
Automatically Finding Performance
Problems with Feedback-Directed

Learning Software Testing

Mark Grechanik
University of Illinois at Chicago

Chen Fu and Qing Xie
Accenture Technology Lab

Good Performance Is Important

Excellent Performance Is
Even More Important!

Finding Performance Problems

A goal is to find situations when
applications unexpectedly exhibit
worsened characteristics for certain
combinations of input values.

Finding This Situation Is Like
Getting a Perfect Hand!

Example: Bottlenecks

A B

Bottlenecks or hot spots are phenomena where
the performance of the application is limited by

one or few components

C

A slow component
of the application

Bottlenecks in Nontrivial Applications
In

pu
ts Output

…

Performance Testing
Applications

Server
Client

calls Server
methods

Server interacts
with back-end
data storages

Data
base

The Client executes methods of the Server using
different combination of input parameter values

Performance Testing
Applications

Server

Data
baseClient

receives data
from Server

Server
receives data

from Database

Performance can be measured in the
number of roundtrips per time unit

Automating Performance
Testing Applications

Server
Client

calls Server
methods and
receives data

Server interacts
with back-end
data storages

Data
base
Data
base

Automated test scripts simulate clients who
perform transactions against the Server, and

they use input data from the backend database

Automating Performance
Testing Applications

Server Server interacts
with back-end
data storages

Data
base
Data
base

Automated test scripts simulate clients who
perform transactions against the Server, and

they use input data from the backend database

…

A Problem With Performance
Testing of Large Applications

A medium-size renters insurance application
has a large universe of input data.
• For 78,000,000 customer profiles it would take close to

1,500 years to test this application on all profile inputs
provided that it takes only 10mins per input.

• Just “touching” one customer profile entry for 1sec, it
takes about 2.5 years to “touch” them all!

• Some customer profiles may lead to significant load on
different resources.

12

A Problem With Performance
Testing of Large Applications

How to select a manageable
subset of the input data
without compromising the
effectiveness of performance
testing.
• We need an insight into selecting

this subset!

An Example
Most of the renters are good customers, have
hardly any accident/claims or fraudulent
activities.
• That’s how insurance companies make money.
• Unfortunately, the data of these “good” customers are not

always good for performance testing purpose.

Randomly selecting customer profiles does
not work well – keep encountering good
customers.
• Yet, exploratory performance testing is one of the main

ways of performance testing applications in industry!

14

The Intuition Behind
Performance Testing

Trigger more
computation

Bigger
executing
footprint

Trigger more
database
queries

Bigger
database
footprint

More data to
process in
programs

Core Idea
Select only these customer

profiles that trigger
intensive computations.

These computations most
likely involve significant

interactions with databases.

16

The State of the Practice
Intuitive testing is a method for testers to exercise the
product based on their intuition and experience,
surmising probable errors.
• Intuitive testing dates back to 1979.
• Use experience of test engineers to focus on error-prone and

relevant system functions without writing time-consuming
performance test specifications.

Intuitive testing cannot cope with demands of
performance testing.

• Frequently, guesses by test engineers and system administrators
are wrong.

• Typically, performance degradations of up to 20% go unnoticed.

Performance Testing Is
Laborious and Difficult

But, what if…
I wish I knew the rules

that concisely expressed
properties of the

customer profiles that
triggered intensive

computations!

We Need Rules!

We Need Rules!
Descriptive rules for selecting test input
data play a significant role in software
testing, where these rules approximate
the functionality of the application.
• Example rule: some customers will pose a high

insurance risk if these customers have one or
more prior insurance fraud convictions and
deadbolt locks are not installed on their
premises.

Bottleneck

We Need Rules!
Descriptive rules for selecting test input
data play a significant role in software
testing, where these rules approximate
the functionality of the application.
• Example rule: some customers will pose a high

insurance risk if these customers have one or
more prior insurance fraud convictions and
deadbolt locks are not installed on their
premises.

Bottleneck

Our Solution - FOREPOST
Feedback-ORiEnted PerfOrmance Software
Testing (FOREPOST) finds performance
problems automatically by learning and using
rules that describe classes of input data that
lead to intensive computations.
• FOREPOST is an adaptive, feedback-directed learning

testing system that learns rules from execution traces and
uses these learned rules to select test input data
automatically to find more performance problems in
applications when compared to exploratory random
performance testing.

• FOREPOST is like a heat-seeking solution!

Seeking Hot Spots

Components of FOREPOST

1 2 3

Adaptive test script uses rules that are issued by machine learning
components to select input data that lead to more intensive computations.

When the test script executes the application, its execution traces are
collected as part of runtime monitoring, leading to (re)learning rules.

Runtime
Monitoring

Machine
Learning

4

Information
Compression

5

Bottleneck
Detection
Algorithm

Adaptive
Test Script

Collect Execution Traces

28

Test
Data

f(5, “user”)g()h(“354-78-2648”,1100, “Don”)

UserSSNName

JVM

Database

Execution Trace Entries

29

Method entry and exit
• Every time a method is called, a corresponding entry is

put into a file where execution traces are stored
• Every time a method call is finished, a corresponding

entry is put into a profile file

Database Data
• When an application sends data to and receives data

from the database, this data is captured and put into the
execution trace file

Input parameters
• Capture choices of inputs that users provides

Execution Trace Sample
MTDENT_|_WebContainer : 0_|_21088404309_|_statefarm/framework/controllerw0089701/appcoordination/AspUrlFilter

