}. (1)

1Otherwise, we simply need to rescale the distances for each
vehicle in our algorithmic strategies.
2Based on this definition, there is a difference between where
a vehicle is assigned and where a vehicle parks. If more than
one vehicle is assigned to the same slot, then the closest one
to it will park there. The others are left without parking.
This will always happen when n > m.

Here the argmin function returns the parameter that
minimizes the given function. If some other vehicle
assigned to g(v) is closer to it than v, then v’s cost is
dist(v, g(v)) + α where α is a penalty for not obtaining
a parking slot.

• The cost of an assignment g, Cg, is defined as:

Cg =
X

v∈V

Cg(v) (2)

3. CENTRALIZED MODEL - OPTIMIZING
SOCIAL WELFARE

In this model, a centralized authority is in charge of as-
signing the vehicles to slots. The authority would be look-
ing to minimize some system-wide objectives. The most
common objective function used for optimization is Eq (2),
where an assignment g that minimizes the total system cost
is computed. This computation is also commonly referred
to as one that optimizes the social welfare.

Suppose that yi,j ∈ {0, 1} is the usual indicator variable
denoting if vi ∈ V is assigned to sj ∈ S, i.e. g(vi) = sj ;
then we need to minimize

Pn
i=1

Pm
j=1 yi,j dist(vi, sj).

Theorem 1. A system optimal solution can be computed
in (strongly) polynomial time.

Proof. We reduce our problem to an instance of the
minimum-cost network flow problem on a directed bipartite
graph, for which a strongly polynomial time exact solution is
well-known (e.g., see [4]). Since the capacities of each slot in
our instance are all integral (equal to 1), the solution to the
flow problem will also be integral (e.g., see [14]). We have a
vertex vi for every vehicle vi, a vertex sj for every parking
slot sj and a directed edge (vi, sj) of weight dist(vi, sj). We
also have two additional vertices, a source vertex s and a
sink vertex t, with edges (s, vi) for every 1 ≤ i ≤ n and
edges (sj , t) for every 1 ≤ j ≤ m (each of zero weight).
Let G = (V, E) be the resulting directed graph. Figure 1
shows what the structure of G will look like. Then, defining
the flow by f , we use the following minimum-cost network
flow problem on this graph with min(n, m) being the flow
requirement:

minimize
P

{vi,sj}∈E dist(vi, sj) f(vi, sj)

subject to
∀vi : 0 ≤ f(s, vi) ≤ 1
∀{vi, sj} ∈ E : 0 ≤ f(vi, sj) ≤ 1
∀sj : 0 ≤ f(sj , t) ≤ 1Pn

i=1 f(s, vi) =
Pm

j=1 f(sj , t) = min(n, m)

The first three constraints in the mathematical program
above are capacity constraints and the final one is the flow
requirement constraint. Finally, if f(vi, sj) = 1 then vi is
assigned to sj , g(vi) = sj .

If n > m, then some vehicles will remain unassigned.
These unassigned vehicles can be assigned to any slot. They
will not obtain any slot they are assigned. Suppose that one
of these unassigned vehicles could obtain some slot s, then
the minimum assignment would be one in which that vehicle
would be assigned to s and the original vehicle assigned to s
would be assigned to any other slot. This assignment would
have a smaller cost than the one computed by the program
above, which would be a contradiction.
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Figure 1: Graph Construction for Network Flow
Problem with weights (all capacities are 1)
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Figure 2: Optimizing Social Welfare Example

Even though this model shows good computational prop-
erties, it may be difficult to justify in real life to distributed
users that make their own choices. This is because optimiz-
ing social welfare implies that some travelers may incur a
greater cost for the good of others.

For example, in the parking problem shown in Figure 2,
the assignment that optimizes social welfare is one such that
g(v1) = s2 and g(v2) = s1. This assignment has a cost of
70. The other possible assignment has a higher cost of 90,
but it is more profitable for v1 since he would cut his cost
in half. Then v1 has incentive to deviate from the optimal
assignment and choose s1. This then leads us to analyze the
problem with distributed agents where each traveler makes
parking choices that benefit himself.

4. DISTRIBUTED MODEL WITH
COMPLETE INFORMATION

In this model, there is no central authority and each ve-
hicle is an independent agent that makes its own parking
choice. This version of the problem can be analyzed as a
game where vehicles act as players competing for parking
slots and they wish to reduce the cost that is obtained based
on their choices and the choices of the other players.

4.1 PSAG with Complete Information Defini-
tion

Any game has three essential components: a set of players,
a set of possible strategies or choices for the players, and
a payoff function (cost function) [16]. The payoff function
determines what is the cost to each player based on a given
strategy profile. If there are n players in the game then
a strategy profile is an n-tuple in which the ith coordinate
represents the strategy choice of the ith player. It basically
represents the choices made by the n players.

In this complete information model, all vehicles have ac-

cess to all of the information about the locations of the other
vehicles. In other words, they know the payoff function for
this problem.

