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Abstract

Independence testing plays a central role in statis-
tical and causal inference from observational data.
Standard independence tests assume that the data
samples are independent and identically distributed
(i.i.d.) but that assumption is violated in many real-
world datasets and applications centered on rela-
tional systems. This work examines the problem
of estimating independence in data drawn from
relational systems by defining sufficient represen-
tations for the sets of observations influencing indi-
vidual instances. Specifically, we define marginal
and conditional independence tests for relational
data by considering the kernel mean embedding as
a flexible aggregation function for relational vari-
ables. We propose a consistent, non-parametric,
scalable kernel test to operationalize the relational
independence test for non-i.i.d. observational data
under a set of structural assumptions. We empiri-
cally evaluate our proposed method on a variety of
synthetic and semi-synthetic networks and demon-
strate its effectiveness compared to state-of-the-art
kernel-based independence tests.

1 INTRODUCTION

Measuring dependence is a fundamental task in statistics.
However, most existing independence tests assume that the
observed data is independent and identically distributed
(i.i.d.). This assumption makes them unsuitable for cap-
turing statistical dependencies in real-world relational sys-
tems, from social networks to protein-protein interactions,
in which data instances depend on each other.

Relational dependence refers to a statistical dependence,
marginal or conditional, between random variables in which
at least one of the variables is a relational variable [Lee and
Honavar, 2017]. A relational variable is a set of random

variables that belong to instances related to an instance of
interest, such as friends of a person or proteins interact-
ing with a target protein. Relational dependence testing is
central to social influence studies and causal discovery in
relational systems, yet there is no standard statistical tool
for inferring different forms of dependence from observa-
tional relational data. In this paper, we present a practical
tool for determining marginal and conditional independence
between relational variables with consistency guarantees.

To understand the challenge of estimating relational depen-
dence, let’s consider the following example:

Example 1. Sally doesn’t smoke but she has some friends
who smoke. Sally starts to smoke over time. Are the smoking
habits of Sally’s friends and Sally’s decision to take up
smoking independent?

Part of the problem of detecting this dependence is that we
need to know a priori the exact mechanism of dependence. Is
it because all of Sally’s friends share a certain behavior? Or
is there a minimum threshold of friends necessary (e.g., half
of her friends smoke) to activate the dependence? The nature
of the relationships among her friends might play a role as
well. Without prior knowledge of this mechanism of depen-
dence, any existing statistical test is likely to fail. As such,
the focus of our work is to develop a flexible non-parametric
test that can capture multiple forms of dependence. Note
that for the scope of this work, we do not focus on the causal
aspects of this question (e.g., social influence) but the test
that we propose is applicable to causal discovery as well.

Recent studies have proposed non-parametric independence
tests designed for non-i.i.d data. [Flaxman et al., 2015, Lee
and Honavar, 2017]. Flaxman et al. [2015] develop a test
between propositional variables accounting for latent ho-
mophily in a grid network but do not consider relational vari-
ables. Lee and Honavar [2017] develop a test for conditional
independence (KRCIT) between relational variables which
is the current state-of-the-art test for relational dependence.
They operationalize the test by flattening the relational data
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into a single, propositional table. However, the current state-
of-the-art test has three key limitations. First, it requires
practitioners to make explicit assumptions about the data
generating processes and to specify an aggregation function
over the relational variable a priori. Second, existing tests
rely on propositionalization, which refers to the process of
projecting connected data to a single, propositional table,
which raises statistical concerns Maier et al. [2013b]. Third,
it is computationally expensive and inapplicable to large
relational datasets.

In this work, we focus on developing a general definition
of relational dependence and a statistical test, NIRD (Non-
parametric inference of relational dependence), that is able
to capture a family of aggregate functions for characteriz-
ing relational dependence. The contributions of our work
are in providing 1) complete definitions of marginal and
conditional relational dependence which extend the clas-
sical definition of Daudin [1980], 2) independence tests
with consistency guarantees, 3) the explicit representation
of neighboring sets through kernel mean embeddings, and 4)
a scalable test through random Fourier feature formulation
which makes the test practical for real-world applications.
We compare our proposed test to KRCIT on a variety of syn-
thetic networks and simulate several social network charac-
teristics, such as structure, density, and size. We demonstrate
the applicability of our method for detecting peer influence
using both semi-synthetic and real-world social networks.