_|_getRequest(Ljavax/servlet/ServletRequest;)Ljavax/servlet/http/HttpServletRequest;_||_
MTDENT_|_WebContainer : 0_|_21236207529_|_statefarm/framework/jcaimsframeworkw0099456/Msg_|_

addStringToByteArray(I[BLjava/lang/String;)V_||_
MTDRET_|_WebContainer : 0_|_21236207566_|_statefarm/framework/jcaimsframeworkw0099456/Msg_|_

addStringToByteArray(I[BLjava/lang/String;)V_||_
MTDRET_|_WebContainer : 0_|_21088404359_|_statefarm/framework/controllerw0089701/appcoordination/AspUrlFilter

_|_getRequest(Ljavax/servlet/ServletRequest;)Ljavax/servlet/http/HttpServletRequest;_||_

REQ_|_WebContainer : 0_|_21208103665_|_waterAvailableYearRound={N+}
CTNextPage={unprotectedDwelling+}visibleFromRoadOrNeighborUnselected={+}command={navigate+}
propertyCity={HASTINGS+}fireDeptWithin10Unselected={+}nextPageFocusElement={+}
propertyCountyUnselected={+}directionsToLocation={+}sortColumn={+}street2={+}street1={63 JACK PL+}
insideCityLimit={Y+}TF:RN={3+}fireDeptWithin10={N+}insideCityLimitUnselected={+}returnCommand={+}
requestId={V1KY805MV05+}waterAvailableYearRoundUnselected={+}TF:ID={ControllerFramework:0+}
nextPage={unprotectedDwelling+}currentPage={location+}selectedEntityId={+}CTCurrentPage={location+}
accessibleToFireDeptUnselected={+}clearErrorList={+}selectedContainerId={+}propertyZipCode={550331097+
}accessibleToFireDept={N+}propertyCounty={DAKOTA+}returnPage={current+}
visibleFromRoadOrNeighbor={+}returnPageFocusElement={unprotectedDwellingLink+}_||_

IMSRET_|_WebContainer : 0_|_21238137181_|_331617041_|_APUN7N_|_112FE009Z1
081V1KY805MV05082abcd083 AGENT_APPLICATION09505092GNRT_RATE_ZONES
041042APPLY_FOR_POLICY041042AGRE041042AGREEMENT041
042INSURED_LOCATION_|_010Z1081V1KY805MV050840_||_

Some Statistics
It takes about 10mins to execute the
instrumented renters app end-2-end
automatically using a test script.

An average run invokes over 3,000 methods
more than 3,000,000 times and it retrieves
over 1Mb of data.

An average execution traces contains over
1Gb of data. It takes less than 10mins on
average to process and analyze one trace.

Constructing Data For a Learner
and Learning Rules

Input_1_Name Input_2_Name … Input_k_Name Class
Value_p Value_q … Value_m Good
Value_p Value_q … Value_m Bad
… … … … …
Value_p Value_q … Value_m Good

Finding Bottlenecks

A B

Bottlenecks or hot spots are phenomena where
the performance of the application is limited by

one or few components

C

A slow component
of the application

Finding Bottlenecks

Cluster Execution Traces

We want to generalize a set of execution
traces, compress information, and find
common patterns
• All execution traces in the same set share some

common properties

It is much easier to find differences
between few patterns than between billions
of pairs of execution trace entries
• These differences should tell us what properties are

specific to execution traces in the same set

Intuition
There are some patterns in profiles that are
repeated for different executions, for example,
logging, database accesses

These patterns can be thought of as
components that correspond to implementations
of some requirements

We should reduce many different method calls
in different profiles to a small set of components
that offer us some insight into what methods are
important for meaningful tests

It Is A Difficult Problem

37

It’s like trying to
locate aliens in
the universe!

Too Much Data To Process

38

We have too many observations and dimensions

• Many inputs, key/values, method invocations to reason about or obtain insights
from

• Too much noise in the data

Too many dimensions for humans to deal with – think
requirements

• Need to reduce them to a smaller set of factors
• Better representation of data without losing much information

Build more effective data analyses on the reduced-dimensional
space: classification, clustering, pattern recognition

FOREPOST Architecture

Test
Script

Profiler

Execution
Trace Analyzer

Trace
Clustering

Rules

Good test
traces

Bad test
traces

Learner

Trace
Statistics

Method
and data
statistics ICA

Method
weights

Advisor

Test
Script

A Highlight Of Our Results

The Method checkWildFireArea
This method is instrumental in computing
quotes for the Renters application
• Thus this method is important for testing
• With FOREPOST, this method is selected as the

top of 30 from over 3,000 methods

However, with the state MN this method
does not affect quote computation
• Yet FOREPOST identified this method is important.

Why?

Discovery Of a Problem
FOREPOST automatically selected the method
checkWildFireArea as important because its
weight is significant in interesting profiles.

It means that this method is invoked many times
for the state MN even though its functional
contribution is zero for this state. Invoking this
method consumes resources and time for this
state.

It took few hours and several developers to
uncover this information based on the results of
running DATE. When we reported it developers
thought that we made a mistake since this
method was not supposed to execute on MN.

Result for Renters App

Result for JPetStore

Conclusions

This proposed research program is novel, as to the best of our
knowledge, there exists little but a growing research that addresses
the problem of the controlled release of sensitive information that
balances privacy and software engineering tasks.

The results of this work will be a foundation for a new direction in
requirements engineering, program comprehension, globally
distributed software development, maintenance, evolution, and
testing supported by a set of tools for low-cost automated software
engineering tasks that consider software privacy issues.

Email: drmark@uic.edu

