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ABSTRACT
Network experiment design refers to the design of controlled ex-

periments for interacting units with the goal of estimating a causal

effect of interest. Estimating the effect of treatment alone on units’

outcome, known as direct treatment effect, in network experiments

is challenging due to information spillover between peers through

shared edges. Prominent methods for network experiment design

mostly focus on estimating total treatment effects, the combination

of peer effects and direct treatment effects. Less focus has been

given to approaches that provide an unbiased estimation of direct

treatment effect. We present a framework that takes advantage

of independent sets and assigns treatment and control only to a

set of non-adjacent nodes in a graph, in order to disentangle peer

effects from direct treatment effect estimation. Randomizing over

independent set nodes removes peer effects between nodes in the

experiment while canceling out the peer effects from nodes out-

side the experiment. Through a series of simulated experiments

on synthetic and real-world network datasets, we show that our

framework significantly increases the accuracy of direct treatment

effect estimation in network experiments.

KEYWORDS
Causal inference, Network experiment design, Peer effect, Direct

treatment effect

1 INTRODUCTION
Causal inference plays a central role in many disciplines, from

medical sciences to economics. Randomized Controlled Trials (RCT)

or A/B testing is considered the gold standard for estimating the

effect of a treatment on a population. As a motivating example,

consider the problem of assessing the effectiveness of a vaccine

on providing immunity against disease. To conduct a randomized

controlled trial, a group of individuals from the population are

vaccinated at random (treatment) and the infection rate in this

group is compared to the infection rate in a random group of people

who are not vaccinated (control). The difference between infection

rates of the two groups reflects the causal effect of the vaccine on
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immunity, that is if we can assume that individuals do not interact

with one other.

Unfortunately, assuming that individuals do not interact is rarely

realistic in real-world scenarios. Due to potential interference or

spillover between connected individuals in a social network, mea-

suring causal effects is challenging. The presence of interference

violates a fundamental causal inference assumption known as the

Stable Unit Treatment Value Assumption (SUTVA). SUTVA states

that in order for a causal effect estimate to be unbiased, the out-

come of an individuals should be affected by their own treatment

only and not by the treatment assignment of other individuals in

the population [9]. In the running example, if vaccinated people

in the treatment group interact with people in the control group,

then people in the control group may be protected from the disease

based on herd immunity and the infection rate can appear to be

the same in both groups. In reality, for an effective vaccine the base

rate of infection would have been higher in the control group in

the absence of interactions with the treated group.

In the presence of peer effects, the measured causal estimand is

the combination of Direct Treatment Effect (DTE) and Peer Effects
(PE), known as Total Treatment Effect (TTE). Direct Treatment Effect

is defined as the difference between average outcome of treated and

untreated individuals due to the treatment alone. Fig .1 shows two

different types of peer effects that exist in a fully randomized exper-

iment and can make treatment effect estimation biased. Different

studies focus on designing network experiments that focus on dif-

ferent types of causal effects of interest. For example, Cluster-based

network experiments are popular approaches for estimating TTE.

These approaches reduce interference between treatment groups

by partitioning the network into clusters with dense connections

within clusters and few edges across clusters [8, 20, 26]. Then, by

randomizing treatment assignment at the cluster-level, spillover

across treatment groups is reduced.

In contrast, the goal of this paper is to measure Direct Treatment

Effects in network experiments. We propose a network experiment

design using independent sets as an unbiased approach for mea-

suring Direct Treatment Effects. In the proposed framework, we

divide network nodes into two sets: 1) independent set nodes, and 2)

graph nodes that are not in the independent set to which we refer

as bystander nodes. By assigning the independent set nodes to treat-

ment and control groups, we ensure that there are no peer effects

between nodes participating in the experiment, regardless whether

they are in different treatment groups or the same treatment group.

Key to our proposed experiment design is the idea that in expecta-

tion, the peer effects of bystander nodes on the treatment group is

the same as the peer effect of bystander nodes on the control group,

thus canceling each other in the total treatment effect estimation.

https://doi.org/10.1145/1122445.1122456
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Figure 1: Illustration of fully randomized assignment in network experiments. Input graph: a graph of nodes and the con-
nections between them. Fully randomized assignment graph: the output graph that represents fully randomized treatment
assignment of nodes and peer effects that exists in the experiment.