In our case for the parking problem, we can define the
parking slot assignment game (Psag) as follows:

• The set of players in Psag is V (the vehicles).

• The set of available strategies to each player is S (the
slots).

• The payoffs (costs) for each player in this game can be
defined by the Cg function introduced in section 2. Let
A = (sv1 , sv2 , . . . , svn) be the strategy profile chosen
by the players, i.e. slot svi is the chosen slot by vehicle
vi, 1 ≤ i ≤ n. Let g(vi) = svi , then the cost for any
player vi will be Cg(vi).

• For this game, the penalty of not finding a parking
slot, α, will be defined as a large constant quantity.

The Nash equilibrium [11] is the standard desired strategy
that is used to model the individual choices of players in a
game. It defines a situation in which no player can decrease
its cost by changing strategy unilaterally. The standard def-
inition of Nash equilibrium translates to the following defi-
nition for Psag:

Definition 2 (Nash Equilibrium for Psag). Let A =
(sv1 , sv2 , . . . , svn) be a strategy profile for the Psag. Let
A∗

i = (sv1 , sv2 , . . . , svi−1 , s∗vi
, svi+1 , . . . , svn−1 , svn), for s∗vi

(=
svi . Let g be the assignment function obtained from strategy
profile A and g∗i be the assignment function obtained from
strategy profile A∗

i . Then strategy profile A is a Nash equi-
librium strategy for the players if Cg(vi) ≤ Cg∗i

(vi) for all i
and any s∗vi

(= svi .

A∗
i is the strategy profile obtained by only player vi chang-

ing strategy from svi to any s∗vi
(= svi for any 1 ≤ i ≤ n. If

the condition in the definition holds then it means that no
player can improve by him alone deviating from the Nash
equilibrium strategy. For the remainder of the paper, equi-
librium and Nash equilibrium will be used interchangeably.

4.2 An Equilibrium Strategy for PSAG
In this section we introduce the algorithm for computing

a Nash equilibrium strategy for this game and discuss its
relationship with the Stable Marriage problem.

4.2.1 Algorithm for Nash Equilibrium
Algorithm 1 computes the assignment function g that

leads to a Nash equilibrium strategy for each player. It
does so through an iterative process. On each iteration, it
chooses the unassigned vehicle (v) that is closest to any of
the unassigned slots (s) and sets g(v) = s.

The algorithm enters the if statement at the end only
if the number of vehicles (n) is greater than the number of
available slots (m). The vehicles that make a strategy choice
in this section are guaranteed to not obtain a parking slot
because all of the slots were chosen in the preceding while
loop by vehicles that are closer.

Theorem 3. Given a set of vehicles V , a set of open
parking slots S and a distance function dist that defines the
distances of each vehicle to each slot, then Algorithm 1 com-
putes the assignment g that leads to a Nash equilibrium strat-
egy for each vehicle.



Algorithm 1 Equilibrium Strategy Computation

V ′ ← V
S′ ← S
while (V ′ (= ∅) AND (S′ (= ∅) do

v, s ← argmin
vi∈V ′,sj∈S′

{dist(vi, sj)}

g(v) ← s
V ′ ← V ′ \ {v}
S′ ← S′ \ {s}

end while
if V ′ (= ∅ then

for all v ∈ V ′ do
g(v) ← argmin

s∈S
{dist(v, s)}

end for
end if

Proof. Let g be the assignment that is computed by al-
gorithm 1. There are two cases to consider as to where the
assignment of a slot for player vi took place. Either vi was
assigned its slot in the while loop or in the if statement of
the computation.

Suppose vi was assigned its slot in the while loop. Then
that means that at that point of assignment he is the closest
to any of the slots that have remained unassigned. Deviating
strategies to any other unassigned slot does not improve his
cost because it is a larger cost than the one he would obtain
by choosing g(vi) (by usage of argmin). Deviating strategies
to any one of the already assigned slots will not improve his
cost because the players assigned to those slots were closer to
them than him so he would not obtain it and would have to
pay a larger cost because of the penalty α for not obtaining
the slot. Then, in this case no player assigned a slot in the
while loop has incentive to deviate to another strategy.

Now suppose vi is assigned its slot in the if statement of
the computation. Then no matter what slot he chooses, he
will not get it because they are already assigned to players
that are closer to all of them than he is. Then by default,
choosing his closest parking spot is his equilibrium strategy.
Therefore by using Algorithm 1 to compute g, no player
vi has an incentive to deviate from strategy g(vi) and so g
defines an equilibrium assignment.

Then for this version of the problem, we can compute the
equilibrium in a simple way. The problem is that it suffers
from security and privacy concerns. Not all travelers are
willing to share location information or are comfortable with
being tracked at all times. Therefore, we will analyze in
section 5 this same problem but with incomplete information
so that users would not have the necessity of sharing their
locations at all times.

4.2.2 Relationship to Stable Marriage Problem
In this section we establish a relationship between the as-

signment computed by algorithm 1 and the stable marriage
problem [6].

