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ABSTRACT

Recommender systems have become ubiquitous in online ap-
plications where companies personalize the user experience
based on explicit or inferred user preferences. Most mod-
ern recommender systems concentrate on finding relevant
items for each individual user. In this paper, we describe
the problem of directed edge recommendations where the
system recommends the best item that a user can gift, share
or recommend to another user that he/she is connected to.
We propose algorithms that utilize the preferences of both
the sender and the recipient by integrating individual user
preference models (e.g., based on items each user purchased
for themselves) with models of sharing preferences (e.g., gift
purchases for others) into the recommendation process. We
compare our work to group recommender systems and social
network edge labeling, showing that incorporating the task
context leads to more accurate recommendations.
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1. INTRODUCTION

Sharing is an important part of building and maintaining
close relationships. When sharing, a person selects an item
and gives it to someone else to use. Some examples include
giving gifts, recommending products and sharing stories to
read. The reasons for sharing range from pleasing and de-
lighting someone to establishing one’s self as an expert on a
given topic, and studies have shown that the decision pro-
cess behind choosing items to share with others is different
from the one behind choosing items for personal use [6, 8,
16]. Many e-commerce companies are tapping into the com-
mercial potential of sharing by building interfaces that allow
users to share seamlessly with each other. Moreover, com-
panies can help users find shareable content and recommend
what items users should share. Since sharing is inherently an
asymmetric action, recommending what to share requires a
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solution that reflects the preferences and needs of the sender
while incorporating information about the recipient’s taste.

Here, we present the problem of directed edge recommen-
dations, in which a recommender system helps users find
what to share and give to others. At a first glance, the di-
rected edge recommendation problem is very similar to the
generic recommendation problem where the data is repre-
sented by a set of 3-tuples (u,i,p), an user-item pair as-
sociated with a rating, and the goal is to predict p’ for a
new pair (u’,i"). However, it has two subtle but important
differences: 1) instead of recommending an item using in-
formation about one user, we have to recommend an item
that is relevant for a pair of users, 2) the underlying distri-
bution for directed edge activity (e.g., gift purchases) can be
different from the distribution for other user activity (e.g.,
purchases for one’s self). More specifically, in the context
of directed edge recommendations, the relevant variables are
four: the sender, the recipient, the item i, and the rating for
that item. Hence, instead of 3-tuples we have 4-tuples of the
form (u,r,1,p).

Directed edge recommender systems are also similar to
group recommender systems because both take into con-
sideration multiple individual preference models. However,
while the goal of group recommender systems is to recom-
mend items that have a high degree of agreement with the
individual models, the goal of a directed edge recommender
system is to recommend items that a specific user is likely to
share with others, thus taking into consideration that user’s
sharing preferences and goals. Moreover, directed edge rec-
ommendations do not have to agree with both the sender
and the recipient individual preferences. If we take an on-
line bookstore as an example, traditional recommender sys-
tems would recommend books that a user is likely to buy
and read, directed edge recommender systems would sug-
gest books that a user is likely to gift to a given friend,
and group recommender systems would suggest books that
a book club is likely to be interested in discussing. If we
take an online movie rental company as an example, a tra-
ditional recommender system would highlight movies that a
person is likely to watch, a directed edge recommender sys-
tem would recommend movies that a user is likely to share
with a friend, and a group recommender system would sug-
gest movies that a family can watch together.

We propose models which infer the sharing preferences of
a user with respect to a specific recipient and recommend
items that match these inferred preferences. In contrast
with current state of the art techniques, our proposed mod-
els make use of both edge level and node level properties



to infer the best model for each directed edge individually.
We also propose mixing techniques for combining traditional
recommender systems for solving the directed edge recom-
mendation problem.

Roadmap

In section 2 we define our framework and formally define
the directed edge recommendation problem. In section 3 we
discuss the related areas of collaborative filtering, group rec-
ommendations and edge labeling. In section 5 we describe
our baselines, including ones that use standard collaborative
filtering techniques to provide with recommendations on the
edge level, and expand them by proposing mixing the pref-
erences of the sender and the recipient into one model. In
section 6 we propose our novel algorithms for directed edge
recommendations which incorporate edge features. In sec-
tion 7 we empirically evaluate our methods on two different
datasets and discuss the results.