Applying this framework to the vaccination example would ensure

that individuals in treatment and control do not interact with each

other and allow accurate estimation of the effect of vaccination on

the infection rate.

The rest of the paper is structured as follows. In Section 2, we

review background on causal effect estimation in network experi-

ments. In Section 3, we define different causal estimands and the

problem that we address in the paper. In Section 4, we present our

proposed network experiment design that increases the accuracy

of Direct Treatment effect estimation. In Section 5, we present ex-

perimental setup and simulation results in real-world and synthetic

data. In Section 6, we conclude and discuss directions for future

work.

2 RELATEDWORK
The assumption of no interference is at the core of most causal

studies [13]. With the rise of interest in social networks, experi-

ments revealed that this assumption is violated in studies with non

i.i.d data where SUTVA does not hold [26]. By attracting attention

toward network experiments, dependent on the assumptions made

in the study different estimands have been proposed. Several meth-

ods have been considered to infer causal effects from observational

studies [2, 15, 18, 22], but observational studies are not the focus

of this paper. Here, we review relevant work on three main causal

estimands for designing randomized controlled trials in networks.

Direct Treatment Effect (DTE) Estimation. Estimating the ef-

fect of treatment alone has been studied in the context of network

experiment design. Jagadeesan et al. [10] proposed an approach

to reduce the bias of Neymanian estimator of DTE under inter-

ference and homophily. In this approach, treatment assignment is

considered as a quasi-coloring on a graph and every treated node

is tried to be matched with a control node with identical number of

treated and control neighbors to create a balanced interference in

network experiments. In networks where a perfect quasi- coloring

is not possible, nodes are ordered by degree and then nodes with

similar degree are paired and assigned to treatment or control. The

accuracy of causal effect estimation in this method depends on the

network structure, degree distribution of the nodes and approach-

ing perfect quasi-coloring to a perfect quasi-coloring. Sussman and

Airoldi [24] propose an approach to estimate DTE considering a

fixed design for potential outcomes. Similar to these approaches,

we focus on estimating DTE in the presence of peer effects, but

our approach can be applied in networks with different structural

properties.

Peer Effect (PE) Estimation. Different network experiments

designs have been proposed to tease out the effects of peers from

the total treatment effects. Eckles et al. [6] conducted a random-

ized experiment to measure peer effects by assigning individual’s

peers to encouragements to behaviors that affect the outcome of

individuals. Saint-Jacques et al. propose an ego-network random-

ization approach to measure peer effects where ego is a focal node

and alter is her first-hop neighbors [19]. To measure peer effects,

the outcome of a treated ego when all of its alters are treated is

compared to the outcome of a treated ego when all of its alters are

untreated. Toulis and Kao [25] defined a new causal estimand for

peer influence effects and proposed two sequential randomization

and model-base approaches to measure the estimand. In sequential

randomization approach, nodes are randomly assigned to a k-level

exposure status where exactly k neighbors of nodes are treated or

non-exposure status where all neighbors are untreated.

Total Treatment Effect (TTE) Estimation. TTE is one of the

most popular causal estimands in network experiments, especially

in cluster-based randomization approaches [5, 6, 16]. Using aHorvitz-

Thompson estimator, Ugander et al. [26] proposed a cluster-based

approach to estimate TTE in network experiment design. Saveski et

al. [20], by stratification of balanced clusters attempted to present an

unbiased TTE estimator. Fatemi and Zheleva [8] presentedCMatch,
a framework that uses weighted graph clustering technique to min-

imize interference and selection bias in network experiment design.

In this approach, by matching clusters with more homogeneous

nodes and assigning matched clusters to treatment and control

groups, they are able to reduce the error in TTE estimation in

cluster-based network experiment design.
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3 PROBLEM DEFINITION
In this section, we formally define the data model, the causal esti-

mand and the problem that we address in this paper, following the

notation and terminology of Fatemi and Zheleva [8].

