
An Ontology-based Framework for XML Semantic Integration

Isabel F. Cruz

ifc@cs.uic.edu

University of Illinois

at Chicago

Huiyong Xiao

hxiao@cs.uic.edu

University of Illinois

at Chicago

Feihong Hsu

fhsu@cs.uic.edu

University of Illinois

at Chicago

Abstract

XML is becoming the standard for data interchange on the web. However, XML and its schema

languages do not express semantics but rather structure, such as nesting information. Therefore, seman-

tically equivalent documents often present different document structures. In this paper, we provide an

ontology-based framework that aims to make two XML documents interoperate at the semantic level

while retaining their nesting structure. In our global-as-view approach, we generate an RDF ontology

for each of the participating XML documents, which preserves the nesting structure of the document.

An RDF global ontology is the result of merging the individual ontologies. The global ontology unifies

the query access and establishes semantic connections among the underlying individual databases. We

consider two types of queries: those posed on the global ontology and those that are posed to any of the

XML documents, in a P2P fashion. The former type of query is processed using query translation from

an RDF query to an XML query. The latter type of query entails bidirectional query processing: the

translation from an XML query to an RDF query followed by the translation from an RDF query to an

XML query. To ensure the correctness of the answer to the query in the latter case, we introduce the

concept of reversibility of the query translation.

1 Introduction

1.1 Problem description

One of the primary obstacles in Semantic Web applications is the heterogeneity of the distributed data
sources. These heterogeneities can be classified as syntactic, schematic, and semantic heterogeneities [3].
Our previous work gives an example of solving schematic heterogeneities, that is, those that arise from
using different schemas to represent the same data [10]. In this paper, we focus on the problem of semantic
interoperability between different XML sources. In doing so, we propose an approach for integration of
heterogeneous XML sources and query processing across these XML sources.

XML documents that conform to different schemas may represent data with similar semantics. Therefore,
a user must construct his queries in accordance to an XML document’s structure to retrieve fragments of
information that have the same meaning. This fact makes the formulation of queries on heterogeneous XML
sources a nontrivial burden to the user. Furthermore, this shortcoming of XML impedes the interoperability
of XML sources since the reformulation of XML queries has to eliminate the structural differences of the
queries while presenting the same semantics. Let us illustrate the problem using a running example as shown
in Figure 1.

1

books

book *

author

@booktitle
@name

writers

article *

@title
@fullname

writer *

books

book

author

"b1"

book

author

"b2"

"a1" "a3"

writers

writer

article

"w1" "w2"

"t1""a2"

XML schema S1 XML document D1

"books.xml"

writer writer

articlearticle

"t2"

"w3"

"t2"

[1..10]

XML schema S2 XML document D2

"writers.xml"

author

Figure 1: An example of structural heterogeneity between XML documents.

Example 1.1 Figure 1 gives two XML schemas (S1 and S2) with their documents (D1 and D2), which
are represented as trees. It is obvious that S1 and S2 both represent a many-to-many relationship be-
tween two concepts: book and author (equivalently denoted by article and writer in S2). How-
ever, structurally speaking, they are different: S1 (book-centric schema) has the author element nested
under the book element, whereas S2 (author-centric schema) has the article element nested under
the writer element. Suppose our query target is “Give all the authors of the written work b2.” The
XML path expressions that are used to define the search patterns in the two schema trees can be re-
spectively written as /books/book/author/@name[/books/book/@booktitle="b2"] and /writ-

ers/writer/@fullname[/writers/writer/article/@title="b2"], where the contents in the square
brackets specify the constraints for the search patterns. We notice that although the above two search patterns
refer to conceptually equivalent concepts, they follow two distinct XML paths.

1.2 Semantic integration of XML documents

The diversity of the XML queries (referred to in this paper as structural queries) results from the diversity
of possible XML schemas (also called structural schemas) for a single conceptual model. In comparison, the
schema languages that operate on the conceptual level (called conceptual schemas) are structurally flat so
that the user can formulate a determined query (called conceptual query) without considering the structure
of the source. RDF Schema (RDFS) [16], DAML+OIL, and OWL are examples of languages used to create
conceptual schemas. There are currently many attempts to use conceptual schemas [1, 2, 10] or conceptual
queries [8, 9] to overcome the problem of structural heterogeneities among XML sources.