2. PROBLEM DESCRIPTION

Let V denote a set of individuals, and Z a set of items
(e.g., products, books, movies, etc.). We assume a directed
social network G = (V, E) where V corresponds to the in-
dividuals, and an edge e = (u,v) € F represents a directed
relationship from u to v. We define actions as interactions
between users and items. We define two types of actions —
personal and shared actions. A personal action is a tuple
p = (v,4) where v € V and i € Z. Examples of personal ac-
tions include a book that an individual bought, or a movie
than an individual rated. Let P denote the set of all per-
sonal actions, and let P, = {p € P|3,p = (v,7)} denote the
set of personal actions performed by individual v. A shared
action is an ordered triple a = (s,r,i7) where s € V and
r € V are the active (sender) and passive (recipient) par-
ticipants of the action respectively, with (s,7) € E and i is
the item shared with the action. Examples of shared actions
includes gifts sent from individual s to individual r, movies
or books that individuals recommended to one another, etc.
Let A = {a1,...} be the set of all shared actions and A
the set of actions where user s is the active user.

Definition 1 (Directed Edge Relevance). We define the
directed edge relevance as a function Rel: E x Z — R that
gien a directed edge e = (u,v) and an item i, returns a
relevance score of item i w.r.t. a shared action from u to v.

We are now ready to define the problem of directed edge
recommendations.

Problem 1 (Top-k Edge Recommendation). Given a social
graph G = (V, E), a set of personal actions P and a set of
shared actions A, and an edge relevance function Rel, we
want to construct a list of items XI5y for V(s,r) € E such
that:

a. |Ls,m| =k, i.e. recommend k items
b. V(s,ri) € A: Fie Iy, i.e., do not recommend
items that have been part of a previous shared action

with s and r.

c. I,y is sorted in mon-increasing order with respect to
the relevance function Rel.

3. RELATED WORK

We give a brief overview of related work on recommender
systems, edge labeling, and psychology of sharing.

3.1 Recommender systems

Two approaches to recommender systems are content based
filtering and collaborative filtering [2]. Content-based filter-
ing infers a user interest model by looking at the items that
this user has liked, purchased, or interacted with in the past
and then recommends new items that match this user in-
terest model [14]. Collaborative filtering recommends items
to a user based on the items that similar users have liked,
purchased and interacted with [7, 20]. Within collaborative
filtering models, there are memory-based (neighborhood-
based) [10] and model-based (matrix factorization) [12] meth-
ods. Hybrid recommender systems combine collaborative
with content based filtering in a single framework [2]. Con-
text aware recommender systems consider additional infor-
mation, such as time and location, to provide relevant infor-
mation based on the context [3]. Another context dimension
that recommender systems use is the social network of users.
Yang et al. [23] survey methods for recommending items to
individual users by incorporating preferences of connected
users. Unlike directed edge recommendations, all of these
approaches solve the problem of recommending items to in-
dividuals for personal use.

Group recommender systems address the problem of pro-
viding recommendations for a group of users instead of rec-
ommendations for a single individual. Given an item set and
a set of users, the goal is to recommend a subset of items
specific to the user group such that (a) the recommended
items are highly relevant to the members of the group, and
(b) there is a low disagreement between group members [5,
15, 18]. In contrast to group recommenders, directed edge
recommenders combine individual user models (that of a
sender and a recipient) to recommend an item to a single
individual (namely the sender). Additionally, our models
treat prior activity on directed edges (e.g., gift purchases)
differently from activity on individual nodes (e.g., purchases
for one’s self). We compare our algorithms to Amer-Yahia
et al.’s group recommender algorithms [5] on the directed
edge recommendation probem in the Experiments section.

3.2 Edge labeling and link prediction

The problem of finding directed edge recommendations
is closely related to the problem of edge labeling in social
networks. Edge labeling in graphs refers to the problem of
inferring properties of existing edges. In the context of social
networks, edge labeling has been used to find whether two
people are friends or foes [4], whether a pair of individuals
have an advisor-advisee relationship [22], and for assigning
topic distributions for connected pairs of users [21]. The
work by Tang et al. [21] is the closest to our work, hence we
compare our models to their work in the experiments sec-
tion. They propose a generative model for topical affinity
propagation which infers the topic-level influence between
any two connected individuals in a social network. They ap-
ply their model to the problem of expert finding and show
that their model has better accuracy compared to PAGER-
ANK. One of the main differences between their work and
ours is that their model uses only node properties to infer
edge labels and it does not incorporate properties of edges
like prior edge activity. Their method also relies on having



a well-connected network between the individuals since it
was developed for topic propagation, whereas our methods
can work even on sparsely connected networks. Specifically,
our methods can recommend to pairs of users who are not
connected to the rest of the network.