3.1 Data model
LetG = (V,E) be an undirected graph of n nodes where V denotes

the nodes and E = {ei j } the edges, such that ei j corresponds to
an edge between node vi ∈ V and node vj ∈ V. For each node vi
there is a vector of attributes denoted by vi .X, an outcome denoted

by vi .Y , and a set of neighbors denoted by Ni . Let vi .T ∈ {0, 1, 2}

denote the treatment assignment of node vi such that for a treated

node vi .T = 1, for an untreated node vi .T = 0 and for a node

excluded from the experiments vi .T = 2. Let Z ∈ {0, 1, 2}n be the

treatment assignment vector of a population of size n.

3.2 Causal effect estimation
Total Treatment Effect (TTE) is defined as the difference between

the outcomes of individuals in a population when all are treated

Z1 = {1}n and all are not (Z0 = {0}n ) [26]:

TTE =

1

n

∑
vi ∈V

(vi .Y (Z1) −vi .Y (Z0)). (1)

where vi .Y (Z1) and vi .Y (Z0) are the potential outcomes of node vi
under the treatment assignment vectors Z1 and Z0, respectively.

However, the fundamental problem of causal inference is that it

is impossible to observevi .Y (T = 1) andvi .Y (T = 0) simultaneously.

In real-world scenarios, TTE is estimated by averaging outcomes

over randomized treatment and control groups via difference-in-

means: TTE =̂ V1.Y −V0.Y [23].

In network experiments and in the presence of interference, total

treatment effects measure the contribution of both direct treatment

effects (DTE) and peer effects (PE):

ˆTTE = V1.Y −V0.Y = DTE(V) + PE(V1) − PE(V0). (2)

Direct Treatment Effect (DTE) is the difference between average

outcome of treated and untreated individuals due to the treatment

alone. Under the assumption that PE(V1)-PE(V0)=0, TTE=DTE.
Peer Effect (PE) measures the average influence of neighbors on

the outcome of individuals. PE is estimated as:

PE(V ) = E
vi ∈V

[vi .Y |vi .T = t ,Ni .π ]

− E
vi ∈V

[vi .Y |vi .T = t ,Ni = ∅]. (3)

where Ni .π denotes the vector of treatment assignments to node

vi ’s neighbors Ni . Let t show the treatment group of each node vi .
Peer effect can be divided into two different types of effects:

• Allowable Peer Effect (APE), defined as the peer effect be-

tween neighbors N t
i in the same treatment class as node vi

where their treatment assignment is denoted by N t
i .π and

is estimated as:

APE(V ) = E
vi ∈V

[vi .Y |vi .T = t ,N t
i .π ]

− E
vi ∈V

[vi .Y |vi .T = t ,N t
i = ∅]. (4)

• Unallowable Peer Effect (UPE) is the peer effect of neighbors
N t
i (t ̸= t ) from different treatment class N t

i .π on the out-

come vi .Y of individual vi . UPE is formally defined as:

UPE(V ) = E
vi ∈V

[vi .Y |vi .T = t ,N t̂
i .π ]

− E
vi ∈V

[vi .Y |vi .T = t ,N t̂
i = ∅]. (5)

The fully randomized assignment graph in Fig. 1 shows these two

types of peer effects between connected nodes. For example, the

peer effect between control node 2 and treatment node 1 is different

from the peer effect that exists between node 2 and another control

node, node 5.

The question we are interested to answer is: What is the causal

effect of the treatment alone? This question has many practical ap-

plications for estimating the effectiveness of different policy inter-

ventions. Some examples include: What is the individual protection

from a disease due to vaccination alone (and not herd immunity)?

What is the effect of advertisement on motivating a person to buy a

new phone? In network experiments, it is challenging to disentangle

DTE from PE and this is the main focus of our paper.

Now, we are ready to define the problem we try to address in

this paper:

Problem 1. Network experiment design for direct treatment ef-
fect estimation. Given an undirected graph G = (V ,E), and a set of
attributes V .X associated with each node. Find a treatment assign-
ment vector Z of a population with three different subsets of nodes,
the treatment nodes V1 ∈ V , the control nodes V0 ∈ V , and nodes
excluded from the experiment V2 ∈ V , such that:

a. V0 ∩ V1 ∩ V2 = ∅

b. |V0 |+|V1 | is maximized
c. PE(V1) − PE(V0) ≈ 0.

The first component aims to choose treatment, control and by-

stander nodes excluded from the experiments that do not overlap.

The second component ensures to choose as many nodes as possible

from V to be assigned to treatment and control groups. The third

component removes peer effects from causal effect estimation.