Let dij = dist(vi, sj) for any vi ∈ V and sj ∈ S. A
vehicle’s preference for parking is determined by its distance
to the slots, i.e. vehicle vi prefers slot sj over slot sj′ if
dij < dij′ . Suppose that the slots had analogous preferences,
i.e. slot sj prefers vehicle vi over vehicle vi′ if dij < di′j .

Definition 4 (Unstable Marriage [6] in PSAG). An
assignment of vehicles to slots is called unstable if there are

vehicles vi and vi′ , assigned to slots sj and sj′ respectively,
but vi′ prefers sj over sj′ and sj prefers vi′ over vi.

Theorem 5. Suppose that the vehicles’ preference order
is determined by the distance to the slots from closest to
farthest and the slots’ preference order is determined by dis-
tance to the vehicles from closest to farthest as well. Then
algorithm 1 computes a stable marriage assignment between
the vehicles and slots.

Proof. Suppose to the contrary that algorithm 1 does
not compute a stable marriage assignment between vehicles
and slots. Then there exists vi, vi′ ∈ V and sj , sj′ ∈ S
such that vi is assigned to sj and vi′ is assigned to sj′ ,
but vi′ prefers sj over sj′ and sj prefers vi′ over vi. Then,
di′j < di′j′ and di′j < dij .

But algorithm 1 chose dij or di′j′ as part of the equilibrium
before choosing di′j . Since our algorithm always chooses
the minimum available distance then either dij < di′j or
di′j′ < di′j . Contradiction. Therefore Algorithm 1 always
computes a stable marriage assignment.

4.3 Price of Anarchy
The price of anarchy (POA) of a game is the ratio of the

total cost paid in the equilibrium assignment over the total
cost paid by the players in the assignment that minimizes
the social welfare [12]. The POA of the Psag class of games
will be the largest such ratio that could be found for an
instance of the Psag. In this section we show that the POA
of the Psag with complete information is unbounded. This
is a fundamental result which indicates that for the vehicular
parking problem, when travelers are selfish and make their
own choices, costs can get arbitrarily worse than the optimal
assignment. More specifically, the ratio between the costs of
the equilibrium and optimal parking assignments can grow
unboundedly as the size of the problem increases.

Theorem 6. The Price of Anarchy in the Complete In-
formation Psag is unbounded.

Proof. Consider a game with n vehicles and n open
parking slots. Let A = {aij} form a matrix, where the entry
aij = dist(vi, sj) is the distance from vi’s original position
and sj .

Let the distance function be defined by the following ma-
trix:

{d(vi, sj)} =

2

6664

n 2n · · · n · n
n2 2n2 · · · n · n2

...
...

. . .
...

nn 2nn · · · n · nn

3

7775

Then dist(vi, sj) = jni. Any assignment in this game will
lead to a total cost (adding the costs of all players) of some
polynomial of degree at least n.

The equilibrium assignment will be one that is obtained
by performing the Algorithm 1. In this method, the small-
est entry, aij , in the matrix will be computed and vi will
be assigned to parking sj . Then that column and row will
be removed from the matrix and the smallest entry will be
computed in this updated matrix. It’s clear that the poly-
nomial that is obtained from this algorithm will be the one
that adds up the diagonal entries of matrix A. Then the
equilibrium assignment will have a total cost of:

EQ =
n−1X

k=0

(n− k)nn−k = nn+1 +
n−1X

k=1

(n− k)nn−k (3)



Then, the equilibrium solution leads to a total cost that
is given by a polynomial of degree n + 1.

Now consider an assignment that tries to choose the small-
est distance for the larger cost vehicles. So then for vn, slot
s1 will be assigned so as to minimize the large cost factor
that it has of nn. This assignment chooses the diagonal that
starts on position an1 and ends in position a1n. For this spe-
cial assignment, vi is assigned slot sn−i+1. Let the cost of
this assignment be defined as X. Then:

X =
n−1X

k=0

(k + 1)nn−k = nn +
n−1X

k=1

(k + 1)nn−k (4)

If we take the ratio of EQ/X then we get a polynomial of
degree 1 which is a function of n. Let OPT be the cost
of the assignment that optimizes the social welfare. By
definition OPT ≤ X. Therefore EQ/X ≤ EQ/OPT and
then EQ/OPT will be greater than some function of n.
Therefore, the POA given by the EQ/OPT ratio will be
unbounded because an instance of Psag can be constructed
by the previous construction that will be larger than any
proposed bound.

The price of anarchy is also used for computing bounded ap-
proximations to problems in a distributed manner when the
POA is bounded (e.g. [9, 12]). When the POA is bounded,
individual agents using Nash equilibrium strategies compute
an approximation for the optimal problem with the POA
being the approximation ratio. The fact that the POA is
unbounded makes this technique impossible for this prob-
lem.