In this paper, we propose an approach to integrate XML sources and handle queries in the integrated system
by using a bidirectional query translation algorithm. We choose to use the global-as-view (GaV) approach
[7] for the integration of XML sources (modeled by XML Schema [11] in our approach). In particular, we
first transform the heterogeneous XML sources into local RDF ontologies (defined using RDFS space [6]),
which are then merged into the RDF global ontology. This transformation process encodes the mapping
information between each concept in the local RDF ontology and the path to the corresponding element in
the XML source. The ontology merging process is semi-automatically performed by utilizing the PROMPT
algorithm proposed in [17]. Apart from the global ontology, the merging process also produces a mapping
table, which contains mapping information between concepts in the global ontology and concepts in the
local RDF ontologies. In our approach, we can translate a query posed against the global ontology into
sub-queries over the sources. We can also translate a query posed against an XML source to an equivalent
query against any other XML source. Given that we choose a GaV approach, the global ontology is a view
over the local ontologies, therefore the process of mapping a query over the global ontology to queries over

2

the local ontologies is straightforward.

1.3 Contributions

In brief, we make the following contributions in this paper.

• We propose an approach for using an ontology-based mediation architecture to integrate heterogeneous
XML sources. The mediation integrates both the XML nesting structure and the domain structure
expressed by RDFS to enable semantic interoperation between the XML sources by hiding their struc-
tural heterogeneities. This integration process is lossless with respect to the nesting structure of the
XML document.

• We extend the power of RDFS by defining additional metadata. These metadata encode the nested
structure of the XML Schema in the RDF schema.

• Finally, we describe an algorithm for translating the query back and forth between XQuery and RDQL.
The translation is based on the mapping table and the principle of preserving the nesting structure on
the XML sources.

The paper is organized as follows. Section 2 describes related work. Section 3 describes the architecture of
our approach. The two key points in our approach, i.e., data integration process and query processing, are
discussed respectively in Sections 4 and 5. We draw conclusions and discuss future work in Section 6.

2 Related Work

There are a number of approaches addressing the problem of data integration or interoperability among
XML sources. The approaches proposed can be classified into the following three categories.

2.1 Semantic integration

High-level Mediator Amann et al. propose an ontology-based approach to the integration of heteroge-
neous XML Web resources in the C-Web project [1, 2]. The proposed approach is very similar to our
approach except for the following differences. The first difference is that they use the local-as-view
(LaV) approach [7] with a hypothetical global ontology that may be incomplete. The second difference
is that they do not retain the XML documents’ structures in their conceptual mediator so they cannot
deal with the reverse query translation (from the XML sources to the mediator). Our previous work
[10] involved a layered approach for the interoperability of heterogeneous web sources, but the nesting
structure associated with XML was lost in the mapping from XML data to RDF data.

Direct Translation Klein proposes a procedure to transform XML data directly into RDF data by an-
notating the XML documents via external RDFS specifications [13]. The procedure makes the data
in XML documents available for the Semantic Web. However, since the proposed approach does not
consider the document structure of XML sources, it can not propagate queries from one XML source
to another XML source.

Encoding Semantics The Yin/Yang Web [18] proposed by Patel-Schneider and Siméon address the prob-
lem of incorporating the XML and RDF paradigms. They develop an integrated model for XML and

3

RDF by integrating the semantics and inferencing rules of RDF into XML, so that XML querying
can benefit from their RDF reasoner. But the Yin/Yang Web does not solve the essential problem of
query answering across heterogeneous sources, i.e., with different syntax or data models. It also could
not process higher-level queries such as RDQL. Lakshmanan and Sadri also propose an infrastructure
for interoperating over XML data sources by semantically marking up the information contents of
data sources using application-specific common vocabularies [15]. However, the proposed approach
relies on the availability of an application-specific standard ontology that serves as the global schema.
This global schema contains much information necessary for interoperability, such as key and cardi-
nality information for predicates. This approach has the same problem as the Yin/Yang Web, that is,
higher-level queries can not be processed downwards to XML queries.

2.2 Query languages

CXQuery [9] is a new XML query language proposed by Chen and Revesz, which borrows features from both
SQL and other XML query languages. It overcomes the limitations of the XQuery language by allowing the
user to define views, explicitly specify the schema of the query answers, and query through multiple XML
documents. However, CXQuery does not solve the issue of structural heterogeneities among XML sources.
The user has to be familiar with the document structure of each XML source to formulate queries. Heuser
et al. also present a new language (CXPath) based on XPath for querying XML sources at the conceptual
level [8]. The user can use CXPath to write queries over a conceptual schema that abstracts the semantic
content of several XML sources. However, they do not consider the situation of query translation from the
XML sources to the global conceptual schema.