4 SOLUTION METHOD
In this section, we define an objective function corresponding to

the problem of this paper and describe our proposed framework

which we refer as CauseIS for estimating causal effect in network

experiments.

Typically, total treatment effect estimation includes both APE

and UPE. In a randomized approach TTE is estimated as:

ˆTTE(V) = DTE(V) + (APE(V1) −APE(V0)) + (UPE(V1) −UPE(V0))

(6)

In this work, we propose an approach that makes APE(V1)=0

and APE(V0)=0 and in expectation makes UPE(V1)-UPE(V0)=0, thus

making the estimated TTE correspond to DTE. We first define an

objective function that addresses the goals specified in Problem 1.

4.1 Objective function
The goal of the objective function is to find a subset of V with max-

imum cardinality (Problem 1.b) such that by randomizing treatment
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Figure 2: Illustration of CauseIS frameworks in network experiments. Input graph: a graph of nodes and the connection be-
tween them. Independent set graph: a graph of bystander and independent set nodes selected by the independent set algorithm.
CauseIS output graph: the output graph that represents randomized treatment assignment of independent set nodes and peer
effects that exists in the experiment.

assignment over the selected subset, the allowable peer effects from

the experiment are removed (Problem 1.c). We define s ∈ {0, 1} such

that si = 1 if node vi is in the set of selected nodes, else si = 0.

maximize

|V |∑
i=1

si

subject to si + sj ≤ 1 ∀ei, j ∈ E

si ∈ {0, 1} ∀vi ∈ V

The two constraints together guarantee that adjacent nodes are

not included in the in our network experiment design. This opti-

mization can be solved by reducing our problem to the maximum

independent set problem in graph theory [7] such that nodes in the

independent set correspond to the nodes selected for the network

experiment.

Given a graph G = (V,E), IS ⊆ V is a subset of nodes such that

for each pair of nodes vi ∈ IS and vj ∈ IS there is no shared edge

between them (ei, j /∈ E). A maximal independent set is an indepen-

dent set that is not a subset of any other independent sets of the

graph. Using a greedy sequential approach, a maximal independent

set of a graph can be found in O(|E |) [3] but there are parallel algo-
rithms that can solve this problem much faster inO(loд(N )) [12, 28].

A maximal independent set with the largest possible size for a

given graph is known as a maximum independent set. Finding maxi-

mum independent sets in graphs is known to be NP-hard. There

are exact algorithms that can find maximum independent sets in

O(1.1996nnO (1)
) [27] and also approximation algorithms that can

find it in O(n/(loдn)2) [4].

4.2 CauseIS Framework
We propose CauseIS, a network experiment design for robust esti-

mation of Direct Treatment Effects by disentangling peer effects

from DTE. CauseIS has two main steps:

(1) Finding a maximum independent set of the graph (Indepen-
dent set graph in Fig.2)

(2) Assigning nodes of maximum independent set to treatment

and control in a randomized fashion (CauseIS output graph
in Fig.2).

In this framework, we find the treatment assignment vector Z of

nodes by dividing the population to treatment, control and by-

stander nodes. Considering the proposed objective function, we

first use an algorithm to choose themaximum independent set of the

given graph that partitions the graph into two set of nodes: 1) nodes

in the maximum independent set denoted byMIS (MIS ⊆ V) where
by randomizing treatment assignment over these nodes, we achieve

treatment (V1) and control (V0) groups, and 2) bystander nodes (V2)
that are not inMIS denoted by B where B ⊆ V, B ∩MIS = ∅, and

B∪MIS = V . The main idea is to assign nodes ofMIS to treatment

and control at random and ensure that there is no peer effect across

treatment and control nodes.

Fig. 2 represents the pipeline ofCauseIS framework. Input graph
shows the graph of the network that the network experiment is

conducted on. After using an independent set algorithm on the

Input graph, independent set and bystander nodes are selected

from the graph that are shown in Independent set graph. Finally,
by randomizing treatment assignment over independent set nodes,

treatment and control nodes are selected. CauseIS output graph
shows the assignment of Input graph nodes to three treatment

groups where APE is removed from the experiment.