5. DISTRIBUTED MODEL WITH INCOM-
PLETE INFORMATION

In this model, each vehicle is again an independent agent
that makes its own parking slot choice. It will be analyzed as
an incomplete information game. It is considered an incom-
plete information game because the players have no knowl-
edge about the other players’ distances to the slots. Since
they do not have complete access to the distance function
dist, then they have no way of knowing the payoff function
for this game; i.e. given a strategy profile, none of the play-
ers have a way of knowing what its payoff will be.

5.1 Model Changes

5.1.1 Locations of Other Players
In the incomplete information Psag, players make some

prior probabilistic assumptions about the locations of the
other vehicles in the game and the analysis is performed
based on the expectations given by the prior distributions.
One can compute the expected costs based on the distribu-
tion that is used to denote the location of a vehicle. Then
a player will be looking to minimize its expected cost. In
this context, the analysis will compute the Nash equilibrium
strategies for the players but considering expected costs.
This equilibrium is analogous to the Nash equilibrium for
Psag (Definition 2) but instead of using cost given by the
cost functions (Cg), it uses expected cost.

5.1.2 Updated Information
In the previous models, having updated information about

parking slots no longer being available was irrelevant. In

the centralized case the centralized authority chose a slot
for each vehicle so updated information would not change a
choice for a vehicle. In the complete information model, each
vehicle executing an equilibrium strategy knew which would
be his equilibrium choice and having updates on parking
spaces being taken would not change those.

On the contrary, in the incomplete information model this
property changes because the analysis is performed in expec-
tation. The analysis for a game with n players where you
don’t know where the other n− 1 players are located is dif-
ferent than the analysis for a game with n−1 players where
you don’t know where the other n − 2 players are located.
Also, a vehicle will make a choice of a slot based on the
m available slots, if one of those is no longer available then
the probabilistic analysis will be different when the situation
becomes that now there are m− 1 available slots.

Then, for the incomplete information case, we assume that
players receive updates about slots that are no longer avail-
able. Then a game for this model analyzes the situation
until only one vehicle finds a parking spot instead of ana-
lyzing how all vehicles are going to find or not find parking
slots like in the other models. Basically, when an update
of a slot no longer being available is received, a new game
is analyzed with the updated parameters and an updated
strategy is computed.

5.1.3 Expected Cost Function
For this version of the Psag, the penalty of not finding a

parking spot α is also different. Since the game only analyzes
the situation until one vehicle finds an open slot, then the
cost should be designed so that a vehicle is not only more
likely to find a parking slot but also is better positioned
for subsequent iterations of the game. Then the expected
cost in this game is the expected distance traveled by the
player plus the penalty α (if the player did not find the open
parking space). α is defined as the expected average distance
to the closest n − 1 available parking spots after traveling
the distance to its new expected updated location.

5.2 Equilibrium Strategies for Simple Scenar-
ios

In this section we develop equilibrium strategies for two
simple scenarios in terms of game setup and compare them
with a näıve strategy. These games will be played on the
number line and will only have two players.

5.2.1 2 vehicles, 3 slots on the Line
a) Game Setup and Expected Cost Formula

Consider the incomplete information Psag played in the
[0,1] line. Let n = 2 and let one player be named vx and
the other named vy. Let x ∈ [0, 1] and y ∈ [0, 1] be the
locations of the players respectively. Let m = 3, where the
location of s1 is 0 (left end of line) and the location of s2

and s3 is 1 (right end). In this model, each player does not
know the location of the other and assumes that its location
is distributed uniformly in [0, 1].

We’ll assume that the strategies can be randomized (mixed)
and that they will depend on the players’ locations. In ran-
domized strategies players choose each strategy with a prob-
ability. Let p : [0, 1] → [0, 1] be a function that maps the
location of a player to a probability. In other words, p(x)
defines the probability that vx chooses to move to the left
to find a parking slot and 1 − p(x) will be the probability



of him moving to the right. Since the game is symmetric,
in terms of the players, we assume that the function will be
the same for each player.

Denote by C∗(x) the expected cost of vx under the con-
dition that vx is at location x. C∗(x) can be computed as
follows. When x ≤ 1/2,

C∗(x) =

Z x

0

{p(y)[p(x)(1− x + 2y) + (1− p(x))(1− x)]

+(1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

Z 1
2+x

x

{p(y)[p(x)(x) + (1− p(x))(1− x)]

+(1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

Z 1

1
2+x

{p(y)[p(x)(x) + (1− p(x))(1− x)] (5)

+(1− p(y))[p(x)(x) + (1− p(x))(2 + x− 2y)]}dy

When 1/2 < x ≤ 3/4,

C∗(x) =

Z x

0

{p(y)[p(x)(1− x + 2y) + (1− p(x))(1− x)]

+ (1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

Z 3
2−x

x

{p(y)[p(x)(x) + (1− p(x))(1− x)]

+ (1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

Z 1

3
2−x

{p(y)[p(x)(x) + (1− p(x))(1− x)] (6)