2.3 Query rewriting

Query rewriting or query translation is the key issue for both mediator-based integration systems and peer-
to-peer systems. As an example of the first case, the Clio approach [19] mainly addresses schema mapping
and data transformation between nested schemas and/or relational databases. It focuses on how to take
advantage of schema semantics to generate the consistent translations from source to target by considering
the constraints and structure of the target schema. The approach uses queries to express the mapping so as
to transform the data into the target schema. The Piazza system [12] is a peer-to-peer system that aims to
solve the problem of data interoperation between XML and RDF. The system achieves its interoperability
in a low-level (syntactic) way, i.e., through the interoperability of XML and the XML serialization of RDF.

3 Architecture

The architecture of our proposed framework is shown in Figure 2. In this section, we discuss the architecture
from two aspects: the integration of XML sources into the global ontology and the query processing within
the integration system.

3.1 Ontology integration and mapping table

The ontology integration process contains two steps: schema transformation and ontology merging. In
the first step, we use RDFS to model each XML source as a local RDF ontology to achieve a uniform
representation basis for the ontology merging step. The key operation is the preservation of the nesting

4

mapping table

local XML
source 1

local XML
source 2

local XML
source n

RDF-based
global ontology

local RDF
ontology n

local RDF
ontology 1

local RDF
ontology 2

...

...

Query translator

Query in data-integration direction

Query in peer-to-peer direction

Ontology Integration

Figure 2: Architecture of the integration framework.

structure of the XML documents. In the second step, we merge all the local RDF schemas to generate the
global ontology. In this process, additional domain-related knowledge (e.g., inheritance) may be introduced.
During the merging process, a mapping table is produced to contain the mapping information between the
global RDF ontology and local RDF ontologies. We discuss this process in more detail in Section 4.

It is worth mentioning that the global ontology in our system has two roles: (1) It provides the user accessing
the data through the global ontology with a uniform query interface to facilitate a formulation of a single
query on all the XML sources; (2) It serves as the mediation mechanism for accessing the distributed data
through any of the XML sources.

3.2 Query processing and reversibility

As shown in Figure 2, the translation of queries in our system may occur in two directions:

Data integration The system translates an RDF query (directed to the global ontology) into multiple
sub-queries (one for each XML source).

Peer-to-peer integration Query translation is performed in a similar way to query processing in peer-to-
peer systems [20]. That is, the query posed by a user against any XML source is propagated to all the
mediated distributed sources.

We use XQuery [4] to write queries over the XML sources and we use RDQL (RDF Data Query Language,
based on SquishQL [14]), to write queries over the RDF global ontology.

The query translation between structural queries in XQuery and conceptual queries in RDQL involves the
problem of reversibility. In this subsection, we introduce the concept of reversibility that forms the basis for
query translation across syntactically, schematically, and semantically heterogeneous data sources.

We start by looking at the problem for a single source. Intuitively, the query translation mechanism from a
source query Q to the target query Q′ is reversible when we can translate Q′ to a query Q′′, that produces
an answer that is semantically equivalent to that produced by Q on the data source. The left side of Figure
3 illustrates this case.

5

...XML source

RDF ontology

Q'

Q Q''

RDF-based
global ontology

local XML
source 1

local XML
source 2

local XML
source n

Qg

 Q3Q2Q1

Figure 3: Query reversibility and query translation.

For distributed sources, the user poses a query Q1 on the local XML source 1, which is translated first to Qg

on the global ontology. Then Qg is translated into multiple sub-queries, Q2, Q3, . . ., Qn on the distributed
XML sources.

In this case, the query translation is reversible when we can translate Qg into a query Qi, that produces
an answer on the local XML source i that is semantically equivalent to the one that would be produced by
Q1 on the local XML source 1. Notice that it is our assumption that the n data sources are semantically
equivalent, however structurally different. It makes no difference to the notion of reversibility whether the
queries are against data with different data models (e.g., RDF and XML), or whether the queries are against
the same data source or different data sources as long as they are all semantically equivalent. In Section 5,
we use a concrete example (Example 5.3) that illustrates this concept.

