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Overview



Big Picture

Optimization

A function f is smooth, we can apply

• first-order method: gradient descent, SGD, etc.

• second-order method: Newton’s method, L-BFGS, etc.

What if the function has no first- and second-order information?

Black-box optimization
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Problem

Problems

To find the “global minimizer” of f (x)→ R where x ⊆ Rd is a “bounded domain”:

x∗ = argmax
x∈X

f (x)

• f is explicitly unknown function without first- and second-order information

• f is expensive to evaluate, but f (x) is accessible for all x ∈ X
• f is Lipschitz-continuos, i.e., ‖f (x)− f (x ′)‖ ≤ c ‖x − x ′‖
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Applications

Application

• tunning hyperparameters: number of layers/number of units per layer, learning

rate, regularizer, etc.

• designing experiments: physical, chemistry, biological experiments,

• expensive evaluations: drug trial (time consuming), financial investments (money

consuming).
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Approaches

• Experience: assign hyperparameters based on expert knowledges

• Grid search: search a hypercube of the hyperparameters

• Random search: sample the hypercubc uniformly, better than grid search, but still

expensive 1

• Bayesian optimization (BO): search the domain based on the Gaussian processes
1

Bergstra and Bengio, JMLR 2012
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1D BO at First Glimpse
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Pre-knowledge



Gaussian Process (GP)

Optimizing over the function ⇒ predict the function based on “small set” of data

Consider the problem of nonlinear regression: you want to learn a function f from data

D = {X , y}

Gaussian process can be interpreted as a prior over function:

p(f |D) =
p(f )p(D|f )

p(D)

8



GP cont’d

Definition (GP)

A gaussian process is a collection of random variables, and finite number of which

have a joint Gaussian distribution.

GP is determined by

• mean function:

m(x) = E [f (x)]

• covariance function:

k(x , x ′) = E
[
(f (x)−m(x))(f (x ′)−m(x ′))

]
Denoted as:

f (x) ∼ GP(m(x), k(x , x ′))
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Examples of Covariance Functions

• squared exponential: kSE (r) = exp
(
− r2

2`2

)
• Matérn class: kMatern(r) = 21−µ

Γ(ν)

(√
2νr
`

)ν
Kν
(√

2νr
`

)
• Exponential: kExp(r) = exp

(
− r
`

)
• γ-exponential: kγ−Exp(r) = exp

(
−
(
r
`

)γ)
, for 0 < γ ≤ 2

• Neural network: kNN(x , x ′) = 2
π sin−1

{
2x>Σx ′√

1+2x>Σx
√

1+2x ′>Σx ′

}
• Periodic: kperiodic(x , x ′) = exp

{
−2 sin2( 1

2
(x−x ′))
`2

}

10



Example of Covariance Function cont’d
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Covariance Functions

A stationary covariance function is a function of x − x ′

A covariance function is called isotropic if it is a function only of ‖x − x ′‖.

r =
∥∥x − x ′

∥∥
is also called radial basis functions (RBFs)

Example (SE covariance function)

kSE (r) = exp

(
− r2

2`2

)
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Covariance Functions cont’d

A covariance function is called dot product covariance function, if it is a function

depends only on x and x ′ through x · x ′

Example

k(x , x ′) = σ2
0 + x · x ′

k(x , x ′) = (σ2
o + x · x ′)p, p ∈ I+.

A more general name of the covariance function of taking two inputs x ∈ X , x ′ ∈ X
into R is called kernel.

A covariance matrix K is a Gram matrix of pairwise covariance functions of a given

points {x1, x2, · · · , xn}, where K ij = k(x i , x j).
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Matérn Class of Covariance Function

kMatern(r) =
21−µ

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)
ν, ` are positive parameters, and Kν(·) is a modified Bessel function of second kind.

A Bessel function is the canonical solutions y(x) of Bessel’s differential equation:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0

where α is an arbitrary complex number.

The modified Bessel functions of the first and second kind are defined as

Iν(x) =
∞∑

m=0

1

m!Γ(m + ν + 1)

(x
2

)2m+ν
, Kν(x) =

π

2

I−ν(x)− Iν(x)

sin νπ
,

where ν is a positive non-integer. 14



Matérn Kernels cont’d

kMatern(r) =
21−µ

Γ(ν)

(√
2νr

`

)ν
Kν

(√
2νr

`

)

• ν →∞, then kMatern(r) = kSE (r)

• if ν = p + 1/2, p ∈ I , it has a simple form:

kν=p+1/2(r) = exp

(
−
√

2νr

`

)
Γ(p + 1)

Γ(2p + 1)

p∑
i=1

(p + i)!

i !(p − i)!