+ (1− p(y))[p(x)(3− x− 2y) + (1− p(x))(1− x)]}dy

When 3/4 < x ≤ 1,

C∗(x) =

Z 3
2−x

0

{p(y)[p(x)(1− x + 2y) + (1− p(x))(1− x)]

+ (1− p(y))[p(x)(x) + (1− p(x))(1− x)]}dy

+

Z x

3
2−x

{p(y)[p(x)(1− x + 2y) + (1− p(x))(1− x)]

+ (1− p(y))[p(x)(3− x− 2y) + (1− p(x))(1− x)]}dy

+

Z 1

x

{p(y)[p(x)(x) + (1− p(x))(1− x)] (7)

+ (1− p(y))[p(x)(3− x− 2y) + (1− p(x))(1− x)]}dy

b) Nash Equilibrium Strategy
Now let p∗(x) be defined as follows:

p∗(x) =

(
1 if x ≤ 3/8

0 if x > 3/8
(8)

This strategy is: if the vehicle is at position 3/8 or smaller,
with probability 1 move to the slot at 0; otherwise move to
the slots at 1 with probability 1.

Theorem 7. In an incomplete information Psag played
on the [0,1] line with n = 2, m = 3, with the location of the
slots at 0,1, and 1; the strategy p∗(x) is a Nash equilibrium
strategy.

Proof. Let n = 2 with players named vx and vy with
x ∈ [0, 1] and y ∈ [0, 1] being their positions respectively.
Let m = 3 with the positions of each slot being 0,1, and 1.

Suppose that x < 3/8 and suppose that vy uses strategy
p∗. We prove the theorem by showing that the smallest
expected cost for vx is attained by using the same strategy.
Using equation (5) and based on vy’s strategy choice, the
expected cost becomes:

C∗(x) =

Z x

0

[p(x)(1− x + 2y) + (1− p(x))(1− x)]dy

+

Z 3/8

x

[p(x)(x) + (1− p(x))(1− x)]dy

+

Z 1
2+x

3/8

[p(x)(x) + (1− p(x))(1− x)]dy (9)

+

Z 1

1
2+x

[p(x)(x) + (1− p(x))(2 + x− 2y)]dy

Now after simplifying the updated equation we obtain a lin-
ear function in terms of p(x). Then the expected cost equa-
tion becomes of the form C∗(x) = ap(x) + b. In this case
a = 2x − 3

4 . When a < 0, p(x) = 1 is optimal for vx and
when a > 0 then p(x) = 0 is optimal for vx.

Then solving for x when a < 0 gives us that p(x) = 1
when x < 3/8 and p(x) = 0 when x > 3/8, in which case
p(x) = p∗(x). Thus it turns out that randomized strategies
are not needed. Based on the player’s location, he’ll know
which strategy to choose.

The same result holds when x > 3/8.

c) Comparison with Näıve Strategy
We define a näıve strategy in the incomplete information

Psag to be one where each player simply moves to the clos-
est available slot. Formally, for the setup on the line, the
näıve strategy p(x) is defined as follows:

p(x) =

(
1 if x ≤ 1/2

0 if x > 1/2
(10)

By plugging p(x) from equation (10) into equations (5),
(6), and (7) and integrating from 0 to 1 for all possible values
of x, we can compute the expected cost of vx when using the
näıve strategy:

Z 1/2

0

»Z x

0

(1− x + 2y)dy +

Z 1

x

xdy

–
dx

+

Z 1

1/2

Z 1

0

(1− x)dydx =
1
3
≈ 0.333 (11)

Similarly by plugging p∗(x) from equation (8) into equa-
tions (5), (6), and (7) and integrating from 0 to 1 for all
possible values of x, we can compute the expected cost of vx

when using the equilibrium strategy:

Z 3
8

0

»Z x

0

(1− x + 2y)dy +

Z 1

x

xdy

–
dx

+

Z 1
2

3
8

"Z 1
2+x

0

(1− x)dy +

Z 1

1
2+x

(2 + x− 2y)dy

#
dx

+

Z 1

1
2

»Z 1

0

(1− x)dy

–
dx =

163
512

≈ 0.318 (12)

This gives the Nash equilibrium strategy an expected per-



cent improvement of approximately 4.5% over the näıve strat-
egy for this example.

5.2.2 2 vehicles, 2 slots on the Line
If we take the same example as in the previous section

but remove one of the slots on the right end of the line then
the following theorem applies (proof not shown due to space
constraints):

Theorem 8. In an incomplete information Psag played
on the [0,1] line with n = 2, m = 2, with the location of the
slots at 0 and 1; the näıve strategy as defined in equation
(10) is a Nash equilibrium strategy.

5.3 Gravitational Model for Parking
Solving the incomplete information Psag for arbitrary

values of n and m is difficult in general because of the dif-
ferent combinations of strategies to consider from all players
when constructing the expected cost formula. The general
number of slots also increases the number of strategies for
each player and further complicates the expected cost for-
mula. We then wish to propose a heuristic based on the
results of section 5.2 with which vehicles can compute their
strategies in an incomplete information context.