4 Integrating Structure and Semantics: A Case Study

To support the reversible query translation process between the structural query (XQuery) and the semantic
query (RDQL), we choose to extend the vocabulary of RDF to make it capable of representing not only the
semantics but also the structure of the data. In particular, we define a new RDF property rdfx:contain (rdfx
stands for the namespace where the contain is defined) to enable RDF representation of the XML nesting
structure. The data integration process consists of two sub-processes, schema transformation and ontology
merging, which are discussed respectively in Section 4.1 and Section 4.2 through a case study. In the case
study we integrate the two XML schemas S1 and S2 (see Figure 1). Figure 4 shows the RDF ontologies (S′

1

and S′
2) that result respectively from the transformation of S1 and S2.

Book Author
rdfx:contain

Books
rdfx:contain

Literal

booktitle

Literal

name

writerarticle
rdfx:contain

writers
rdfx:contain

Literal

title

Literal

fullname

RDF ontology S1' RDF ontology S2'

Figure 4: RDF ontologies transformed from XML schemas in the case study.

6

4.1 Local RDF ontology

In the first sub-process, we transform the local XML schema into a local RDF ontology while preserving the
XML document structure. By document structure, we mean the structural relationship of objects specified in
data-centric documents [5] by a schema language (such as DTD, XML Schema, or RelaxNG). In this paper,
we focus on the nesting structure (i.e., hierarchy). Other structural properties include order. A consequence
of not including order in our framework is that we cannot consider a query Q1 that involves the order of
the subelements of an element. However, this kind of query is not of interest in a framework where we are
concerned with the semantics of the data.

In terms of XML Schema, elements and attributes are the two basic building blocks of XML documents.
Elements can be defined as simple types which cannot have element content and cannot carry attributes
or complex types which allow elements in their content and/or contain attributes. On the other hand, all
attribute declarations must reference simple types since attributes cannot contain other elements or other
attributes. From the perspective of XML Schema, these nesting relationships are defined in terms of datatypes
(simple or complex type). A well-formed XML document contains the hierarchical structure of elements and
attributes, which contains the following two aspects:

Element and attribute relationship Only complex-type elements can carry attributes and attributes
can only be of simple types.

Element and sub-element relationship Likewise, only complex-type elements can allow elements as
their children. But child elements can be either simple types or complex types. In this case, there exist
two other document structures: order and cardinality, which we will further discuss in the following
subsections.

Taking into account XML elements, attributes and their relationships, the transformation from XML to
RDF can further include element-level transformation and structure-level transformation.

Element-level transformation The element-level transformation defines the basic classes and properties
of the local RDF ontology according to the transformation correspondences shown in Table 1, with the
structural relationships between the elements not being considered for the time being. No new RDF
metadata needs to be defined here because rdfs:Class and rdfs:Property are enough for the specifications
of classes and properties. For instance, in the case study, for S1 we define the classes: Books, Book,
and Author while taking booktitle and name as properties of Book and Author, respectively (See
Figure 4).

Table 1: Correspondences of element-level transformation
XML Schema concepts RDF Schema concepts
Attribute Property
Simple-type element Property
Complex-type element Class

Structure-level transformation The structure-level transformation encodes the hierarchical structures
of the XML schema into the local RDF ontology. The encoding involves two relationships: element-
attribute relationship and element-subelement relationship. Following the element-level transformation,
it is natural to encode the element-attribute relationship as a class-to-literal relationship, and the

7

element-subelement relationship as a class-to-class relationship in RDFS. We define a new RDFS
predicates rdfx:contain to represent the class-to-class relationships. Specifically, we add a new property
with its domain being one class (converted from the parent element), its range being the other class
(converted from the subelement), and its name being rdfx:contain. As a result, we can see in Figure
4 that rdfx:contain enables the representation of the nesting relationship. For instance, by following
the edges of rdfx:contain from Books to Author in S′

1, we in fact get the corresponding XPath
/books/book/author in S1. Table 2 lists the mapping information between the XML source S1

and the local RDF ontoloy S′
1.

Table 2: Mappings between S1 and S′
1

XPath expressions in S1 RDF expressions in S′
1

/books Books
/books/book Book
/books/book/@booktitle Book.booktitle
/books/book/author Author
/books/book/author/@name Author.name

4.2 Global RDF ontology

The process of ontology merging takes multiple local ontologies (encoded in RDFS) as the input and returns
a merged ontology as the output [21]. Ontology merging and ontology alignment are widely pursued research
topics. In this paper we do not intend to introduce a new technique for ontology merging. Instead, we utilize
existing techniques to generate the integrated ontology from the local ontologies. In particular, we utilize
and develop the PROMPT approach [17] so that basic operations of the ontology merging process include:

• merging of classes: Merging of multiple conceptually equivalent classes into one class.