The directed edge recommendation problem is also com-
plementary to the problem of link prediction. Given a social
network, the goal of link prediction is to infer new edges in
the network [23]. While the goal of our work is to make
recommendations for existing edges, directed edge recom-
menders can work on both existing edges and new edges
that are inferred by a link prediction algorithm.

3.3 Psychology of sharing

Our work is built on the premise that the items which peo-
ple choose to give and share with others are not necessarily
the same as the items that they choose for individual use.
While sometimes users share self-relevant information, in or-
der to receive social support and approval [9], other times
they send pieces of content to others because of a shared
interest [17]. What we share is also affected by the number
of people with which we share [6], the device on which we
share [11] and how we want to be perceived by others [13,
17]. Studies on the gifting behaviors of people have shown
that gifts can act as statements of the giver’s perception of
the recipient [19]. Belk has demonstrated that in gift-giving,
sometimes, the sender’s taste dominates gift selection, other
times it is dominated by the perceived recipient’s taste [8,
16]. The goal of directed edge recommenders is to learn from
historical data the sharing preferences of users in different
situations and domains.

4. ALGORITHM APPROACH

All the algorithms we propose to solve the top-k edge rec-
ommendation problem in Sections 5 and 6 will represent each
item 4 using a multidimensional feature vector i.f € R?. Our
algorithms compute for an edge e = (s,7) a model e.m € RY,
that represents the kinds of items that the edge is likely to
co-occur with in a shared action. Relevance is computed as:

Rel(e,i) := em-i.f" (1)

Our algorithms differ in how the edge model e.m is com-
puted. In Section 5, algorithms makes use of personal ac-
tions P alone to compute e.m. We name such algorithms
as node-based recommenders. In Section 6, algorithms make
use of both the set of personal actions P as well as the shared
actions A to compute e.m and we name them edge-based
recommenders.

S. NODE RECOMMENDATIONS

First, we propose node-based algorithms that can be used
for the edge recommendation problem. A common theme
with these algorithms is that they use the personal actions
‘P to compute the edge e.m. For each node v € V', we define
a feature profile of individual v.h as the sum of the feature
vectors of all the items 4, such that (v, ) is a personal action.

YoeV: vh= Z if
(v,i)EP

5.1 Baselines

First we consider two baselines that use simple statistics
of the observed data. Given a directed edge e = (s,r), we
infer e.m with the following two ways.

Sender Popular. Given a set of personal actions P, for
each directed edge e = (s,r) the edge model is determined
completely by the sender s’s feature profile. That is:

e.m = v.h

This can be interpreted as follows: when choosing a gift,
a sender picks gifts for a receiver (a shared action) from
among the items that he/she is most likely to purchase (as
a personal action). Note that in this scenario, no informa-
tion about the receiver r is used to determine the edge rec-
ommendation. We call this algorithm SENDERPOP, as the
recommendations made to an edge (s,r) correspond to s’s
most likely personal actions.

Recipient Popular. We also consider a recipient popular
algorithm, similar to SENDERPOP. RECIPIENT POP consid-
ers the recipient’s personal actions, and recommends items
that a receiver is most likely to receive are chosen from the
receiver r’s personal actions. More specifically, for a directed
edge e = (s,7):

e.m = r.h

5.2 Node-Level Collaborative Filtering

We next consider using standard collaborative filtering
(CF) techniques on the node level. Given a directed edge
e = (s,7) our CF based algorithms recommend items based
on the sender node s’s personal actions and the preferences
of nodes similar to s or based on node 7’s items and the pref-
erences of nodes similar to r. Again we focus on using the
CF algorithms to create a ranking on the feature space for
each edge e € E. Memory-based CF algorithms create a user
model .m € RY, that represents the items that the user r is
likely to personally interact with. They do so by grouping
users with similar interests, then identify the neighborhood
of each user and create the model for him. The steps that
a neighborhood-based CF algorithm takes are the following:
(a) compute the similarity sim(r, w) between users r and w,
(b) then for a target user r find the most similar users to
him and aggregate their preferences to derive model r.m for
the target user.

Applying collaborative filtering on the node level is equiv-
alent of making a recommendation for each node’s next per-
sonal action. In our gifts example this means predicting
either s’s or r’s next purchase, not a gift-specific purchase.