5.3.1 Gravity Force for Equilibrium Parking
Before presenting our heuristic approach, let us discuss the

suitability of several alternative approaches. One technique
that could be suitable for this problem is greedy algorithms.
We will test our algorithm against a greedy approach that
chooses to move towards the closest slot at all times. An
approach that models the problem as a Traveling Salesman
problem [23] would not be suitable because the availability
of parking slots changes as the game is being played and
therefore there is no point of planning a tour that visits all
the parking slots. Dynamic programming methods would
also be unsuitable because the problem cannot be broken
up into smaller subproblems due to the lack of information.
Flow-based methods would not work either because there is
no notion of flow when a vehicle does not know the locations
of other vehicles.

The heuristic we will introduce is based on a gravitational
force model. Our gravitational method falls in the category
of online algorithms in that the complete input of the prob-
lem is not known at any time. When a vehicle makes a
choice of which slot to visit first, it has no knowledge of how
the problem input (i.e. available slots) will change while
traveling to the chosen slot.

From the examples on the line, we know that the equi-
librium strategies are ones in which a player should always
choose a parking slot (no randomization) depending on his
location on the map. For the example in section 5.2.2 the
player should always choose s1 (move left) if he’s located
in [0, 1/2] and move right otherwise. For the problem in
section 5.2.1 he will move left when located in [0, 3/8] and
move right otherwise. So then the fact that there are two
available parking slots on the right changes the bounds at
which it will be more profitable for the player to choose to
move left or right.

This observed phenomenon can be modeled as parking
slots having some type of gravitational pull on the vehicles.
In physics, gravitational force is determined by the masses
of the objects (slots and vehicles) and the distance between
them. If we set the masses of all slots and vehicles to be con-

stant then it is expected that in the n = 2, m = 2 problem
in section 5.2.2 the point where the forces are equal would
be right in the middle of the line segment (distances are the
same). This point changes when adding the third available
slot because the two slots to the right will have more gravi-
tational pull than the lone slot in the left. That is why it is
an equilibrium for a player to move to the right whenever it
is located anywhere in (3/8, 1].

The classical formula for gravitational force is F = Gm1m2
d2

where G is the gravitational constant, m1 and m2 are the
masses of the respective objects and d is the distance be-
tween the objects. The exponent of 2 in the denominator
is a parameter of the space being considered. We want to
compute the vector that represents total gravitational force
generated by all the available slots to a vehicle and use the
direction of that vector to move the vehicle in that direction.
Then we consider a more simplified formula for gravitational
force, since all the masses are constant, represented by:

F (v, s) = 1/dist(v, s)β (13)

F (v, s) is the gravitational force generated by slot s towards
vehicle v and β is a parameter to be determined experimen-
tally because it may vary for different instances of the Psag
problem. This optimal value for β will change for different
values of n and m, and for differing geographical locations
of the slots.

5.3.2 Gravity-based Parking Algorithm (GPA)
Let z denote the velocity of each vehicle (units/s) (is con-

stant for all vehicles). Each time step for the algorithm will
be 1 second. Each vehicle v will perform the following steps
in order to move one time-step at a time towards a parking
slot:

• Let S′ be the set of currently available slots (updated
at every time step). Then for each s ∈ S′ generate
vector of magnitude F (v, s) that starts at v’s location
in direction of s.

• Add the computed force vectors and the result will
be the total gravitational force generated by all the
available slots on v.

• Move z units (velocity) in the direction given by the
total force vector. If the closest slot to v is at a distance
less than z then move straight to the closest slot.

These steps define the proposed heuristic for vehicles to use
in the incomplete information Psag. The intuition behind
the algorithm is that a vehicle is better served moving to-
wards areas of higher density of parking slots when the force
to closer slots (determined by distance to them) is not strong
enough. The merits of the algorithm will be determined ex-
perimentally through simulations.

6. EVALUATION BY SIMULATION
In this section we evaluate the GPA by simulations in the

free 2D-space.

6.1 Simulation Environment
The simulation tests the GPA with varying number of

values of n and m for the 2-dimensional Euclidean space in
the unit square. The unit square is first partitioned into
16 equal-sized square regions. A random permutation of the
regions is generated (uniform distribution) and is used as the



ranking of the popularity of each region for available slots.
Then the number of parking slots per region is determined
by using the Zipf distribution based on the ranking of the
region and the skew parameter used for the Zipf distribution.
Then for each of the m slots a Zipf number between 1 and 16
is generated to determine its region, then inside that region
its position is determined using the uniform distribution.

The n vehicles’ positions are generated using the uniform
distribution on the unit square.

After generating the vehicles and slots, the algorithms are
tested. The GPA is tested against the Näıve Parking Algo-
rithm, which just makes vehicles always move towards the
closest available slot.

For the GPA, vehicles move in a step-by-step fashion as
dictated by the steps delineated in section 5.3.2. The simula-
tion is run a second at a time so that vehicles can recompute
their total force vectors at each second.