• merging properties: Merging of multiple conceptually equivalent properties of a class into one property.

• merging relationships between classes: Merging of conceptually equivalent relationships from one class
c1 to another class c2 into one relationship (i.e., an RDF property taking c1 as its domain and c2 as
its range).

• copying a class and/or its properties: Copying a class with its properties directly if the same or
equivalent class/property does not exist in the target ontology.

• generalizing related classes into a superclass: Taking multiple conceptually related classes as subclasses
of a more general class. The superclass can be obtained by searching a existing knowledge domain
(e.g., the DAML Ontology Library) or reasoning over a thesaurus.

Figure 5 gives the ontology that results from merging two local RDF ontologies (see Figure 4) in the case
study. The grayed classes and properties are merged classes and properties from the original ontologies.
For instance, the class Book is merged from Book in S′

1 and Article in S′
2, whereas the property title

is merged from booktitle in S′
1 and title in S′

2. The classes Book and Author are also respectively
extended with the superclasses Publication and Person.

8

Book AuthorBooks Authors
rdfx:contain

Literal

Publication Person
rdfs:subClassof

title name

Literal

rdfx:contain

rdfx:contain

rdfx:contain

Figure 5: The global ontology merged from local RDF ontologies.

Apart from the global ontology, the ontology merging sub-process also yields another output: the map-
ping table that contains the mapping information between the local RDF ontologies and the global RDF
ontology. In general, if a class, property, or relationship between classes p in the global ontology is the
result of merging pi and pj from different local ontologies, then a mapping in the form of (p, pi, pj) is
generated. If a class or property p in the global ontology is only copied from pi in a local ontology, then
a mapping (p, pi) is produced. For instance, for the class Book.title (in the global ontology) that is
merged from Book.booktitle in S′

1 and Article.title in S′
2, we generate an entry in the mapping

table:(Book.title, Book.booktitle, Article.title). Table 3 lists all the mappings in our case
study.

Table 3: Mapping table between the global ontology and local RDF ontologies
RDF expressions in RDF expressions in S′

1 RDF expressions in S′
2

the global ontology
Books Books -
Book Book Article
Book.title Book.booktitle Article.title
Authors - Writers
Author Author Writer
Author.name Author.name Writer.fullname

5 Query Processing

The system can process queries in two directions: the data-integration direction, the query on the global
ontology is rewritten into subqueries over multiple sources, and the peer-to-peer direction, the query on some
XML source is propagated to the XML sources connected through the global ontology. In this section, we
describe the query rewriting algorithm by using concrete examples.

5.1 Assumptions

To represent queries, RDQL uses an SQL-like syntax, in which the SELECT clause identifies the variables to
be returned to the application. The FROM clause specifies the RDF model using an URI. The WHERE clause
specifies the graph pattern as a list of triple patterns. The AND clause specifies the Boolean expressions.
Finally, the USING clause provides a way to shorten the length of the URIs. Whereas XQuery is a functional
programming language which has an FLWR (i.e., for, let, where, return) syntax. For simplification, we make
the following assumptions for the query rewriting algorithm.

9

• We assume that the XML sources to be integrated are related to the same knowledge domain, and
data instances are well populated in these sources so that we do not necessarily consider handling null
values from the XML sources.

• We also assume that the XML query posed by the user is formulated only in the form of FLWR
expressions [4]. However, we are not going to discuss translation of nesting XML queries in the
rewriting algorithm, although nesting FLWR expressions are allowed in XQuery.

• We finally assume that all the concepts in every local ontologies are mapped to the concepts in the
global ontology during the ontology integration process. That is, the mappings are total, one-to-one
mappings from the local RDF ontologies to the global ontology. It is possible that some concept, say
ci, in the global ontology gets mapped to a local ontology but not to another local ontology. This leads
to the problem of null values when a query involves ci.