2 RELATED WORK

There are several independence tests from observational
data. Partial correlation is used for the independence test
on Gaussian variables with linear dependence [Baba et al.,
2004]. A more advanced test, the Hilbert-Schmidt indepen-
dence criterion (HSIC) [Gretton et al., 2005] is a statistical
test that has been extended to marginal independence testing
for structured data [Zhang et al., 2009] and random pro-
cesses [Chwialkowski et al., 2014]. Flaxman et al. [2015]
utilize HSIC to develop marginal and conditional indepen-
dence tests for propositional variables in the presence of a
latent confounder in a single-entity network with an additive
noise generating function. Relational dependence exhibits it-
self through a pairwise edge in the network which is a noisy
surrogate of latent homophily. Lee and Honavar [2017]
extend these tests to explicitly include relational variables.
They operationalize the tests by considering pairwise depen-
dence between each member of the relational variable set
in the flattened data. However, existing tests require prior
domain knowledge in order to detect complex dependencies
between relational variables such as entropy, variance or
reaching a threshold of peers’ actions by requiring the speci-
fication of aggregation functions. We lessen this requirement
by employing kernel mean embeddings, which provide a
non-parametric aggregation capable of capturing a large

number of aspects of smooth functions over distributions
belonging to the exponential family.

Relational independence testing is central to causal discov-
ery and structure learning of relational models. However,
existing relational causal discovery algorithms either rely
on the existence of a relational independence oracle [Maier
et al., 2010, 2013a, Lee and Honavar, 2016] or use condi-
tional independence tests developed for i.i.d. data [Lee and
Honavar, 2019], making them less practical for real-world
applications. The relational dependence tests in this work
together with existing tests for detecting causal direction of
relational dependence [Arbour et al., 2016b] can make re-
lational causal discovery achievable for real-world datasets
with unknown dependence functions.

One of the applications of relational dependence testing is
in characterizing social influence in observational relational
data. Existing social influence studies measure influence
through predictive models [Christakis and Fowler, 2007,
Bakshy et al., 2011], or randomized controlled trials [Much-
nik et al., 2013, Su et al., 2020]. A standard statistical tool to
infer different forms of social influence from observational
relational data does not exist. Our work can help develop
such tools by treating social influence detection as an in-
stance of a relational independence test.

3 PROBLEM DEFINITION

The central task of this paper is to develop a statistical
test for determining marginal and conditional independence
between relational variables. Before formalizing the prob-
lem, we introduce the necessary notations and definitions.
We denote random variables and their realizations with up-
percase and lowercase letters, respectively, and bold to de-
note sets. We use an Entity-Relationship model [Heckerman
et al., 2007] to describe relational data following previ-
ous work [Maier et al., 2010, Lee and Honavar, 2017]. A
relational schema S = ⟨E,R,A⟩ represents a relational
domain where E , R and A refer to the set of entity, rela-
tionship and attribute classes respectively. We consider an
undirected graph G to be the instantiation of the relational
schema S where nodes and edges refer to the entity and re-
lationship instances respectively. A given schema can entail
numerous possible instantiations. For ease of exposition, we
focus on a schema with a single entity type (e.g., Person) and
a single relationship type (e.g., Friends) but discuss the ex-
tensions necessary to address multi-relational data in the Ap-
pendix. We refer to the set of vertices, edges and adjacency
matrix of G as V , E and A respectively. For example, nodes
v1 = Ana and v2 = Bob with undirected edge between
them can come from the Person − Friends − Person
relations. The attribute class A represents the set of pos-
sible attributes for the specified entity of the given graph
G. Let vi.X and vi.x refer to the attribute X ∈ A and
its realization respectively for node vi ∈ V corresponding



to instance i ∈ E ∪R. Here, vi.X is considered to be a
propositional random variable. Following prior work we
define a relational variable as a set of propositional random
variables [Maier et al., 2013a, Lee and Honavar, 2017].

Definition 1 (Relational Variable). Given a relational
schema S = ⟨E,R,A⟩, its instantiation G and a path
predicate ρ, a relational variable σ(vi,X, G, ρ) is the set
of attributes vj .X selected by ρ of nodes vj ∈ V reachable
from vi ∈ V such that X ⊆ A, where the path predicate ρ
is a function given by: ρ(vi, G) : V 7→ P(V).

Here, P(V) refers to the power set of V. An example path
predicate is ρ(vi, G) = {vj |vj ∈ N̂ (vi)} where N̂ (vi)
refers to the direct neighbors of vi in G and the correspond-
ing relational variable σ(vi,X, G, ρ) refers to the set of
attributes of the neighboring nodes. For simplicity and as-
suming only direct neighbors throughout the paper, we de-
note the relational variable corresponding to attribute X by
σX(vi) and its value by σvi

x . Note that σX(vi) can repre-
sent a propositional variable as a special case. For example,
σX(vi) = {vi.X} refers to the X attribute of vi. We also
make the following assumptions:

A 1. Each node v ∈ V has degree of at least 1.