We remove bystander nodes from the randomized treatment

assignment because of the interaction within these nodes which

leads to APE in treatment effect estimation. However, it is still

possible that information flows from peers inB toV0 andV1, leading

to undesired peer effects (nodes 1, 5, 7, 9, 10 in Fig. 2). In the running

example, an infected person in B may infect his peers in V0 and V1.

By removing APE from Eq. 6, we have ˆTTE(V) = DTE(V) +
(UPE(V1) −UPE(V0)). By randomizing the treatment assignment

over MIS nodes, we aim to provide a chance for treatment and

control nodes to have the same number of peers inB. We expect that

UPE in treatment and control from neighbors in B cancel each other

and by removing APE and UPE from treatment effect estimation,

we achieve an unbiased estimation of DTE where TTE=DTE.

5 EXPERIMENTS
In this section, we evaluate the performance of CauseIS in direct

treatment effect estimation compared to the baselines. We first
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describe datasets used in our experiments and then discuss experi-

mental setup and results.

5.1 Data generation
Since existing network datasets do not have ground truth for treat-

ment and its causal effect on outcome, we use synthetic and real-

world data structures and simulate the outcome and causal effect

in the experiments.

5.1.1 Synthetic data. For generating synthetic networks, we

use two graph generation models:

• Barabási-Albert (BA) model: This model generates random

scale-free networks using preferential attachment model. At

the beginning, the network is constructed fromm0 connected

nodes. Then, new nodes are connected tom existing nodes

with a probability that is proportional to the number of edges

that the existing nodes already have [1]. We setm = 3 in all

experiments.

• Forest Fire (FF) model: In this model, a new node vi attaches
to an existing node vj and then links to nodes connected to

vj with forward and backward burning probabilities denoted
by pf and pb , respectively. Leskovec et al. [11] show that

synthetic network generated by this model can mimic most

of real-world structure characteristics. In the experiments,

we generate all the graphs with forward burning probability

pf = 0.3 and backward burning probability pb = 0.3.

After generating the network structure, we generate 10 attributes

for each node with a uniform distribution where the values varies

in [−1, 1].

5.1.2 Real-world data. We use five real-world datasets in our ex-

periments. The 50Women dataset [14] includes sport, smoking, drug

and alcohol habits of 50 students with 74 friendship connections.

Cora and Citeseer datasets [21] incorporate the citation networks

of 2, 708 and 3312 papers with 4, 675 and 5278 edges, respectively.

Hamsterster dataset [29] includes the online friendship network

of 2, 059 hamsters with 10, 943 edges. Hateful users dataset [17] is
a a sample of Twitter’s retweet graph containing 100, 386 users

with 1024 attributes and more than two millions retweet edges. In

hateful users dataset, we remove singletons and nodes with degree

1 from the graph.

5.1.3 Synthetic causal effect. To generate causal effect in our

datasets, we generate the outcome of nodes in the real-world and

synthetic datasets. We activate (change the outcome of a node from

0 to 1) a treated node with 0.4 probability and a control node with

0.2 probability that makes DTE = 0.2. After generating the base

activations, we add the contagion process in the next time step and

generate UPE and APE for each model. Every inactive node can be

activated with some predetermined spillover probability by any of

its active peers. A node has as many chances of being activated as

the number of neighbors it has. We consider three different possible

spillover probabilities for every edge from an activated peer: 0.1, 0.5

and edge weight. Spillover probability denoted by e .p indicates the

likelihood of information flow between two peers. For each design,

we simulate this process according to the design and measure TTE

that is the combination of DTE, UPE and APE. Then we calculate

how close the measured TTE is to DTE. To estimate edge weights,

we calculate node pairwise similarity of edges’ endpoints using one

minus the normalized L2 norm: 1 − L2(vi .x ,vj .x ).

5.2 Baselines
We compare the performance of four different approaches in our

experiments.

• Randomized: In thismethod, we assign all population nodes

to treatment and control groups in a randomized fashion.

• Match: In this method, we match nodes using Best Node
Match (BNM) technique [8]. Node vi is matched with the

most similar unmatched node in the graph. Then, nodes of

matched pairs are assigned to treatment or control at random.

To estimate the similarity of two nodes, we calculate the

pairwise similarity of nodes based on their attributes.

• CauseIS: In our proposed framework, we use an algorithm

to find the maximum independent setMIS and then assign

nodes of the set to treatment or control at random.