5.2 Data integration

The global ontology connects all the individual local RDF ontologies that represent local XML sources and
provides a uniform query interface for the user. Thus, the user can retrieve data from all the sources in
the system by simply submitting a single RDF query on the global ontology. In this subsection, we discuss
translation from the RDQL query on the global ontology to the XQuery queries over the XML sources. In
the following discussion, we use M to denote the mapping table (between the global ontology and the local
RDF ontologies), Qg for the input RDQL query (on the global ontology), Qr for the intermediate query (on
the local RDF ontology), and Qx for the output XQuery query (on the XML source). The process of query
rewriting from RDQL to XQuery proceeds as follows:

Step 1 Identify the RDF path expression corresponding to each variable that is used in Qg, put these RDF
path expressions into a set P , and group them into different sets based on their different roles: (1) Put
the RDF expression that appears in the SELECT clause into a set Ps. (2) Put the RDF expression,
which appears in the WHERE clause and is constrained with a Literal constant or a URI, into a set
Pw. (3) Also put the RDF expression that occurs in the AND clause into Pw.

Step 2 For each participating local RDF ontology Ri, based on the correspondences in the mapping table
M , replace the RDF paths in P with the RDF paths mapped in Ri, while updating Ps and Pw in the
same way. Rewrite Qg into Qr by using the following method: (1) For the WHERE clause, traverse Ri

to find an acyclic sub-graph that covers all the path expressions in P , and put all the edges (properties)
into a set E. For each ei ∈ E (with the subject si and the object oi) , add a triple in the form of
(?si, ei, ?oi) into the WHERE clause. (2) For the SELECT and AND clauses, simply replace the RDF
paths in them with their corresponding paths in Ri, then bind each path with a variable.

Step 3 Find the XPath expression corresponding to every element pi in both Ps and Pw, by utilizing the
mapping information between the local XML source and its local RDF ontology Ri. For the result, we
use P ′

s to denote the set of XPaths corresponding to Ps, and P ′
w for Pw.

Step 4 Construct the target query Qx for each XML source according to the following rules:

• The let Clause: Output let $<root label> := doc("<XML source name>").

• The for Clause: For each XPath pi in both P ′
w and P ′

s, output a for clause in the form of for

$<node label> in < pi >.

10

• The where Clause: For each p′i in P ′
w, construct a query condition according to the constraints

in Qr, and take the conjunction of these conditions as the where clause.

• The return Clause: Take each p′i in the set P ′
s as an element in the return clause.

Step 5 Abbreviate each absolute XPath pi referred in Qx into a relative XPath by replacing some part of
pi with v, if this part was bound to v.

Example 5.1 Suppose we submit against the global ontology in our case study a query Qg: “List all the
book titles.”, whose RDQL-syntax code is shown below. We assume that the global ontology is defined in
the namespace: http://examples.org/globalontology# and the local ontology Ri is defined in the namespace:
http://examples.org/localontology-i# (we will be making the same assumptions in all the examples of this
section). In this example, we illustrate the algorithm by translating Qg into a query on books.xml (see
Figure 1).

SELECT ?title

WHERE (?book, <go:title>, ?title)

USING go for <http://examples.org/globalontology#>

After Step 1, we get P = {Book, Book.title}, Ps = {Book.title}, and Pw is empty. By look-
ing into the mapping information in Table 3, we update P = {Book, Book.booktitle} and Ps =
{Book.booktitle}, and rewrite Qg into Qr as shown below (after Step 2).

SELECT ?booktitle

WHERE (?book, <lo:booktitle>, ?booktitle)

USING lo for <http://examples.org/localontology-1#>

In Step 3, we find that /books/book/@booktitle in books.xml is the corresponding XPath of Book.booktitle
in the local ontology R1. Thus, P ′

s = {/books/book/@booktitle} and P ′
w is still empty. By following

the XQuery construction instructions in Step 4 and XPath abbreviation method in Step 5, we output the
target query Qx as:

let $books := doc("books.xml")

for $booktitle in $books/book/@booktitle

return $booktitle

Example 5.2 Suppose a query Qg “List all the books written by a2.” is posed by the user over the global
ontology. We are supposed to translate it into a query Qx against writers.xml.

SELECT ?title

WHERE (?book, <go:title>, ?title),

(?book, <rdfx:contain>, ?author),

(?author, <go:name>, ?name)

AND (?name eq "a2")

USING go for <http://examples.org/globalontology#>

After Step 1, we get P = {Book, Book.title, Author, Author.name}, Ps = {Book.title}, and
Pw = {Author.name}. In Step 2, by looking into the mapping table M , we update P = {Article, Arti-

cle.title, Writer, Writer.fullname}, Ps = {Article.title}, Pw = {Writer.fullname},
and rewrite Qg into Qr as shown below.

