A Generic Approach for Escaping Saddle Points

reading group present by Hongwei Jin

March 2, 2018

Problem

Nonconvex finite-sum problem

$$\min_{\boldsymbol{x}\in\mathbb{R}^d} \quad f(\boldsymbol{x}):=\frac{1}{n}\sum_{i=1}^n f_i(\boldsymbol{x})$$

• neither
$$f$$
 nor f_i are necessarily convex

► assumptions

- Lipschitz continuity of gradient on each function

$$\|\nabla f_i(\boldsymbol{x}) - \nabla f_i(\boldsymbol{y})\| \leq L \|\boldsymbol{x} - \boldsymbol{y}\|$$

- Lipschitz continuity of Hessian

$$\left\|
abla^2 f(oldsymbol{x}) -
abla^2 f(oldsymbol{y})
ight\| \leq M \left\| oldsymbol{x} - oldsymbol{y}
ight\|$$

1st-order stationary point

 $\|\nabla_f(\mathbf{x})\| \leq \varepsilon$

 \boldsymbol{x} can be a local minimum, local maximum, or a saddle point

strict-saddle point

$$\|
abla_f(oldsymbol{x})\| \leq arepsilon$$
 & $\lambda_{\min}
abla^2 f(oldsymbol{x}) < 0$

2nd-order stationary point

$$\|
abla_f(oldsymbol{x})\| \leq arepsilon$$
 & $\lambda_{\min}
abla^2 f(oldsymbol{x}) > -\gamma$

1st-order stationary point

 $\|\nabla_f(\mathbf{x})\| \leq \varepsilon$

 \boldsymbol{x} can be a local minimum, local maximum, or a saddle point

strict-saddle point

$$\|
abla_f(oldsymbol{x})\| \leq arepsilon$$
 & $\lambda_{\min}
abla^2 f(oldsymbol{x}) < 0$

2nd-order stationary point

$$\|
abla_f(oldsymbol{x})\| \leq arepsilon$$
 & $\lambda_{\min}
abla^2 f(oldsymbol{x}) > -\gamma$

How to get a fairly GOOD solution?

Background

Provable global optimum

- Low-rank matrix problems (algorithm independent)
 - matrix completion [Ge-Lee-Ma, NIPS'16]
 - all local minima are global minima in the symmetric matrix completion problem
 - matrix sensing, matrix completion and robust PCA [Ge-Jin-Zheng, ICML'17]
 - 1) all local optima are global optima 2) no high-order saddle points
- Neural network
 - deep learning without poor local minima [Kawaguchi, NIPS'16] square loss with any depth any width: 1) local minima are global minima 2) if critical point is not global, then it's a saddle 3) exist 'bad' saddle (Hessian has no negative eigenvalue) for deeper network (more than 3 layers)
 - two-layer NN with ReLU [Li-Yuan, NIPS'17] input follows Gaussian dist. with standard $O(1/\sqrt{d})$ init. of weights, SGD converges to global optima
 - global optimality conditions for DNN [Yun-Sra-Jabdabaie, accepted ICLR'18] provide necessary and sufficient conditions for global optimality

Background Cont.

 ε -approximate local minimum

- Escape strict saddle using gradient
 - SGD can escape saddle [Ge-Huang-Jin-Yuan, COLT'15]
 - Noise SGD can escape saddle in the orthogonal tensor decomposition problem
 - Gradient descent converges to minimizers [Lee-Simchowitz-Jordan-Recht, COLT'16]
 - GD converge to minimizer or negative infinity, proved by stable manifold theorem
 - PGD can escape saddle [Jin-Ge-Netrapalli-Kakade-Jordan, ICML'17] Add perturbation when enter the stuck region
- Escape saddle using Hessian explicitly
 - Cubic regularization [Nesterov-Polyak, MP'06]
- Escape strict saddle using gradient and Hessian information
 - AGD and proximal eigenvector of Hessian [Carmon-Duchi-Hinder-Sidford, arXiv'17]
 Run PCA to estimate the smallest eigenvector of Hessian and apply AGD to decrease
 - AllenZhu's works: FastCubic, Natasha2, Katyusha X, Neon [AllenZhu, arXiv'17-18]
 - Alternate between gradient and Hessian descent [Reddi-Zaheer-Sra-Poczos-Bash-Salakhutdinov-Smola,

arXiv'17]