A 2. The adjacency matrix of G is symmetric with edge
weights bounded by some real constant.

A 3. Dependence between two instances i and j implies the
existence of a path in the graph between vi and vj .

Relational dependence refers to a statistical dependence,
either marginal or conditional, between two variables where
at least one of the variables is relational. The goal of a rela-
tional dependence test is to determine whether to reject the
null hypothesis of independence between these variables or
not. The representation of relational data for such a test is
non-trivial because data instances are not i.i.d. A common
practice to deal with relational data is propositionalization
[Kramer et al., 2001], which refers to the process of pro-
jecting a set of connected data samples down to a single,
propositional table. In the context of relational dependence
testing, flattening has three main deficiencies. First, the enti-
ties in the flattened data are not i.i.d. Second, choosing the
appropriate aggregation function is non-trivial as discussed
in section 1. Failing to appropriately define the aggregate in
this case could lead to increased type I errors in marginal
tests, and both type I and II errors for conditional tests. Third,
flattening raises statistical concerns for relational causal dis-
covery, one of the application areas of relational conditional
independence tests, by violating the causal Markov condi-
tion [Maier et al., 2013b]. Lee and Honavar [2017] address
the first deficiency by proposing a solution framework based
on graph kernels using an existing i.i.d. kernel-based CI test
method. However, their approach does not directly address
the other two concerns.

Let’s look at the problem with a concrete example. We con-
sider an entity Person which exhibits attributes such as smok-
ing status before (S0) and after (S1) a given time threshold
t and G represents the network of social ties. Detecting the
dependence of peers on a person’s smoking behavior can be
formalized as an independence test. For example, detecting
whether one’s smoking behaviour is marginally independent
of one’s direct friends’ smoking behaviour could be carried
out by a marginal test of vi.S1 |= σS0(vi). Similarly, a condi-
tional test of vi.S1 |= σS0(vi)|vi.S0 should detect whether
one’s current smoking behavior is independent of friends’
old smoking behavior given one’s old smoking behavior.

In this work, we propose a relational dependence test which
captures complex dependencies between relational variables
without relying on flattening or explicit aggregate representa-
tions. We extend the definition of conditional independence
for non-parametric functions by Daudin [1980] and pro-
pose the following definitions of marginal and relational
conditional independence:

Definition 2 (Relational Marginal Independence).
Two relational variables, σX(vi) and σY (vi)
are said to be marginally independent of each
other if and only if, E [gX(σX(vi))gY (σY (vi))] =
E [gX(σX(vi))]E [gY (σY (vi))] for any smooth square
measurable functions gX(·), gY (·).

Definition 3 (Relational Conditional Independence).
Two relational variables, σX(vi) and σY (vi) are said
to be independent of each other given a third, σZ(vi) if
and only if, E [gX(σX(vi))gY (σY (vi))|gZ(σZ(vi))] =
E [gX(σX(vi))|gZ(σZ(vi))]E [gY (σY (vi))|gZ(σZ(vi))]
for any smooth square measurable functions
gX(·), gY (·), gZ(·).

Here, gX(·), gY (·), gZ(·) are aggregate functions that map
σ to a real-valued vector. They could be sum, mean or any
other complex non-linear function. The rejection of the null
hypothesis of marginal independence would mean that the
variables are possibly dependent, either due to a directed
path between them or due to a direct, causal relationship, or
the presence of a confounding relationship. For a relational
conditional independence (RCI) test, the rejection of the
null hypothesis would imply that the two variables are not
independent given the conditioning set. Note that because
we are considering the dependence between sets of relational
variables and their propositional counterparts we circumvent
the three problems with flattening described earlier.

4 RELATIONAL INDEPENDENCE TESTS

In this section, we discuss the components which opera-
tionalize the definition of relational dependence into an
empirical test. We first describe a non-parametric relational
aggregate formed by local kernel means. Then we formu-
late marginal and conditional independence tests using the



kernel mean embedding. Then, we discuss the theoretical
boundaries for the consistency of the proposed test. Finally,
we introduce techniques for large-scale approximation of
the proposed relational kernels that can speed up the inde-
pendence test significantly.

4.1 NON-PARAMETRIC AGGREGATE
REPRESENTATIONS

One of the central problems in estimating dependence in
relational settings is defining a sufficient representation for
the sets of observations for individual instances of a re-
lational variable. Prior work [Maier et al., 2013a, Arbour
et al., 2016a, Lee and Honavar, 2017] considered aggrega-
tion functions, usually one, which are specified apriori by
the practitioner. However, in many scenarios, it is unreason-
able to expect practitioners to reason over a very complex
joint distribution or to know the exact parametric form of
dependence. For example, the possible aggregation in effect
for the spread of obesity in social networks [Christakis and
Fowler, 2007] can be different from people’s influence on
the Twitter platform [Bakshy et al., 2011]. A generalized
definition and associated operationalization of relational de-
pendence can help the practitioner by directly measuring
dependence without prior domain knowledge about aggre-
gations on the given relational system.