11

SELECT ?title

WHERE (?article, <lo:title>, ?title),

(?article, <rdfx:contain>, ?writer),

(?writer, <lo:fullname>, ?fullname)

AND (?fullname eq "a2")

USING lo for <http://examples.org/localontology-2#>

In Step 3, we get P ′
s = {/writers/writer/@fullname} and P ′

w = {/writers/writer/article
/@title}. By following the XQuery construction instructions in Step 4 and XPath abbreviation method
in Step 5, the resultant target query Qx as follows:

let $writers := doc("writers.xml")

for $writer in $writers/writer

for $title in $writer/article/@title

where $writer/@fullname = "a2"

return $title

5.3 Peer-to-peer integration

The query rewriting in the peer-to-peer direction contains three phases: (1) The input XQuery query Qx

posed by the user against an XML source is translated into an RDQL query Qr over its corresponding local
RDF ontology. (2) Qr is translated into an equivalent RDQL query Q′

r over each peer local RDF ontology
by using the mapping information in the mapping table (See Table 2). (3) Q′

r is rewritten into the query Q′
x

over the XML source. It is obvious that the last two phases proceed in the same way as the query rewriting
in the data-integration direction. The first phase consists of the following steps:

Step 1’ Extend the relative XPaths referred to in the Where clause and in the Return clause of the original
XML query respectively into a set of absolute XPaths, denoted by P1 for the Where clause and by P2

for the Return clause.

Step 2’ Based on the mapping information between the local XML source and its RDF ontology Ri, we
can get the RDF path expressions corresponding to the XPaths in both P1 and P2, using P ′

1 and P ′
2

respectively to denote the resulting sets of RDF paths for P1 and P2.

Step 3’ Construct the query Qr against Ri according to the following rules.

• The SELECT Clause: Bind each RDF path pi in P ′
2 to a variable vi, whose name is the label

of pi in the RDF ontology. Add each vi into the SELECT clause as an item and output: SELECT
?<v1> , ..., ?<vi> , ..., ?<vn>.

• The WHERE Clause: Traverse Ri to find an acyclic sub-graph that covers all the RDF expres-
sions in both P ′

1 and P ′
2, and put all the edges (properties) into the set E. For each ei (with si as

its subject and oi as its object) in E, add a triple in the form of (?si, ei, ?oi) into the WHERE
clause.

• The AND Clause: For each pi in P ′
1, construct a query condition according to the original

constraints in Qx. Take the conjunction of these conditions as the AND clause.

12

• The FROM and USING Clause: These clauses are related to URIs and therefore are not
further discussed.

Example 5.3 Suppose the user posed the original query Qx: “List all the authors.” on the XML source
writers.xml. Our algorithm will rewrite it into a query on the other XML source books.xml. The
XQuery for the original query can be written as follows.

let $writers:= doc("writers.xml")

for $writer in $writers/writer

return $writer

After Step 1, we obtain an empty P1 and P2 = {/writers/writers}. After Step 2, P ′
1 is empty and

we have P ′
2 = {Writer}. Following the instructions in Step 3, we can construct the RDQL query Qr that

only refers to the class Writer in the local ontology S′
2 (See Figure 4). By simply applying the rewriting

algorithm from RDQL to XQuery on Qr, we get the final resulting query Q′
x (against books.xml):

let $books := doc("books.xml")

for $author in $books/book/author

return $author

As discussed in Section 3.2, the query translation from XQuery through RDQL to XQuery involves the
concept of reversibility. We have shown that the translation reversibility depends on the equivalence between
the source query (Qx in Example 5.3) and the target query (Q′

x in Example 5.3), which depends on the
equivalence of the answer sets to Qx and to Q′

x. In Example 5.3, the answer sets to Qx and Q′
x are shown

below, where we can see that the two answer sets are structurally different but semantically equivalent.

<author name="a1"/> <writer fullname="w1">

<author name="a2"/> <article title="t1"/>

<author name="a3"/> <writer>

...

Fragment of the answer set to Qx. Fragment of the answer set to Q′
x.