When a vehicle reaches an open parking slot, the distance
traveled to the slot is saved. Then a new slot is generated
on a randomly chosen (Zipf distribution) region. Also a new
vehicle is generated at a random location (uniform distribu-
tion). The simulation run stops when a given time horizon
of 3,600 seconds is surpassed.

The parameters for the simulation are:
• n - the number of vehicles.

• m - the number of slots.

• k - the regional skew of the Zipf distribution

• β - The exponent of the force equation (13).

• z - velocity of all vehicles (units/s)

• hmt - The hybrid mode threshold. When the magni-
tude of the total force vector is less than this threshold
then the algorithm uses the Näıve Parking algorithm
and moves for that second in the direction of the clos-
est slot. Mainly implemented to guard against the rare
situation where all forces cancel out and the vehicle
would be headed in no direction based on gravity.

The values that were tested for each parameter are detailed
in table 1. For each configuration of the parameters, 1000
different simulation runs were generated and tested.

Parameter Symbol Range

Vehicles n {40,80}
Slots m {20,30,40} when n = 40

{40,60,80} when n = 80
Zipf Skew k {0,1,2}

Gravity Exponent β {1,2,3,4,5,6}
Velocity z 0.01 units/s

Hydrid Thres. hmt 0.1

Table 1: Parameters tested on Simulation

6.2 Comparison Algorithm and Performance
Measure

The GPA was tested against the Näıve Parking algorithm
(NPA) which simply moves each vehicle towards the closest
slot available, i.e. the naive strategy introduced in section
5.2.1. The performance measure to be used in comparing
the algorithms is the average distance traveled per vehicle.
Since for different values of n or m the value for average
distance traveled may differ, then the metric to be analyzed
will be percent improvement of the GPA over the NPA.

6.3 Results
Figures 3 to 4 show the results of the simulations when

n = 40 for different values of m ∈ {20, 40} (results for m =
30 were left out due to space constraints). Each figure shows
the results for the percent improvement by using the GPA
over the NPA. Each line represents the results for a given
value of regional skew for the locations of the slots.

We can see that when choosing a β value between 2 and 6
the GPA improved upon the average distance for the NPA
no matter what the value of regional skew was. In all cases
the greater improvement was seen when the skew was 2. The
worse improvement was seen when the regional skew was 0
(uniform distribution) in all cases as well. In most cases, the
value of β (the exponent of the force function) that yielded
the best results was β = 2 and for some cases β = 3.

The results also showed that as the ratio of vehicles to
slots was larger, i.e. the competition for slots was more
contentious, the improvement of the GPA over the NPA also
increased.

Similar trends are seen in the results for n = 80 (Figure
5). For these tests the number of vehicles were increased
to n = 80 and the tested number of available slots were
m ∈ {40, 60, 80}. The results for n = 80 and m = 40 or 80
were similar to the figures obtained for n = 40 and were left
out for space constraints. Choosing a β value between 2 and
6 showed improvement in all cases. The improvements were
more significant for higher values of skew as well (k = 2).

The results show how all vehicles acting independently
are better off using some form of the Gravity-based Parking
algorithm (with β = 2 or β = 3 if the regional skew is
closer to 0) since on average they will see improvement when
choosing to move based on gravitational pull of the slots
rather than simply moving greedily to the closest slot by
using the Näıve Parking algorithm.

The results showed improvements in all test cases. In cases
of regional skew of 0, the percent improvement was marginal.
But in cases with high regional skew the results were very
favorable, some cases showing an improvement of more than
25%. This is more than 5 times the expected improvement
obtained analytically for the example presented in section
5.2.1. This difference can be attributed to the fact that the
simulations are set on free 2D-space instead of a straight
line and there are many more vehicles and parking slots. On
the negative side, in the analytical evaluation from section
5.2.1, an equilibrium strategy was evaluated whereas in the
simulations, the gravity-based heuristic was tested.

A 25% improvement for the time taken to find a parking
slot (proportional to the tested distance traveled because
of constant velocity), would reduce vehicle miles traveled
for a city like Chicago by 15.75 million VMT (according to
analysis presented in section 1). This gives a reduction of
over 785,000 gallons of gasoline and of over 12,000 tons of
CO2 emissions per year.

7. RELATED WORK
Approaches for monitoring and sensing parking spaces

have been presented recently. In this paper, we’ve assumed
that these works exist and that vehicles can receive infor-
mation about open parking spaces at any time. In [15],
ultrasonic sensor technology is used to determine the spa-
tial dimensions of open parking spaces. Wireless sensors are
used in [13] to track open parking spaces in a parking facility.



These works show how one can detect open spaces. In [10],
detection is coupled with sharing of the parking space infor-
mation in a mobile sensor network. Mathur et. al. present
a methodology for vehicles driving past curbside parking
spaces to detect open ones, as opposed to having to spend
on equipping each parking space with wireless sensors for
monitoring. These mobile sensors generate a map view of
parking space availability.