The distance between the embedding of joint distribution
and embedding of product of marginals can be used to infer
independence according to definition 2, while avoiding ex-
plicit density estimation as an intermediate step. Note that
the aggregate functions are represented implicitly through
the kernel mean embedding (KME) [Smola et al., 2007,
Muandet et al., 2017]. An appealing property of the ker-
nel mean embedding is that if the kernel is universal then
the kernel mean uniquely represents all moments for any
member of the exponential family [Smola et al., 2007] 1.

Adopting the kernel mean as an aggregation function re-
moves the burden of reasoning over parametric families
and predefined aggregates. Specifically, the kernel mean
embedding considers the mean of a variable after applying a
projection ϕ(·) into some RKHS, µ =

∫
ϕ(x)p(x)dx, with

the corresponding empirical estimate of µ̂ = 1
N

∑N
i ϕ(xi)

where N is the number of observations and x1, . . . , xN are
observations from a random variable X [Smola et al., 2007].

We present the practical implementation of the kernel mean
as a relational aggregate. For a given node vi, we define the
kernel mean aggregate of its neighbors with respect to the
attribute X as µ(vi) = 1

deg (vi)

∑
m∈N̂ (vi)

ϕ(m.x)

where N̂ (·) refers to a path predicate which is restricted to

1We refer readers to Szabó and Sriperumbudur [2017] for
conditions for a kernel to be universal. Many popular kernels such
as the RBF kernel are universal

immediate neighbors for ease of exposition. Because ϕ may
map to an infinite dimension, it is impractical to explicitly
represent this quantity. Fortunately, because our statistics of
interest are concerned with the covariance, the kernel trick,
i.e. considering the inner product rather than the feature
representations directly, can be employed. Specifically, the
inner product between relational kernel mean is given as

⟨µ(vi), µ(vj)⟩ =
∑

m∈N̂ (vi)

∑
p∈N̂ (vj)

k(m.x, p.x)

deg(vi)deg(vj)
,

which can be written for an entire sample in terms
of a matrix product between the network adjacency
matrix, A, the inverse degree matrix D−1 where
Di,i = 1

deg(vi)
, and the kernel matrix KX , by observing

(D−1Aϕ(x))(D−1Aϕ(x))T = D−1AKXAD−1.

In contrast to the propositional kernel mean, the conver-
gence of the relational to its population counterpart is not
necessarily guaranteed because of sample dependence. We
discuss convergence and consistency guarantees under the
assumption of weak dependence after describing the rela-
tional independence tests.

4.2 RELATIONAL MARGINAL INDEPENDENCE
TEST

With the relational kernel mean defined we now turn to
the central task of this paper, non-parametric inference of
relational dependence (NIRD). As a test statistic, we use
the Hilbert-Schmidt independence criterion (HSIC) [Gret-
ton et al., 2005]. HSIC measures the maximum distance
between an embedding of the observed joint distribution,
and the product of the marginals, i.e., ∥E[ϕ(x) ⊗ ϕ(y)] −
E[ϕ(x)] ⊗ E[ϕ(y)]∥2. We perform a hypothesis test using
HSIC as the test statistic where the null hypothesis refers to
independence. The test produces a p-value which is used to
decide whether to reject the null or not. Testing relational
independence using HSIC is straightforward with the rela-
tional kernel mean by using the kernel matrix defined earlier
in the empirical HSIC estimator. Defining the centering ma-
trix H = I− 1

n11
⊤, an empirical estimate of HSIC is given

by 1
n2 trace (KXHKY H), where KX and KY are kernel

matrices corresponding to the random variables X and Y ,
respectively. Independence testing with HSIC can be per-
formed by using the corresponding relational kernel in the
test statistic.