6 Conclusions and Future Work

XML and its schema languages do not express semantics but rather the document structure, such as the
information about nesting. Therefore, semantically-equivalent documents often present different document
structures that originated in various applications. In this paper, we provide an ontology-based framework
that aims to make two XML documents interoperate at the semantic level while retaining their nesting
structure. In our approach, an RDF-based global ontology is generated by merging the RDF ontologies that
are generated from each of the XML documents. We extend RDF Schemas by defining additional metadata
that can encode the nesting structure of an XML document. We propose two query rewriting algorithms:
one that translates an RDF query (posed on the global ontology) to an XML underlying database and the
other one that translates an XML query (posed on one of the individual databases) to an RDF query on the
ontology, followed by the translation to an XML query (on one of the individual databases). The last query

13

processing mechanism is therefore bidirectional and corresponds to a P2P mode of operation. We introduce
the concept of reversibility to guarantee the correctness of the bidirectional query processing.

In future work we will: (1) Prove the correctness of our query translation algorithms for a large subset of
the XQuery language. (2) Propose an approach for the unification of the results (as expressed in XML) with
different structure or representation, which are returned from different sources.

References

[1] B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration of XML Web Resources.
In Proceedings of the 1st International Semantic Web Conference (ISWC 2002), pages 117–131, 2002.

[2] B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and A. Vercoustre. Mapping XML Fragments to Com-
munity Web Ontologies. In Proceedings of the 4th International Workshop on the Web and Databases
(WebDB 2001), pages 97–102, 2001.

[3] Y. Bishr. Overcoming the semantic and other barriers to GIS interoperability. International Journal of
Geographical Information Science, 12(4):229–314, 1998.

[4] S. Boag, D. Chamberlin, M. F. Fernández, J. R. D. Florescu, and J. Siméon. XQuery 1.0: An XML
Query Language. http://www.w3.org/TR/xquery, W3C Working Draft, August 2003.

[5] R. Bourret. XML and Databases. http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[6] D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/rdf-schema, W3C Working Draft, January 2003.

[7] A. Cal̀ı, D. Calvanese, G. D. Giacomo, and M. Lenzerini. On the Expressive Power of Data Integration
Systems. In 21st Intl. Conference on Conceptual Modeling (ER), pages 338–350, 2002.

[8] S. D. Camillo, C. A. Heuser, and R. S. Mello. Querying Heterogeneous XML Sources through a Concep-
tual Schema. In Proceedings of the 22nd International Conference on Conceptual Modeling (ER2003),
pages 186–199, 2003.

[9] Y. Chen and P. Revesz. CXQuery: A Novel XML Query Language. In Proceedings of International
Conference on Advances in Infrastructure for Electronic Business, Science, and Medicine on the Internet
(SSGRR 2002w), 2002.

[10] I. F. Cruz and H. Xiao. Using a Layered Approach for Interoperability on the Semantic Web. In Fourth
International Conference on Web Information Systems Engineering (WISE’03), pages 221–232, Roma,
Italy, December 2003.

[11] D. C. Fallside. XML Schema Part 0: Primer. http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[12] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management Infrastructure for
Semantic Web Applications. In Proceedings of the 12th International World Wide Web Conference
(WWW2003), pages 556–567, 2003.

[13] HP Labs. RDQL - RDF Data Query Language. http://www.hpl.hp.com/semweb/rdql.htm.

14

[14] M. C. A. Klein. Interpreting XML Documents via an RDF Schema Ontology. In Proceedings of the 13th
International Workshop on Database and Expert Systems Applications (DEXA 2002), pages 889–894,
2002.

[15] L. V. Lakshmanan and F. Sadri. Interoperability on XML Data. In Proceedings of the 2nd International
Semantic Web Conference (ICSW’03), 2003.

[16] F. Manola and E. Miller. RDF Primer. http://www.w3.org/TR/rdf-primer, W3C Working Draft,
January 2003.

[17] F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontology Merging and
Alignment. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence (AAAI/IAAI 2000), pages 450–455,
2000.

[18] P. F. Patel-Schneider and J. Siméon. The Yin/Yang web: XML syntax and RDF semantics. In
Proceedings of the 11th International World Wide Web Conference (WWW2002), pages 443–453, 2002.

[19] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating web data. In
Proceedings of VLDB, pages 598–609, 2002.

[20] O. D. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. Query Processing Over Peer-To-Peer Data
Sharing Systems. Technical Report CSD-2002-28, University of California at Santa Barbara, 2002.

[21] G. Stumme and A. Maedche. Ontology Merging for Federated Ontologies on the Semantic Web. In
Proceedings of the International Workshop for Foundations of Models for Information Integration (FMII-
2001), pages 413–418, 2001.

15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