First, we define the similarity of two users v and v’ as
follows: sim(v,v’) = v.h - v".h, where v.h = ﬁ The
f-neighborhood of a node v is defined as: N, = {w €
V| sim(v,w) > 0}. Then model for a user v is:

v.an = Z sim(v,w) - w.h
wWE N,

The model for a node v as computed above (using CF) is
denoted by CFN(v). Using this scoring mechanism (CF)
we propose 3 approaches for the top-k edge recommenda-
tion problem: (a) sender based, (b) recipient based, and (c)
composite.



Sender Node-Based CF. Given a directed edge e = (s,1)
the algorithm computes CFN(s) and sets e.m = CFN(s).
We denote this model as CFN-s; and is indicative of the
sender’s next personal activity in the system.

Recipient Node-Based CF. Given a directed edge e =

(s,r) the algorithm computes CFN(r) and sets e.m = CFN(r).

Similarly, we denote this model as CFN-R, and is indicative
for the recipient’s next personal activity in the system.

The drawback with the traditional collaborative filtering
techniques is that they do not make use of the additional
edge labels and their different semantics in order to provide
a directed edge model.

5.3 Composition at the Node Level

We consider the composition of CFN-s and CFN-R and
propose three different composition methods of them: the
additive, the altruistic, and the multiplicative method.

Additive Composition. The intuition behind this model is
that we want to give high ranks to features that are highly
ranked either by the CFN-s or CFN-R models. Given a
directed edge e = (s,7):

em=qa-CFN(s)+ (1 —a)-CFN(r), a€(0,1)

We denote this additive model with CEFN-ADD. Also, note
that when we choose a = 0.5 the additive node model is
equivalent to the average relevance group recommender al-
gorithm proposed in [5] named AR. It simply ranks features
based on the nodes’ combined personal activities.

Altruistic Composition. We extend CFN-ADD with a novel
technique that allows us to learn the value of «. More specifi-
cally, we assume that each active user s of an action, is either
characterized as altruistic or selfish. For an action (s, r, %) al-
truistic users s choose an item ¢ that is more relevant to the
recipient r of the action, while selfish users choose items that
are more relevant to their own interests. For a user s € V'
let z € [0, 1] his altruism variable, and we set a = 1 — z, for
all active actions of user s. More specifically, the proposed
model is:

em = z,CFN(r) + (1 — z5)CFN(s)
We denote this model with CFN-ALT.

Learning Altruism. Our goal is to lean the values of the
altruism variables {zs}sev, to do so first we assume the
following generative process for the personal and shared ac-
tions of the users. Yv € V : P, ~ mult(6,) i.e., the per-
sonal actions of all users follow a multinomial distribution
parameterized by the taste 0, of the user. Similarly for all
shared actions we have: V(s,r,i) € A : i ~ zsmult(0,) +
(1 — zs)mult(6s). For a single shared action a; = (s,7,7) we
have P(a;|0s,0r,2s) = 2s0r, + (1 — 25)6s,, and for all shared
actions we have: P(A|0s,0r,2s) =[] ,)ca (zs6r;, + (1 —
zs)0s; ) Then the log-likelihood of 6, 0,, zs is L(0s, Or, zs; A)
Z(s,r,i)eA (2s0r, + (1 — 25)0s,). We propose algorithm 1 to
find the value of the altruism variables zs. We also define the
shared action histories of a user: v.§ = v.s/||v.s||1 and v.F =
vr/llvrly withvs =32 e if,andor =3, if
respectively.

Multiplicative Composition. The intuition behind the

Algorithm 1 ALTRUISMEST

1: Yv € V : assign 0, = v.h

2: Compute z5 = argmax,  L(0s,0r, 2s; A)

3: Yu € V : update 6, = v.h + (1—2zs)v.8+ zs0.T
4: Repeat 2-3, until convergence.

multiplicative composition is assigning high ranks to fea-
tures that are highly ranked by both the CFN-s or CFN-r
models. Given a directed edge e = (s,7):

e.m = CFN(s) ® CFN(r)

Where ® denotes the pairwise multiplication of two vectors.
We denote this multiplicative model with CFN-M. This
model can also be thought as a group recommender, since
it ranks features based on the nodes’ combined personal ac-
tivities.

6. DIRECTED EDGE RECOMMENDATIONS

Now we present collaborative filtering techniques that given
a directed edge e = (u, v) make use of both the personal ac-
tions P and shared actions A in order to infer feature scores
for the edge e. We consider the shared actions as separate
entities from personal actions, and utilize them for creating
edge feature scores. Before we continue with the algorithms
we define the edge feature profile e.f as follows:

V(s,r)€E: (s,r).(h)= Y if

(e,i)eA

6.1 Simple Baseline

First, we define a simple baseline algorithm that creates
the edge feature scores e.m based on the overall popularity
of features appearing on items shared between users. Given
the training set of observed actions Ay, and the graph G =
(V, E), we compute the vector of all edge activities man.

mga) = Z e.h

eck

Then for any directed edge e € E the proposed edge feature
scores are e.m = mygy. We refer to this model as MosTPoP
as it represents what are the most popular features over all
the observed activities.