4.3 RELATIONAL CONDITIONAL
INDEPENDENCE TEST

A similar construction can be employed to test for rela-
tional conditional independence, defined in Definition 3.
Following Strobl et al. [2019], we consider the following



L2 spaces,

FXZ ≜
{
f̃ ∈ L2

XZ | E(f̃ | Z) = 0
}

FY Z ≜
{
g̃ ∈ L2

Y Z | E(g̃ | Z) = 0
}

FY ·Z ≜
{
h̃′ | h̃′ = h′(Y )− E (h′ | Z) , h′ ∈ L2

Y

}
Each of these quantities can easily be constructed by consid-
ering regressions, e.g. f̃ can be obtained by taking the residu-
als after performing a regression. We consider a mean of the
feature basis representation as an aggregation function when-
ever one of the variables is relational. Under the assumption
that the direct sum of the reproducing kernel Hilbert spaces,
kxky and kz is dense in L2, Strobl et al. [2019] (proposition
5) showed that conditional linear covariance of zero implies
uncorrelatedness, i.e., E

[
f̃ g̃

]
= 0 =⇒ X |= Y |Z =⇒

ΣXY |Z = 0. This motivates the use of a multiple out-
put kernel ridge regression as an estimator of the condi-
tional expectation, β = (ϕ(z)Tϕ(z) + λI)−1ϕ(z)Tϕ(ẍ)
where Ẍ ≜ (X,Z) is the concatenation of x and z. In-
formally, this can be seen as applying the “kernel trick”
of considering linear operations on non-linear transforma-
tions of the data allowing for observations to be dependent.
The test is then constructed by considering the residuals,
ϕ̃(ẍ) = ϕ(ẍ)− ϕ(z)βẍz, ϕ̃(y) = ϕ(y)− ϕ(z)βyz and sum
of the squared covariances between them. The final form of
the test is given by 1

n2 trace
(
K̃ẌHK̃Y H

)
where K̃Ẍ and

K̃Y refers to the kernel matrices for the residuals ϕ̃(ẍ) and
ϕ̃(y) respectively.

There are two considerations in employing this procedure
in a relational setting, namely how to handle relational
variables in the conditioning set (Z) and the test set (X),
respectively. When a member of the conditioning set is
relational, the test procedure is identical after replacing
ϕ(z) with its relational counterpart, 1

|N̂ (z)|

∑
m∈N̂ (z) ϕ(m).

When a member of the test set is relational, the problem
is reduced to predicting each member of the set indepen-
dently by considering the regression of the perspective of
the relational variable, as described by Maier et al. [2013a].
After regressing individual members, the mean of residu-
als is then considered for the marginal tests, ˜σ(ϕ(x)) =

1
|N̂ (x)|

∑
m∈N̂ (x) ϕ(m)− ϕ(z)βmz .

4.4 CONSISTENCY OF RELATIONAL
INDEPENDENCE TEST

In order to reason about the behavior of test statistics under
non-i.i.d. samples and understand asymptotic behavior we
need to characterize the behavior of dependence amongst
instances as a function of some notion of distance between
instances. There are a number of formalisms for reasoning
about dependent data [Andrews and Pollard, 1994, Bickel

and Bühlmann, 1999, Dedecker et al., 2007]. In this work we
focus on weak dependence [Dedecker et al., 2007], which
we describe next.

4.4.1 Weak Dependence

In order to accommodate dependent observations and main-
tain consistency of the testing procedure we will assume
that observations are weakly dependent. Weak dependence
provides a flexible notion of dependence that requires only
the definition of distance between instances and the pres-
ence of a measurable probability space. Within this work
we will make use of the notion of weak dependence, i.e.
τ -dependence.

Definition 4. [Dedecker et al., 2007] Let π be a filtration2

over the set of nodes in a graph, G, defined by perform-
ing a breadth first search at an arbitrary node, v ∈ G.
Further, define X to be a Lp-integrable random variable.
The weak-dependence coefficient is defined as τp,r(X) =
sup(i,j) ∥ supg Cov(g

(
Xπ(i)

)
, g

(
Xπ(j)

)
)∥p, where i ≤ j

and j − i ≤ r, and g() is a Lipschitz function.

Intuitively, the weak dependence coefficient, τp,r(X) mea-
sures the covariance between a vector, Xi and another ran-
dom vector Xj drawn from the same process separated by
at least distance of r. We call a process weakly dependent
if τ tends to zero as the r tends to infinity. Note that this
is a strictly weaker condition than alternative assumptions
on dependence such as strong mixing and m-dependence
which require independence at a finite distance, whereas
weak-dependence only requires it asymptotically.

4.4.2 Weak Dependence in Relational Domains

We provide a natural extension of weak dependence within
the relational setting by replacing usual definition of dis-
tance to the shortest path distance between two nodes in
a graph. The role of τ in this case can be interpreted as
measuring the decay of dependence between instances as
a function of shortest-path distance. We will assume from
here out that as the distance between any two nodes in the
network tends to infinity, the dependence between them con-
verges to zero. More formally, we will employ the following
assumption:

A 4. (Xt)t∈π is a strictly stationary τ -dependent process
with

∑∞
r=1 r

2
√

τr(X) ≤ ∞ for some filtration π, where r
is shortest-path graph distance.