(√
8νr

`

)p−i

• most commonly used ν = 3/2 and ν = 5/2:

kν=3/2(r) =

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
, kν=5/2(r) =

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
1

Rasmussen, William, 2006
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Other Kernels

S: stationary, ND: non-degenerate 16



Eigenfunction Analysis of Kernels

Idea: measure the nearness or similarity between data points

GPR can be viewed as Bayesian linear regression with a possibly infinite number of

basis function

One of such basis function is eigenfunctions of the covariance functions.

Definition (eigenfunction)

A function φ(·) that obeys the integral equation∫
k(x , x ′)φ(x)dµ(x) = λφ(x ′)

is called eigenfunction of kernel k with eigenvalue λ with respect to measure µ.
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Kernels cont’d

Theorem (Mercer’s Theorem)

Let (X , µ) be a finite measure space and k ∈ L∞(X 2, µ2) be a kernel such that

Tk : L2(X , µ)→ L2(X , µ) is positive definite. Let φi ∈ L2(X , µ) be the normalized

eigenfunctions of Tk associated with the eigenvalues λi > 0. Then:

1. the eigenvalues {λi}∞i=1 are absolutely summable

2.

k(x , x ′) =
∞∑
i=1

λiφi (x)φ∗i (x ′),

holds µ2 almost everywhere, where the series converges absolutely and uniformly

µ2 almost everywhere.

⇒ RKHS (Mercer’s theorem, eigenfunction AND reproducing kernel map) 18



GP Summary

1Zoubin Ghahramani, NIPS 2016 19



GP Summary cont’d

• GPs define distributions on functions

• GPs are closely related to many other models:

- Bayesian kernel machine

- linear regression with basis functions

- Deep neural networks

• GPs handle uncertainty in unknown function f by averaging

Now, if we want to minimize the unknown function, using GP as the prior of function

⇒ Bayesian optimization
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Bayesian Optimization



BO in a Nutshell

Assume: f (x) ∼ GP(µ(x), k(x , x ′))

posterior: the point to query next

acquisition function: a utility function

1. sample from function

2. choose next point based on acquisition function

3. repeat step 2 until converge
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Using Uncertainty in Optimization

• target: find the maximum / minimum of f

• after performing some evaluations, the GP gives us means and variances

• next evaluation based on:

exploration: points with high variance

exploitation: points with high mean (max problem)

• acquisition function balances between exploration and exploitation.
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BO in example

• dashed like: real objective function

• solid black line: posterior mean µ(x)

• green line: acquisition function

• blue area: confidence area
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Prior over Functions

Assume we have observations (x1:t , f 1:t) and it follows the multivariate normal

distribution N (µ(x), k(x , x ′)) = N (0,K )

Now, we have a new point x t+1, by properties of GP, f 1:t and ft+1 are jointly Gaussian:(
f 1:t

ft+1

)
∼ N

(
0,

(
K , k
k>, k(x t+1, x t+1)

))
k = (k(x t+1, x1), · · · , k(x t+1, x t))

Then the predictive distribution:

p(ft+1|D1:t , x t+1) = N (µt(x t+1), σ2
t (x t+1))

µt(x t+1) = k>K−1f 1:t

σ2
t (x t+1) = k(x t+1, x t+1)− k>K−1k
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Prior over functions cont’d
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Acquisition Functions

• Probability improvement

aPI (x) = Φ

(
µ(x)− f ∗n
σ(x)

)
• Expected improvement:

aEI (x) = E
[
[f (x)− f ∗n ]+

]
• Upper confidence bound (UCB):

aUCB(x) = µ(x) + βσ(x)

where β > 0 is a tradeoff parameter.

• Entropy search / predicted entropy search:

aES(x) = H(P(x∗))− Ef (x) [H(P(x∗|f (x)))]

aPES(x) = H(P(f (x)))− Ex∗ [H(P(f (x)|x∗))]
26



Probability Improvement

aPI (x) =p(f (x) ≥ f (x+))

=Φ

(
µ(x)− f (x+)

σ(x)

)

• still too greedy, pure exploitation

Sometimes modified as

aPI (x) =p(f (x) ≥ f (x+) + ξ)

=Φ

(
µ(x)− f (x+)− ξ

σ(x)

)
ξ is a tradeoff parameter.
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Expected Improvement

aEI (x) = E
[
[f (x)− f ∗n ]+

]