6.2 Edge-Level Collaborative Filtering

We expand the on the collaborative filtering techniques
of section 4.2 by directly inferring the feature scores of the
edges. Given a directed edge e = (u,v): we compute the
edge feature scores based on either the features of items
whose senders are users similar to v or on features of items
whose recipients are users similar to v.

First we define two new quantities on nodes in V. For
a node v, we define the sent-aggregation and the received-
aggregation vectors, v.s and v.r respectively. More specifi-

cally, for a node v € V:
v.8 = Z (v,w).h v.r = Z (w,v).h
(v,w)eE (w,v)EE

These vectors are representative of the features of items that
a specific user v either sent to or received from other users.
In the following we propose three edge-level CF approaches:



(a) a sender-based, (b) a recipient-based, and (c) their com-
position.

Sender Based. Given a directed edge e = (u,v), this algo-
rithm finds what are the features of items given from similar
senders to u and accordingly computes e.m. More specifi-
cally, for a directed edge e = (u, v) we infer the edge feature
scores e.m as follows:

e.m = Z sim(u,w) - w.s
WE N,

Note that for edges where the sender is fixed, the inferred
edge feature scores e.m will be the same. We use the name
CF's to refer to this algorithm.

Recipient Based. Similarly we propose the following recip-
ient based edge recommender algorithm. Given a directed
edge e = (u,v) the edge scores are inferred as follows:

e.m = Z sim(v,w) - w.r
wWE N,

Given a directed edge e = (u,v), this algorithm finds what
are the features of items received from similar recipients to
v and accordingly computes e.m. We use the name CFRr
to refer to this algorithm. Also note, that for CFR to work
we need to have prior knowledge of the personal activities of
the recipient (e.g., the target recipient is an existing member
in our system), otherwise we cannot make a personalized
recommendation.

6.3 Mixing at the edge level

Similar to the node level recommenders we also propose
an additive and a multiplicative composition. The intuition
and the ideas behind each composite edge-level model are
similar to the ones we had for the composite algorithms for
section 4.2, but here the semantics are different.

Additive Composition. First we present the additive model
which we will refer to as CFSrR-A. The intuition behind this
algorithm is that given a directed edge ¢ = (u,v) we want to
provide with feature scores that are high if: (a) they are ei-
ther representative of items that senders similar to u like to
give, or (b) they are representative of items that recipients
similar to v like to receive. More specifically given a directed
edge e = (u,v) the edge scores are inferred as follows:

em=qa -CFS(u)+(1—a) - CFR(v)
Where: « € [0, 1]

Multiplicative Composition. We also present a multi-
plicative algorithm: CFSR-M. The intuition behind it is
to examine the edges separately and assign high ranks to
features if they are representative of items that both senders
similar to u like to send, and recipients similar to v like to
receive. More specifically, given a directed edge e = (u,v)
the edge scores are inferred as follows:

em = Z Z sim(u,w) - sim(v, z) - (w, z).h

WEN,, zEN,

We believe this approach to be the most suitable for the
problem of edge recommender. Not only does it consider
edge properties as separate entities, but given a directed
edge e = (u,v) it highly ranks edge features where both
endpoints are similar with the respective endpoints of e.

7. EXPERIMENTS

Next we describe the datasets, experimental setup and
compare our proposed models to the algorithms described
in section 5, as well as a set of group recommender models
[5] and an edge labelling model [21]. Both the group recom-
mender and the edge labelling models do not consider prior
information from the edge labels, i.e. e.h.

7.1 Dataset description

We used two datasets in our experimental evaluation: a
films dataset consisting of a collection of movies, their direc-
tors and actors, and a gifts dataset which includes personal
purchases and gift transactions between individuals. In the
movies dataset the feature space is the genres of the movies,
and in the gifts dataset the feature space are hierarchical
categories of products. In the experiments we conducted we
make recommendations of the feature space instead of di-
rect recommendations of items. Hence, in the movies dataset
given a director, actor pair we predict the genre of their next
movie, and in the gifts dataset, we predict the category of
the next gift a sender will give to a recipient.