• CauseIS_match: This method usesCauseIS framework, but

it matches nodes ofMIS and then assigns nodes of matched

pairs to treatment or control at random.

The goal of comparing our methodwithMatch andCauseIS_Match
is to show whether our method has selection bias. In our context,

selection bias refers to the difference between the attribute dis-

tribution of treatment and control nodes and matching is one of

the prominent methods to mitigate this bias in causal studies [23].

Using matching for RCT is unusual, but in small datasets altering

the randomization process by posing structural constraints on the

graph may lead to worse randomization and matching can mitigate

this problem.

5.3 Experimental setup
Our experimental setup follows the experimental setup of previous

work [8]. We run a number of experiments to evaluate the accu-

racy of different methods in estimating treatment effect and the

selection bias of these approaches. To measure the estimation error

of different methods, we compute Root Mean Squared Error (RMSE)

of the estimated DTE as:

RMSE =

√√
1

S

S∑
s=1

((τ̂s − τs )2)

where S is the number of runs and τs and τ̂s are true DTE and esti-

mated TTE in run s , respectively. We set S = 10 in all experiments.

To evaluate the attribute distribution differences between treatment

and control nodes, we calculate the Euclidean distance between the

attribute vector mean of treated and that of untreated nodes. To

show the strength of UPE imposed by bystander nodes in CauseIS
framework, we calculate the difference between the percentage of

edges from bystander nodes to treatment and control nodes as:

1

|E|
(

∑
ei, j ∈E
vi ∈T
vj ∈B

di, j −
∑

ei, j ∈E
vi ∈C
vj ∈B

di, j ) × 100 (7)

where di, j = 1 if there is an edge between node vi and vj . T and C
shows the vector of treatment and control nodes.



MLG ’20, Aug 24, 2020, San Diego, CA, US Fatemi and Zheleva

Citeseer Cora Hamsterster 50 Women Hateful Users
0.00

0.05

0.10

0.15

0.20

0.25
e.p = edge-weight

Citeseer Cora Hamsterster 50 Women Hateful Users
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

e.p = 0.1

Citeseer Cora Hamsterster 50 Women Hateful Users
0.00

0.05

0.10

0.15

0.20

0.25

e.p = 0.5
Randomized
Match
CauseIS
CauseIS_Match

RM
SE

 o
f T

ot
al

 E
ffe

ct

Figure 3: RMSE of direct treatment effect in real-world datasets considering different unallowable peer effect probabilities.
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(a) Forest Fire model
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Figure 4: RMSE of direct treatment effect in synthetic data with different number of nodes and edges. Numbers in the first row
of x-axis shows the number of nodes in graphs, and the second row represents the size of MIS.

in our experiments, we use themaximal_independent_set func-
tion from the NetworkX Python library to find a maximal indepen-

dent set of each graphs which implements the approach by Blelloch

et al. [3]. All the results of synthetic datasets are averaged over 10

runs.

5.4 Results
Evaluation of Direct Treatment Effect estimation: To assess

the accuracy of CauseIS in estimating DTE compared to the base-

lines, we measure causal effect estimation error for different unal-

lowable peer effect probabilities. Fig. 3 shows RMSE of DTE in real-

world data sets. In all five datasets, CauseIS and CauseIS_Match
get lower estimation error, compared to Randomized and Match,
especially in Hamsterster with 72.1% and 76.6% estimated error

reduction for e .p = edдe_weiдht and e .p = 0.5 and Hateful Users
with 69.4% estimated error reduction for e .p = 0.1. By increasing

the spillover probability from 0.1 to 0.5, we get higher estimation

errors because the probability of changing treatment and control

outcomes through peer effects increases.

Synthetic data experiments depict a similar picture. Fig 4 shows

the stronger performance of CauseIS and CauseIS_Match over

Randomized andMatch methods in reducing causal effect estima-

tion error. For example, CauseIS’s error is more than half of the

error of Randomized approach (0.04 vs. 0.12 for graphs with 10, 000

nodes, 0.13 vs. 0.035 for graphs with 20, 000 nodes in Forest Fire

model). In graphs with 50, 000 nodes, CauseIS obtains 63.4% and

69.9% estimation error reduction in Forest Fire and Barabasi-Albert

models respectively, compared to other graphs.

