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ABSTRACT
This tutorial presents state-of-the-art research on causal inference
from network data in the presence of interference. We start by
motivating research in this area with real-world applications, such
as measuring influence in social networks and market experimenta-
tion.We discuss the challenges of applying existing causal inference
techniques designed for independent and identically distributed
(i.i.d.) data to relational data, some of the solutions that currently
exist and the gaps and opportunities for future research. We present
existing network experiment designs for measuring different pos-
sible effects of interest. Then we focus on causal inference from
observational data, its representation, identification, and estimation.
We conclude with research on causal discovery in networks.

CCS CONCEPTS
• Computing methodologies → Causal reasoning and diag-
nostics; •Mathematics of computing → Causal networks.
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TUTORIAL OVERVIEW
Causal inference is central to a vast number of scientific and indus-
trial applications. The goal of causal inference is to estimate the
effect of an unseen intervention on one or more variables of interest
(commonly referred to as causes or treatments) on another set of
variables of interest, commonly referred to as outcomes [18, 27, 33].
The fundamental problem of causal inference is that that while we
can observe the factual outcome for a given unit under one treat-
ment assignment, the counterfactual, the outcome under any other
treatment assignment, is unobserved by definition [17, 36]. For
example, we can measure whether a person got sick after getting
vaccinated but cannot measure whether they would have gotten
sick without receiving the vaccine. Multiple disciplines have devel-
oped rich literatures in causal inference, including statistics [18],
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economics [2], epidemiology [16], philosophy [43], computer sci-
ence [33, 34], and the social sciences [27]. This tutorial largely
focuses on methods of interest to the computer science community.

To capture the noise, heterogeneity, and complex relationships
in real-world data, a common practice is to model data sources as
relational systems and to reason about them probabilistically. Rela-
tions in data can be represented through heterogeneous networks
in which nodes represent interdependent entities, such as people,
companies, websites, and diseases, while edges denote different
relationships between these entities, such as friendship, hyperlink,
contribution, and spread of disease. Some example applications of
causal inference in networks include measuring influence in social
networks [5, 8, 28], information diffusion [46], and marketplace
experimentation [19].

Interference (also known as spillover or network effects), where
the outcome of a treated node depends not only on its treatment
but also on the treatment and outcome of neighboring nodes, is
commonly observed in relational systems. For example, a social
media campaign about the benefits of vaccines may lead to a user
deciding not to vaccinate themselves if that user is also seeing
anti-vaccination posts by their friends on social media. Interference
breaks the Stable Unit Treatment Value Assumption (SUTVA) of
causal inference, which requires that the outcome of a given unit
depends only on the treatment to which they were assigned, and
can lead to biased causal effect estimation. There are three main
types of interference: direct interference, interference by contagion,
and allocation interference [32]. Direct interference refers to the
treatment of one or more nodes in the neighborhood of an ego
node affecting the outcome of that ego node (e.g., being shown
an anti-vaccination post and in turn sharing it with friends and
affecting their decision whether to vaccinate). Contagion refers to
the outcome of one or more nodes affecting the outcome of another
node (e.g., deciding not to vaccinate and affecting a friend’s decision
whether to vaccinate). Allocational interference is the most com-
plex of the three, and it refers to group composition influences on
individual outcomes. The presence of interference also introduces
a new set of causal estimands which range from the individual
treatment effect to peer effects and total treatment effect.

Randomized controlled experiments, also known as A/B tests,
are considered the gold standard for inferring causality. However,
accounting for interference is challenging even in the context of ran-
domized controlled trials. A number of network experiment designs
have been developed to address interference in the general network
setting [3, 7, 10–14, 29, 30, 37, 47] and the case of bipartite networks
which commonly occurs in marketplace experimentation [9, 35].

It is not always possible to design and run network experiments
due to ethical concerns, cost, or mere impossibility (e.g., due to
immutable characteristics). To avoid these limitations, researchers
resort to quasi-experimental designs (QED) which aim to estimate
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causal effects from observational data which can suffer from model
dependence [38]. Central to estimation of causal effects is the causal
model representation. There are three main relational representa-
tions included in this tutorial: blocks, abstract ground graphs, and
segregated graphs. A block is a set of variables which define the
causal graph and are repeatable (e.g., a pair of connected nodes).
Causal effects are estimated in expectation across blocks. Abstract
ground graphs [23, 24] provide a lifted representation of directed
acyclic multi-relational systems such that conditional independence
semantics on the lifted representation faithfully represent condi-
tional independence facts on the individual level, which enables scal-
able causal reasoning for multi-relational data. Finally, researchers
have also studied modeling relational data through chain graphs
and segregated graphs [6, 31, 40–42], where explicitly noncausal
undirected edges represent feedback between nodes. Dependent on
the causal model, causal effects may be fully identifiable, partially
identifiable, or not identifiable at all [4, 32, 39–41, 45].

When the causal model is unknown a priori, it can be learned
from data under certain assumptions. The goal of causal discovery
is to learn a causal graph in which the causal relations are asymp-
totically correct and describe the causal process that generated the
data [44]. Multiple algorithms have been developed to learn causal
model structure from data but these algorithms typically assume
i.i.d. data [15, 44]. When the data breaks the SUTVA assumption
and instances can influence each other’s treatments or outcomes,
these algorithms no longer apply. Causal structure learning algo-
rithms for relational data, also known as relational causal discovery
(RCD) algorithms, aim to learn the abstract ground graph from the
relational skeleton. Existing RCD algorithms [20, 21, 24–26] focus
on adapting the constraint-based PC algorithm [43] for i.i.d. data
to relational domains. These algorithms assume that all relevant
variables have been measured and either rely on a relational con-
ditional independence oracle or on tests for i.i.d. data. Relational
dependence tests have been developed recently to make network
causal discovery more practical [1, 22].
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