The notion of weak dependence within the network setting
is not novel to this work, Xiang and Neville [2011] make
use of the τ -coefficient in the context of deriving asymptotic

2A filtration is an ordering of a set such that for any two subsets,
S1,...,j , S1,...,k, j ≤ k → S1,...,j ⊆ S1,...,k.



consistency for transductive learning with an assumption
of linear dependence amongst instances. However, to our
knowledge, our work is the first to consider weak depen-
dence with arbitrary dependence for independence testing of
relational data. Consistency of the relational independence
testing is provided by the following theorem and corollary,
after applying two additional assumptions.

A 5. The maximum degree of any node in the network is
bounded by a real constant.

A 6. The network structure is fixed and doesn’t change
during the generation of the observed random variables.

Assumption 5 ensures that the average shortest path dis-
tance from any node to all other nodes in the graph tends
to infinite as the number of nodes tends to infinite, which
is necessary in order to have convergence of weakly depen-
dent sequences. Assumption 6 ensures that the observed
neighborhoods for nodes correspond to the structure which
generated the data.

Theorem 1. Under the aforementioned assumptions the
Hilbert-Schmidt independence criterion of two weakly de-
pendent propositional variables converges in L1 to its pop-
ulation counterpart, i.e., |HSICn − HSICpopulation| −→

d
0.

Corollary 1. Under the aforementioned assumptions the
Hilbert-Schmidt independence criterion between a weakly
relational and a weakly dependent propositional vari-
able converges in L1 to its population counterpart, i.e.,∣∣HSICn − HSICpopulation

∣∣ −→
d

0.

The proof of theorem 1, which is deferred to the supple-
ment, follows by observing that the empirical estimate of
HSIC is a degenerate V -statistic and then through a proof
which shows consistency of degenerate V -statistics under
weak-dependence in structured domains, which may be of
independent interest. Similarly, the proof of the corollary,
also deferred to the supplement follows from theorem 1 and
showing that the weak dependence coefficient remains finite
for relational variables.

It is important to note that Theorem 1 and Corollary 1 show
convergence in distribution but do not claim any guaran-
tees regarding the rates of convergence with respect to the
number of nodes and level of dependence. The rate of con-
vergence will depend on the weak dependence coefficient.
In the case that the coefficient is 0, this reduces to results
that correspond to prior work on iid data [Zhang et al., 2011].
While there is prior work studying this in more restrictive
assumptions on the dependence between instances [London
et al., 2013], we are not aware of similar results for the case
of weak dependence in general structured domains even in
the simpler case of regression. This would be an important
direction for future work.

4.5 LARGE SCALE APPROXIMATIONS

While the proposed model is theoretically appealing, the
associated time and space complexity render it infeasible
for most modern network settings. To address this, we ap-
peal to an approximation of the kernels known as Random
Fourier Features [Rahimi and Recht, 2008]. Random Fourier
Features exploit Bochner’s theorem, which states that a
continuous, time-invariant kernel is positive definite if and
only if the kernel is the Fourier transform of some non-
negative measure. For example the Gaussian kernel can
be represented with the following Fourier transformation
k̂(ω) = 1

2π

∫
e−jω⊤δk(δ)dδ. This property implies that a

kernel can be approximated via the following procedure:

• Draw D samples, from some distribution (i.e Normal), to
approximate the Gaussian kernel where the variance σ
corresponds to the bandwidth of the kernel.

• Construct the Fourier basis explicitly as z (x) =√
2
d

[
cos

(
wT

1 x
)
, sin

(
wT

1 x
)
, . . . ,

]
.

• Perform linear operations using z.

Following [Zhang et al., 2018, Strobl et al., 2019], we ap-
proximate HSIC using random Fourier features by consid-
ering ĤSIC(X,Y ) =

∥∥ 1
nZ

T
XHZY

∥∥2 where Z is a n × d
dimensional matrix with each row consisting of the random
Fourier features for an observation. We can represent the
relational kernel mean as D−1AZ, and the corresponding
test statistic as ∥ 1nZ

T
XAD−1HZY ∥ where D and A are the

diagonal degree and adjacency matrix as before. In several
experiments we show that using approximate statistic leads
to significant performance improvements with minimal ef-
fect on the efficacy of the test, even with only a few random
features.

5 EXPERIMENTS

We run experiments with multiple network datasets, rela-
tional dependence cases, and synthetic attribute generators
to evaluate the effectiveness of the proposed test.