Movies Dataset. We use the movies dataset from [21], and
create a network G = (V, E) where the nodes are actors
and directors, we use the edges provided by the dataset.
For the set of features F we use the top 11 genres of movies
appearing in the dataset (comedy, adventure, action, drama,
thriller, romance, horror, music, documentary, science-fiction,
animation). We assign one genre on each movie based on the
number of relevant keywords associated with that movie.
Any movies that do not not have relevant keywords are dis-
carded from our study. The value of the resulting genre for
a movie is We denote the resulting set of movies with M. In
order to populate the set of actions A we do the following:
for any movie m € M in the dataset we find its director d
and its top billing actor a using the API provided by [1], then
if both the director and the actor exist in the network, we
add the triple (d,a,m) in A. In the resulting graph for each
edge e, e.f is an aggregation of the genres of all the movies in
which a director and an actor participated together. Since
we do not use any external dataset of movies that the direc-
tor and the actor participated outside our current dataset,
we do not have a set of personal actions P. Instead, in order
to generate v.h, we simply aggregate the labels of their in-
cident edges. In total we have 4824 movies, 1598 directors,
and 2315 actors in the dataset. As we already said, the fea-
ture scores on the nodes (actors, directors) is an aggregation
of the feature scores on edges incident to each node. This
means that the node-level and edge-level collaborative filter-
ing approaches are equivalent when applied to this dataset.
For this reason we applied only the node-level collaborative
filtering algorithms.

Gifts Dataset. LivingSocial is an e-commerce company
which connects businesses to customers through online deals.
We collected a sample of personal and gift purchases that
happened through the LivingSocial website interface. The
sample was created by picking 100,000 random gift pur-
chases. For each sampled gift, we included all personal and
gift purchases of the gifter and the giftee that happened
prior to the gift. We create a network where the nodes are
the users and a directed edge (u,v) signifies a relationship
between users. For each gifting appearing in the dataset
we add the triple (s,r,4) in A, where s is the sender, r is



the recipient, and ¢ is the gift being given. To populate P
we use the purchase history of the senders and recipients
as taken from the dataset. To define the feature space F
we used the high-level taxonomy of LivingSocial, which con-
sists of 8 major categories of products sold within the online
shop. Each item exchanged belongs to only one major cat-
egory, hence the feature vector of the items is binary, and
Vi€ Z: |i.h|1 = 1. The feature scores of an edge e = (u, v)
correspond to an aggregation of the features of items that
u gifted to v. The feature scores on a node v are an aggre-
gation of the features of items that v purchased for himself.
In this dataset the distinction between personal and shared
actions is clear, despite both of them sharing the same fea-
ture space (products category), P corresponds to personal
purchases, and A corresponds to gifts. In this dataset we ap-
ply both the node-level and edge-level algorithms with their
composite counterparts.

7.2 Experimental setup

We perform experiments to evaluate the performance of
the proposed models as follows. First we examine the perfor-
mance improvement of the composite models over their sin-
gle user versions. Then, we examine how well the new edge-
level models perform against their node-level techniques.
Lastly, we compare our algorithms to the group recommen-
dation models in [5] as well as the message passing edge
labelling algorithm in [21].

Algorithms. We implement all the node-level algorithms
of section 5 on both the movies and the gifts dataset. We
set the neighborhood threshold parameter at 6 = 0.5 and
the composite parameter for the additive algorithm of sec-
tion 5.3 o = 0.5. We implement the edge-level algorithms
of section 6 on the gifts dataset, again the parameters are
set to § = 0.5 and o = 0.5. From [5] we also implement the
following algorithms: Least Misery (LM), RV, and RP for
an extensive comparison with the group recommenders. For
RP and RV we set the composite parameter at 0.5. These
algorithms were tested on both datasets. Lastly we also use
the TAP algorithm of [21], which is a message passing algo-
rithm used to derive edge labels for the edges of a network
based on known node labels. We evaluate its performance
on the movies dataset. TAP is the only algorithm that makes
additional use of the underlying social graph in order to infer
the feature scores on the edges.