Provide a general framework combining gradient and Hessian, and apply SVRG + HD/CR to prove the complexities

Second order Stationary Point

Definition

- An Incremental First-order Oracle (IFO) takes an index $i \in [x]$ and a point $x \in \mathbb{R}^d$, and returns the pair $(f_i(x), \nabla f_i(x))$.
- An Incremental Second-order Oracle (ISO) takes an index i ∈ [x], a point x ∈ ℝ^d and vector v ∈ ℝ^d, and returns the vector ∇²f_i(x)v.

Pearlmutter's algorithm

$$\nabla f(\mathbf{x} + r\mathbf{v}) \approx \nabla f(\mathbf{x}) + r\nabla^2 f(\mathbf{x})\mathbf{v}$$
$$\nabla^2 f(\mathbf{x})\mathbf{v} \approx \frac{\nabla f(\mathbf{x} + r\mathbf{v}) - \nabla f(\mathbf{x})}{r}$$
in practice
$$\nabla^2 f(\mathbf{x})\mathbf{v} \approx \frac{\nabla f(\mathbf{x} + r\mathbf{v}) - \nabla f(\mathbf{x} - r\mathbf{v})}{2r}$$

Idea

Interleave two subroutines to obtain a second-order critical point

- Gradient-Focused-Optimizer use the gradient information to decrease the function value
- Hessian-Focused-Optimizer use the Hessian information to avoid saddle point

Generic Framework (cont.)

Algorithm 1 Generic Framework

1: Input - Initial point: x^0 , total iterations T, error threshold parameters ϵ , γ and probability p2: for t = 1 to T do 3: $(y^t, z^t) = \text{GRADIENT-FOCUSED-OPTIMIZER}(x^{t-1}, \epsilon)$ (refer to G.1 and G.2) 4: Choose u^t as y^t with probability p and z^t with probability 1 - p5: $(x^{t+1}, \tau^{t+1}) = \text{HESSIAN-FOCUSED-OPTIMIZER}(u^t, \epsilon, \gamma)$ (refer to H.1 and H.2) 6: if $\tau^{t+1} = \emptyset$ then 7: Output set $\{x^{t+1}\}$ 8: end if 9: end for 10: Output set $\{y^1, ..., y^T\}$

- ▶ G.1: $E[f(\mathbf{y})] \le f(\mathbf{x})$ ▶ G.2: $E\left[\|\nabla_f(\mathbf{y})\|^2\right] \le \frac{1}{g(n,\epsilon)} E[f(\mathbf{x}) - f(\mathbf{z})],$ where g is positive function: $\mathbb{N} \times \mathbb{R}^+ \to \mathbb{R}^+$
- ► H.1: $E[f(\mathbf{y})] \leq f(\mathbf{x})$
- ► H.2: $E[f(\mathbf{y})] \le f(\mathbf{x}) h(n, \epsilon, \gamma)$ when $\lambda_{\min}(\nabla^2 f(\mathbf{x})) \le -\gamma$ for some h.

Theorem

Let $\Delta = f(x^0) - B$ and $\theta = \min((1-p)\epsilon^2 g(n,\epsilon), ph(n,\epsilon,\gamma))$. Also, let set Γ be the output of Algorithm with Gradient-Focused-Optimizer satisfying G.1 and G.2 and Hessian-Focused-Optimizer satisfying H.1 and H.2. Furthermore, T be such that $T > \Delta/\theta$. Suppose the multiset $S = \{i_1, ..., i_k\}$ are k indices selected independently and uniformly randomly from $\{1, ..., |\Gamma|\}$. Then the following holds for the indices in S:

- y^t , where $t \in \{i_1, ..., i_k\}$ is a (ϵ, γ) -critical point with probability at least $1 \Delta/(T\theta)$.
- If $k = O(\frac{\log(1/\zeta)}{\log(\Delta/(T\theta))})$, with at least probability 1ζ , at least one iterate y^t where $t \in \{i_1, ..., i_k\}$ is a (ϵ, γ) -critical point.