5.1 NETWORK DATASETS

We consider networks from two synthetic graph genera-
tors and three non-PII real-world networks. First, for the
Barabási-Albert (BA) model, we vary the parameter that
controls the number of nodes a new node can attach to. For
the Erdős-Rényi (ER) model, we vary the probability of
edge creation between each pair of nodes. For each set of
parameters, we generate 100 networks with size 100. The
small size of the synthetic networks is driven by the base-
line method which does not scale well, as shown in Figure
4a. We also demonstrate the applicability of our approach
through a Facebook ego-network with 4, 039 nodes and



88, 234 edges [Leskovec and Mcauley, 2012]. The other two
real-world datasets (Twitter, 50 Women) and corresponding
experimental results are described in the Appendix.

5.2 FOUR CASES OF RELATIONAL
(IN)DEPENDENCE

We choose three representative relational dependence cases
and one relational independence case to cover a range of
possible tests. We consider attributes Z,X, Y ∈ A which
measure characteristics in time steps t− 1, t, t+ 1 respec-
tively. All the cases are represented with arrows showing
the direction of dependence:

1. Case 1: σX(vi)→ vi.Y

2. Case 2: σX(vi)← vi.Z → vi.Y ← σX(vi)

3. Case 3: vi.X ← σZ(vi)→ vi.Y ← vi.X

4. Case 4: σX(vi)← vi.Z → vi.Y

where σX(vi) and σZ(vi) are relational variables on the
attributes X and Z of the direct neighbors of vi. Case
1 refers to marginal independence between a relational
and a propositional variable (σX(vi) |= vi.Y ). Cases 2
and 3 introduce conditional independence given a con-
founder. Case 2 refers to a propositional confounder
(σX(vi) |= vi.Y |vi.Z) whereas case 3 refers to a relational
confounder (vi.X |= vi.Y |σZ(vi)). A test should be able to
reject the null hypothesis of no dependence in the first three
cases. Case 4 represents conditional independence and the
test should not reject the null hypothesis and it should pro-
duce high errors. Note that direction is ignored in the test.
The synthetic attribute generation process is described in
Appendix.

5.3 EXPERIMENTAL SETUP

We empirically evaluate the proposed approach, NIRD,
to the state-of-the-art RCI test method, KRCIT [Lee and
Honavar, 2017]. 3 We report the average Type I and Type II
errors with significance level 0.05 over 100 trials for each set
of parameters. We use Radial Basis Function kernel (RBF)
as the base kernel. KRCIT is implemented with HSIC as
the kernel-based marginal independence test method and
KCIT [Zhang et al., 2011] as the kernel-based conditional
independence (CI) test. We use the approximate method of
NIRD in all experimental evaluation with 20 and 50 random
Fourier features for marginal and conditional test respec-
tively. We estimate the null distribution via permutation
on the non-relational variable since the marginal distribu-
tion remains unchanged. We compare both RCI methods
(NIRD, KRCIT) to a recent i.i.d. CI test method, Sobolov
Independence Criterion (SIC) [Mroueh et al., 2019] (see

3Code available at https://github.com/edgeslab/nird-uai22

Appendix). We study NIRD’s strengths and weaknesses in
five experimental setups:

Relational dependence sensitivity: We evaluate the sen-
sitivity of the dependence tests to different relational de-
pendence strengths. We report results on polynomial mod-
els while varying the dependence coefficient in range
{0.1, 0.3, 0.5, 0.7, 0.9} for the alternate hypothesis and re-
port both Type I, II errors. Edge connectivity is 3 for BA
and edge probability is 0.02 for ER model.

Diffusion: We apply NIRD to test for contagion by simulat-
ing a linear threshold model [Granovetter, 1978] with initial
treatment probability of 0.1 on the semi-synthetic Facebook
network. We reassign treatment values in each diffusion
step and generate outcomes (Y ) based on treatments (X)
generated in the last diffusion step. The attribute generation
process is described in the Appendix. We expect the distri-
bution of σX(vi) to change with increasing diffusion steps
and investigate at what step it is possible to detect relational
dependence. We vary the number of steps, sample size and
measure Type II error. We also investigate the impact of
activation probability on the Type-II error on the Twitter
ego-network with 10,000 nodes (results in the Appendix).

Network sensitivity: We examine performance over a va-
riety of network structures. We vary edge connectivity
of BA in range {1, 2, 3} and edge probability of ER in
range {0.005, 0.01, 0.015, 0.02, 0.025}. We use a fixed de-
pendence coefficient value of 0.5.

Scalability: To compare the scalability of NIRD against
the baseline KRCIT, we generate Erdős-Rényi synthetic net-
works (edge probability 0.02) with varying number of nodes
and report their execution time for marginal and conditional
independence testing. We vary the network size (x-axis) in
the range {100, 200, 300, 400, 500}. The choice of small
networks was driven by the fact that KRCIT scales exponen-
tially as shown in Figure 4a and it is impossible to run for
larger networks. In the Appendix, we also demonstrate the
scalability of NIRD through the diffusion experiment which
is run on networks of size up to 10k nodes. The experiment
is run on a 2.4GHz 8-core machine with 50GB memory.