In both synthetic and real-world datasets,Randomized andMatch
in one hand and CauseIS and CauseIS_Match in other hand show

similar performances. This is intuitive, because they use similar

randomization techniques. While MIS size is approximately half of

population size in all datasets, by increasing the size of MIS the esti-

mation error ofCauseIS is still significantly lower thanRandomized
methods with smaller population size.

Selection bias evaluation: In this experiment, we evaluate the

selection bias of different methods by comparing the Euclidean

distance between treatment and control nodes’ attributes in real-

world and synthetic datasets with different population sizes. Fig. 5

shows this comparison on real-world and synthetic data. It is not

surprising thatMatch method gets the lowest selection bias in all

datasets, because it matches most similar treatment and control

nodes based on the similarity of attributes. CauseIS_Match have

higher selection bias than Match, because the number of nodes

matched in this approach is less that Match method. Although
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Figure 5: Euclidean distance between the attribute vector means of treatment and control nodes in real-world and synthetic
datasets. In synthetic dataset plots, numbers in the first row of x-axis show the number of nodes in graphs, and in the second
row show the size of MIS.
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Figure 6: Difference between the percentage of edges to treatment and control nodes in real-world and synthetic datasets with
different number of nodes and edges. In synthetic dataset plots, numbers in the first row of x-axis show the number of nodes
in graphs, and in the second row show the size of MIS.

CauseIS has high selection bias, CauseIS_Match reduces selection

bias to some extent.

Next, we look at how sample size impacts selection bias. We

expect that asymptotically, there would be no selection bias with

randomization for any design. Fig. 5 shows that independent from

the network generating model, by increasing the population size

the similarity between treatment and control nodes’ attributes re-

duces and the value of matching decreases and disappears. For

example, in graphs with 500 nodes generated by Forest Fire model,

the difference between Euclidean distance of treatment and control

nodes in CauseIS is 0.24, while in graphs with 50, 000 nodes this

difference decreases to 0.024. These results confirm the advantage

of matching technique in small datasets.

Peer effect evaluation: Tomeasure the extent towhichUPE(V0)

and UPE(V1) can cancel each other out, we consider the percent-

age of edges from bystander nodes to treatment and control nodes.

Fig. 6 shows this quantity in real-world and synthetic datasets

using CauseIS and CauseIS_Match methods. As expected, results

show that for graphs with fewer number of nodes, the difference be-

tween the number of edges to treatment and control nodes is higher

compared to larger graphs, 2.5 vs. 0.04 in 50 Women vs. Hateful

Users dataset. In synthetic data with higher population sizes (40, 000
and 50, 000), the difference between the percentages of edges to

treatment and control is close to zero.

In both synthetic and real-world datasets, we observe that by

increasing the sample size, the causal effect estimation error de-

creases because by increasing the density of the graph edges the

percentage of edges from bystander nodes to treatment and control

nodes becomes more similar and UPE(V1) - UPE(V0) goes to zero.

Degree distribution evaluation: To assess the extent to which
the maximal independent set chosen by CauseIS biases the degree

distribution of selected treatment and control nodes, we compare

the degree distributions of treatment and control nodes selected by

CauseIS and Randomized . Fig.7 shows that CauseIS selects treat-

ment and control groups with roughly similar degree distribution

in all datasets, except in 50 Women dataset where the assignment

looks more biased, likely due to its small size. CauseIS removes

high degree nodes from the experiment which results in incorpo-

rating treatment and control groups with more balanced degree

distribution in the experiments.
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Figure 7: Degree distribution of treatment and control nodes selected by CauseIS (first row) and Randomized (second row).

6 CONCLUSION
We proposed CauseIS , a framework that uses independent set ex-

plicitly to disentangles peer effects from direct treatment effect

estimation and increase the accuracy of direct treatment effect es-

timation. Our experiments on synthetic and real-world datasets

confirms that this approach decreases direct treatment effect esti-

mation error from 61.1% to 76.6% compared to the baselines. We

observe that by increasing the population size 1) matching matters

less, 2) selection bias is reduced, and 3) unallowable peer effects can-

cellation is more likely. This work opens many avenues for future

research such as accounting for multi-hop contagion in network

experiment design.
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