Work has been performed on dissemination of reports of
open parking spaces [24]. In [24], a parking choice algorithm
is presented that chooses parking spaces based on a relevance
metric that includes the age of the open parking report.
Their work assumes that a driver knows the expected time
a slot will remain available from now, and it knows how long
it will take to travel there. In our context, it is as if a driver
d knows what is the probability that another driver will get
there before d. This is a strong assumption that we do not
make in our work. Furthermore, the focus of [24] was on
peer-to-peer (P2P) dissemination of parking reports.

The value of having parking information is tested in a
P2P environment in [8]. Kokolaki et. al. show through
simulations how vehicles with access to data about open
parking spaces have an advantage over vehicles that don’t.

Wireless Ad-hoc networking is also used in [23] to search
for open parking spaces. They present an algorithm based
on the time-varying Traveling Salesman Problem to com-
pute a tour of the open spaces in order for each vehicle to
search for parking in the order of the computed tour. Like
in [24], their approach depends on knowing the probability
that the parking space will still be open after some time.
Furthermore, in [20], the relevance of parking reports in a
Vehicular Ad-hoc Network is studied.

In [3] and [5], reservation systems for parking spaces are
studied. A centralized reservation system is presented in [3].
A server collects information from road-side units and other
vehicles and reserves spaces for vehicles. In [5], the reser-
vation system is distributed amongst peers in a Vehicular
Ad-hoc Network. They reserve spaces by requesting spaces
to a specified peer called the coordinator for each slot. These
systems attempt to circumvent the competition for parking
spaces by using reservations. In our work we analyze parking
competition by using game theory. Indeed existing parking
systems are competitive rather than reservation-based.

In [22], the problem of matching spatial datasets is con-
sidered. In this problem a centralized server assigns ”cus-
tomers” to ”service providers” such that the total distance
of the assignment is minimized. This problem is similar to
the centralized problem presented in section 3. The authors
of [22] reduce their problem to the minimum cost network
flow (MCNF) problem as we do. They present an efficient
algorithm to solve the MCNF problem by various optimiza-
tions such as pruning the distance-based bipartite graph.
Their algorithm could be used to solve the MCNF problem
formulation from section 3.

The gap between the Nash equilibrium and system opti-
mal assignments, the price of anarchy, has been studied for
other transportation applications. For example, in [17], the
authors show that the POA in the static vehicular routing
problem has a bound of 4/3. In the static routing problem,
vehicles with known origins and destinations are assigned
paths on a network in order to minimize some system wide
objectives. Dynamic vehicular routing is similar to its static
counterpart but it includes a notion of time that the static
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Figure 3: Percent Improvement when n = 40, m = 20
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Figure 4: Percent Improvement when n = 40, m = 40
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Figure 5: Percent Improvement when n = 80, m = 60



problem lacks. In the dynamic problem, link travel times
are affected by the number of vehicles on the links at each
time point. Whereas in the static problem the travel time
on each link is affected by all vehicles that pass through it at
any point during the time horizon being considered, regard-
less of at what specific time the vehicles passed through the
link. In [2], the authors prove that the POA is unbounded
for dynamic vehicular routing problems. In our work we
also showed that the POA is unbounded albeit for a differ-
ent problem, namely the vehicular parking problem.

Our tested algorithm is based on using gravitational force
to model the attractiveness of parking regions. Gravity mod-
els have been employed in other computing applications that
use Euclidean data. For example, in [7, 25], gravity models
are used for Euclidean data clustering.

8. CONCLUSION
In this paper our main goal was to analyze vehicular park-

ing. We presented various models or contexts in which the
parking problem was studied.

In the centralized model we show how a centralized au-
thority would assign vehicles to parking slots in order to
minimize the system-wide and total distance traveled by all
vehicles. We also presented an algorithm of polynomial com-
plexity for computing this assignment.

For the more realistic distributed case we introduced the
Parking Slot Assignment Game (Psag). For the complete
information model, we defined the Nash Equilibrium for the
game and showed that all instances of complete informa-
tion Psag have a Nash equilibrium in pure strategies i.e.,
strategies that do not randomize. We also presented an al-
gorithm for computing this Nash equilibrium strategy for
each player. We established the relationship between this
parking model and the stable marriage problem. For this
model we also presented a proof that the price of anarchy
for this problem is in general unbounded.

In the incomplete information case, no player has the lux-
ury of knowing the locations of other players. For this prob-
lem we presented two simple examples for which we were
able to compute the Nash equilibrium. These examples
served as a jump-off point to introduce the Gravity-based
Parking Algorithm. Simulations were run to test the per-
formance of this algorithm against the Näıve Parking algo-
rithm and the results showed an improvement for players
when choosing to use the Gravity-based algorithm over the
Näıve algorithm (greedy) in all test cases. The GPA showed
improvements of more than 25% for various tested cases.
This is an improvement that would reduce 785,000 gallons
of gasoline wasted and 12,000 tons of CO2 emissions per year
in a big city like Chicago.
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