Evaluation. For each dataset we split the set of actions A to
testing A¢s and training A;.. We infer all the models using
A:r and the goal is to correctly predict dominant feature of
items in A:s. This means that our ground truth will always
be one feature, for that reason every time we compare a list
I. of k recommendations only one of them will be relevant.
We report the average recall (or hit ratio) as well as the
average discounted cumulative count (DCG). Recall shows
if the model in question can make the correct prediction,
then DCG is a more nuanced metric that shows how high
in the list the correct prediction is. In our case where the
ground truth for each testing instance is exactly one feature:
fr the recall recall and DCG of a list of k recommendations
I. are defined as follows:

recall(I.) = (1) ngkele DCG(IL) = ﬁ
2

Where Ie; = fi, if j = 1 then DCG(I.) =1, and if fr ¢ I

CFsr-M | CFN-ADD | CFN-ALT LM RP
k=3 56.9% 52.1% 54.8% 52.2% | 43.4%
k=41 821% 77.1% 77.4% 76.9% | 63.3%
Table 1: DCG for Gifts Dataset
CFN-M | CFN-ADD | LM RP TAp
k=3| 64.8% 65.6% 50.0% | 33.6% | 43.7%
k=41 70.3% 71.2% 58.1% | 35.9% | 45.7%

Table 2: DCG for Movies Dataset

then DCG(I.) = 0. To evaluate the performance we per-
form a 10-fold cross validation test on both datasets. For
the movies dataset the node feature profiles v.h are esti-
mated after each split. At each split we run all algorithms
and measure their recall and DCG, after all runs we report
the average recall, as well as the average DCG. Each recom-
mender provides us with k = {1, 2, 3,4} different features as
recommendations for each testing instance. With reci(alg)
we denote the average recall of algorithm alg for k recom-
mendations, and similarly with DCGy(alg) we denote the
average DCG of algorithm alg for k recommendations.

7.3 Model performance

First, we report the overall performance of the algorithms
in our two datasets. In figure 1 we see the results for gifts
where both the composition and the edge-level recommen-
dation techniques have been applied. In figure la we show
how our models fare against the baselines, note that instead
of showing all the baselines, for each category of we pick
the baseline that dominates the others. In the case of gifts
we show SENDERPOP and CFN-s since they outperform the
other baseline algorithms for all values of k. The results are
not surprising, we see our proposed model CFsSRrR-M fairing
significantly better than the baselines. In figure 1b we make
a comparison with the algorithms from [21]. Again we see
CFsr-M achieving the best recall values for any k. We also
see that two group recommenders AR and LM achieve good
recall values, while RV that takes into account the variation
of group disagreement fares worse than the baselines.

In figure 2 we see the results for the movies dataset were
from our proposed models only the node-based recommenders
have been applied. In figure 2a we show how our models
fare against the baselines, again we do not report all the
baselines. In this case the MosTPop and CFN-s (direc-
tors) dominate their respective categories for any k and we
report them. In figure 2b we make a comparison with the
algorithms from [21], as well as the TAP algorithm from [21].

In tables 1 and 2 we show a comparison of the algorithms
in terms of DCG. Again we see the proposed models to offer
better DCG than the competitive algorithms. This means
that our algorithms provide with correct recommendations
in their respective lists.

In figure 3 we summarize the improvement that the mixing
models have over the simple ones. The values of each bar are
the average recall differential of each mixed model against
the best performing single node model for a single k value.
Each group of bars corresponds to a different k value of rec-
ommendations. Each colored bar corresponds to a different
composite model (additive, multiplicative and altruistic),
more specifically the CEN-ADD group of bars corresponds to
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Figure 1: Comparison of algorithms for gifts dataset. The multiplicative directed edge recommender (CFsr-M) has

overall higher recall than group recommenders. As the value k increases we see the gap closing, which is expected since the
ground truth is 1 feature.
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Figure 2: Comparison of algorithms for movies dataset. The multiplicative directed edge recommender (CFsR-M)

has overall higher recall than group recommenders (LM, RP, RV) and the edge labelling algorithm (TAP). As the value k
increases we see the gap closing, which is expected since the ground truth is 1 feature.

recy(CFN-ADD) — maz(reci (CFN-S), rec,y (CFN-R)) for each
value of k.

We see that the composite models in all configurations are
superior to the single node ones. In the gifts dataset shown
in figure 3a the difference is not as big as in the movies
dataset shown in 3b. This is because for all values of k the
recall values for the single node CF algorithms is signifi-
cantly lower than the of the same algorithms in the movies
dataset. For example in the gifts dataset for k = 1 the re-
call for CFN-s and CFN-R is 19.2% and 19.1% respectively,
while the same algorithms have recall 37.6% and 34.6% re-
spectively. The low performance of the single node algo-
rithms leads to less improvement from their composition.
Additionally in the gifts dataset we see that the multiplica-
tive provides better improvement than the additive, while in
the movies dataset the provide similar improvement. This
is because the gap in terms of recall between CFN-s and
CFN-R is smaller in the gifts dataset. A larger gap favors
the additive approach, since for testing instances where the
dominated algorithm fails the other algorithm can still pro-
vide with a good recommendation. Next, we measure the
improvement that the edge based algorithms offer over their