• [·]+ , max {0, ·} is a utility function

• f ∗n , minx1:n f (x) is the current best

Integration by parts, we have the closed form:

aEI (x) =

(µ(x)− f ∗n )Φ(Z ) + σ(x)φ(Z ) σ(x) > 0

0 σ(x) = 0

Z =
µ(x)− f ∗n
σ(x)

Φ(Z ) is the cumulative distribution and φ(Z ) is the probability density function.
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Upper Confidence Bound

aUCB(x) = µ(x) + βσ(x)

Casting this as a multi-armed bandit, then the acquisition function is regret function:

r(x) = f (x∗)− f (x)

The goal is to find

min
T∑
t

r(x t) = max
T∑
t

f (x t)

Now select β as β =
√
ντt , it can be shown with high probability this method is no

regret

aUCB(x) = µ(x) +
√
ντtσ(x)

1Srinivas et al, ICML 2010
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Other Acquisition Functions

Entropy search / predicted entropy search:

aES(x) = H(P(x∗))− Ef (x) [H(P(x∗|f (x)))]

aPES(x) = H(P(f (x)))− Ex∗ [H(P(f (x)|x∗))]

Knowledge Gradient

aKG (x) = E
[
µ∗n+1 − µ∗n|xn+1 = x

]
Thompson Sampling∫

I [E(r |a∗, x ,θ) = maxE(r |a∗, x ,θ)] p(θ|D)dθ

Taking the best a∗ to maximize the reward.
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Comparison of Acquisition Functions
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Exotic Bayesian Optimization



EBO

What if the Bayesian optimization with following scenarios?

• Noisy evaluations

• Parallel evaluations

• Constraints

• Optimization of acquisition functions
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Noisy Observations

If

yi = f (x i ) + εi , εi ∼ N (0, σ2
noise)

Then the covariance becomes

cov(x i , x j) = k(x i , x j) + σ2
noiseδij

where δij is a Kronecker delta, then it yields the predictive distribution:

p(ft+1|D1:t , x t+1) = N (µt(x t+1), σ2
t (x t+1) + σ2

noise)

µt(x t+1) = k>(K−1 + σ2
noiseI )f 1:t

σ2
t (x t+1) = k(x t+1, x t+1)− k>(K−1 + σ2

noiseI )k
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Parallel

• Classical Bayesian optimization is sequential

Do an experiment, wait until finishing, and repeat.

• Compute clusters let us do many things at once

aEI (x1:q) = E

[[
max
i=1..q

f (x i )− f ∗n

]+
]

• Fantasize outcomes from the GP

GP gives coherent predictions and evaluate points that are good under the average

• Alternative: shrink the variance and integrate out the mean

1Desautels, et al, JMLR 2014
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Constraints

What if the problem has complex constraints rather than a “bounded” simple domain?

max f (x) s.t.c(x) ≤ 0

• evaluate the constraints separately from the objective

• evaluate the function only when the constraints are active

• a natural way following the “improvement” based acquisition functions
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Optimization on Acquisition Functions

Ironic Problem:

Bayesian optimization has its own hyperparameters!

• covariance function has hyperparameters

• acquisition function has hyperparameters

How to attack them?

• Covariance hyperparameters are often optimized rather than marginalized,

typically in the name of convenience and efficiency.

• Slice sampling of hyperparameters is fast and easy.

• Apply first- and second- order optimization methods.
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Summary



Recent work

• Gaussian process v.s. RKHS in neural networks

- Deep Neural Networks as Gaussian Processes, ICLR 2018

- Learning Transferable Features with Deep Adaptation Networks, JMLR 2015

- Deep Kernel Learning, JMLR 2016

• Gradient in Bayesian optimization

- Bayesian Optimization with Gradients, NIPS 2017

- Do we need “harmless” bayesian optimization and first-order bayesian optimization,

NIPS 2016

• Optimization on acquisition function

- Maximizing acquisition functions for Bayesian optimization, arXiv 2018

- The knowledge-gradient policy for correlated normal beliefs, J. of Comp. 2009
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Real Application

• Google’s AutoML - use bayesian optimization

• AlphaGo Zero - self-play using Gaussian Process optimization (Bayesian

optimization)

• Google Vizer - Internal use services to tune hyper-parameter

• Amazon SegaMaker

Applications including: robotics, automatic machine learning, hierarchical

reinforcement learning.
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Summary

• GPs define distributions on functions

• GPs are closely related to many other models:

- Bayesian kernel machine

- linear regression with basis functions

- Deep neural networks

• GPs handle uncertainty in unknown function f by averaging

• BO performs the global optimizer over unknown functions

• BO helps the automatic machine learning

• BO has acquisition function to determine which point to pick in sequence.
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