Real world demonstration: In the Appendix, we demon-
strate the applicability of our test for detecting peer influ-
ence in a well-studied real-world social network (50 Women)
where our test discovers smoking-, drug- and sport-related
peer dependencies that concur with previous research.

5.4 RESULTS

Relational dependence sensitivity. Figure 1 shows Type I
and Type II errors for the polynomial dependency model on
synthetic data. The rows correspond to the network models
and the columns to relational dependence cases. The solid
and dashed lines correspond to Type II and Type I errors
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Figure 1: Relational dependence impact on Type I/II errors.

respectively. The test is most challenging when the depen-
dence coefficient, βd (x-axis) is low. The figure shows that
both RCI methods are well calibrated with low Type I error
(max 0.06 by KRCIT in Erdős-Rényi) for the first two cases.
In these cases, NIRD consistently produces lower Type II
errors compared to KRCIT. It is most visible in Erdős-Rényi
model (1e) with 86% reduction in Type II error for βd = 0.9.
The performance gain of NIRD increases slightly from case
1 to case 2 as the difficulty increases. In case 3, KRCIT
is poorly calibrated and exhibits an unusually high Type
I error. Across cases, NIRD shows desired behavior: it is
consistently well-calibrated and its Type II error decreases
with the increase of relational dependence. Case 4 provides
a sanity check and both methods produce high Type II errors
(0.9 to 1.0) with good calibration. The error is nearly con-
stant irrespective of strength of dependence coefficients or
network model parameters used. In order to test for sensitiv-
ity to noise, we repeat these experiments varying the noise
variance over multiple trials instead of drawing from a fixed
distribution. The results look very similar (see Appendix).

Diffusion. Figure 2a shows the impact of the number of
diffusion steps (lines) and sample size (x-axis) on the ef-
fectiveness of NIRD. At initial activation (1 diffusion step)
there is a high Type II error across sample sizes which de-
creases with higher number of steps. We see a significant
decrease in error with just 5 diffusion steps. Further steps
drastically lower the Type II error and at 20 steps and larger
samples it can reject the null hypothesis consistently. This
suggests that relational dependence is easier to detect after
several diffusion steps rather than at early activation. It also
demonstrates the effectiveness and scalability of NIRD in
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Figure 2: Impact of sample size on Type II error.

terms of detecting social phenomena in real world networks.
Note that it is computationally infeasible to run the baseline
method on such size of samples.

Network sensitivity. Figure 3 shows Type I and Type II er-
rors for two network models. The x-axis represents the corre-
sponding parameter values for each model. We observe that
increased parameter values exhibit higher Type II errors in
general for Barabási-Albert model but not for Erdős-Rényi.
A possible reason is that Barabási-Albert exhibits a more
skewed degree distribution compared to Erdős-Rényi. Note
that the increased parameter values indicate higher density
of the network. We expect Erdős-Rényi to show a similar
trend if the edge probability is further increased. NIRD
outperforms KRCIT in terms of Type II error (except in
Figures 3c and 3f which is due to poor calibration of the
baseline method) irrespective of network density. Type II
error is reduced as high as 65% for Erdős-Rényi model with
edge probability 0.025 (Figure 3e). Moreover, Type I error
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Figure 3: Impact of network parameters on Type I/II errors.

for NIRD is consistent whereas KRCIT suffers in case 2
(Figures 3c, 3f).
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Figure 4: Impact of sample size on execution time.

Scalability. Figure 4a shows execution time in minutes (y-
axis) for both marginal (case 1) and conditional (case 3)
independence test for different network sizes in terms of
number of nodes (x-axis). The solid and dashed lines rep-
resent the conditional and marginal test result respectively.
KRCIT exhibits an exponential complexity whereas NIRD
shows much less sensitivity to network size. This is expected
given the complexity of the corresponding algorithms.

6 CONCLUSION

In this work we examine the problem of defining and mea-
suring statistical dependence in relational data. We propose
NIRD, a consistent, non-parametric test for detecting rela-
tional dependence that improves state-of-the-art relational

dependence testing by capturing a wide range of possible
relational dependencies. Moreover, we introduce an approx-
imate method that makes NIRD scalable to larger networks.
We evaluate the effectiveness of our method across diverse
relational settings and find that our proposed test exhibits
significantly less sensitivity to network properties and de-
pendence types. Our work paves the way for a number of
promising future research directions, from testing for social
influence to causal structure learning from relational data.
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