node based counterparts. We do so by comparing directly
the collaborative filtering and composite algorithms of sec-
tion 6 with the ones from section 5. Again we measure the
absolute difference of average recall of the edge-level algo-
rithms against equivalent node-level ones. More specifically
we compare CFN-s with CFs, CFN-R with CFR, CFN-ADD
with CFsRr-A, and CFN-M with CFsR-M. In figure 4 we sum-
marize our results, each group of columns corresponds to a
different comparison and on the y-axis we plot their differ-
ence in achieved recall for various values of k. For example
the first column shows rec(CFs) — rec(CFN-s) and so on.

Here the results are more clear. For any k value it’s always
better to choose an edge-based algorithm for recommending
items on the edges. Even in the case of CFN-ADD which
is used for group recommendation problems performs worse
than CFsr-A. The most consistent improvement is shown
by CFSR-M, which is no surprise. CFSR-M makes use of
both nodes’ information to find the most suitable edges and
recommend based on them.

8. DISCUSSION AND FUTURE
DIRECTIONS
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Figure 3: Absolute improvement in recall by using composite models instead of the single node ones. The y-axis corresponds
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and CFN-M corresponds to the improvement of the multiplicative over the single node ones. Each smaller column corresponds
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Figure 4: Absolute improvement in recall by using edge-
based models instead of node-based. The y-axis corresponds
to average recall differential. The first group of columns
plots recall(CFs)- recall(CFN-s), each column in a group
represents a different k value. This is on gifts dataset only.

While the idea of inferring a recipient’s taste using his-
torical data on the recipient’s actions is intuitive, it comes
with some privacy concerns. Directed edge recommenda-
tions may reveal sensitive information about the recipient
that the sender would not have known otherwise, e.g., if the
algorithm is using the private purchasing behavior of the re-
cipient as its input. Moreover, using recipient’s preference
model for recommending relevant items to others can be-
come a breach of trust between the recipient and the service
where those actions are completed and recorded. There are
at least two possible research directions to alleviate these
concerns. One is developing privacy-preserving algorithms
for directed edge recommendation and understanding the
utility of such privacy-preserving algorithms against algo-
rithms which do not use private recipient information. The
second one is developing intuitive interfaces to facilitate in-
formation sharing for the purpose of directed edge recom-
mendations, such as ones that allow you to declare gift pref-
erences (i.e., what you like to receive as a gift) even if there
is no specific occasion for creating a gift registry.

Another possible extension of this work is to directed hy-
peredge recommendations where either or both sender and
recipient are represented by sets of users. One example is

recommendations for wedding gifts where one or more in-
dividuals e buy a present for a pair of other individuals.
Another example is lecture personalization where given a
professor, a set of students and potential material to cover,
the recommender would find the most relevant material.
This type of recommender systems would have components
of both group recommender systems and directed edge rec-
ommenders.

9. CONCLUSIONS

In this work, we define the problem of directed edge recom-
mendations. We are motivated by numerous real life exam-
ples where people share different items with different peo-
ple e.g., a teenager will recommend different movies to his
friends than to his parents, or an adult will buy different
gifts for her spouse than for her co-workers. People create
connections with each other and these connections dictate
their sharing habits. We propose new models where the
recommendations are made on the level of people’s connec-
tions, inferring the sharing preferences of people with respect
to each person they are connected to. We also discuss the
current state of the art and how it applies to our problem.
We compare our new algorithms to collaborative filtering
and group recommender techniques, as well as edge labeling
methods which can also provide solutions for directed edge
recommendation problem. We demonstrate how we can ap-
ply the existing techniques to our problem and propose two
composition methods for the standard collaborative filtering
technique. However, those solutions are not tailored to the
specific problem we are solving, and our main contribution is
in proposing new directed edge-level recommendation mod-
els with clear semantics. Our models consider the taste of
both the sender and recipient, as well as the sharing pref-
erences of the sender. Lastly, we experimentally evaluate
our proposed algorithms on two real datasets against group
recommending and edge labeling algorithms. Our empiri-
cal evaluation shows that the proposed directed edge-level
models achieve higher recall compared to the collaborative
filtering baselines, the group recommenders and edge label-
ing. We also show great results for the composition tech-
nique we propose over the standard collaborative filtering



techniques which can be applied in other problems as well.
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