Gradient-Focused-Optimizer: SVRG

Algorithm 2 SVRG (x^0, ϵ)

1: Input:
$$x_{0}^{n} = x^{0} \in \mathbb{R}^{d}$$
, epoch length m , step sizes $\{\eta_{i} > 0\}_{i=0}^{m-1}$, iterations $T_{g}, S = \lceil T_{g}/m \rceil$
2: for $s = 0$ to $S - 1$ do
3: $\tilde{x}^{s} = x_{0}^{s+1} = x_{m}^{s}$
4: $g^{s+1} = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\tilde{x}^{s})$
5: for $t = 0$ to $m - 1$ do
6: Uniformly randomly pick i_{t} from $\{1, \ldots, n\}$
7: $v_{t}^{s+1} = \nabla f_{i_{t}}(x_{t}^{s+1}) - \nabla f_{i_{t}}(\tilde{x}^{s}) + g^{s+1}$
8: $x_{t+1}^{s+1} = x_{t}^{s+1} - \eta_{t}v_{t}^{s+1}$
9: end for
10: end for
11: Output: (y, z) where y is Iterate x_{a} chosen uniformly random from $\{\{x_{t}^{s+1}\}_{t=0}^{m-1}\}_{s=0}^{S-1}$ and $z = x_{m}^{S}$.

Lemma

Suppose $\eta_t = \eta = 1/4Ln^{2/3}$, m = n and $T_g = T_{\epsilon}$, which depends on ϵ , then SVRG is a Gradient-Focused-Optimizer with $g(n, \epsilon) = T_{\epsilon}/40Ln^{2/3}$

Hessian-Focused-Optimizer: HessianDescent

Algorithm 3 HESSIANDESCENT (x, ϵ, γ)

Find v such that ||v|| = 1, and with probability at least ρ the following inequality holds: ⟨v, ∇²f(x)v⟩ ≤ λ_{min}(∇²f(x)) + ²/₂.
 Set α = |⟨v, ∇²f(x)v⟩|/M.
 u = x - α sign(⟨v, ∇f(x)⟩)v.
 y = arg min_{z∈{u,x}}f(z)
 Output: (y, ◊).

Lemma

HessianDescent is a Hessian-Focused-Optimizer with $h(n,\epsilon,\gamma) = \frac{\rho}{24M^2}\gamma^3$.

Proposition

The time complexity of finding $v \in \mathbb{R}^d$ that ||v|| = 1, and with probability at least ρ the following inequality holds: $\langle v, \nabla^2 f(x)v \rangle \leq \lambda_{\min}(\nabla^2 f(x)) + \frac{\gamma}{2}$ is $O(nd + n^{3/4}d/\gamma^{1/2})$.

Theorem

Suppose SVRG with $m = n, \eta_t = \eta = 1/4Ln^{2/3}$ for all $t \in \{1, ..., m\}$ and $T_g = \frac{40Ln^{2/3}}{\epsilon^{1/2}}$ is used as Gradient-Focused-Optimizer and HessianDescent is used as Hessian-Focused-Optimizer with q = 0, then Algorithm finds a $(\epsilon, \sqrt{\epsilon})$ -second order critical point in $T = O(\frac{\Delta}{\min(p, 1-p)\epsilon^{3/2}})$ with probability at least 0.9.

Corollary

The overall running time of algorithm to find a $(\epsilon, \sqrt{\epsilon})$ -second order critical point with parameter settings used in Theorem 2, is $O(nd/\epsilon^{3/2} + n^{3/4}d/\epsilon^{7/4} + n^{2/3}d/\epsilon^2)$

Hessian-Focused-Optimizer: CubicDescent

Cubic Regularization

$$oldsymbol{v} = rgmin_{oldsymbol{v}} \langle
abla f(oldsymbol{x}), oldsymbol{v}
angle + rac{1}{2} \left\langle oldsymbol{v},
abla^2 f(oldsymbol{v}) oldsymbol{v}
ight
angle + rac{M}{6} \|oldsymbol{v}\|^3, \quad oldsymbol{x}_{t+1} = oldsymbol{x}_t + oldsymbol{v}$$

Theorem

Suppose SVRG with $m = n, \eta_t = \eta = 1/4Ln^{2/3}$ for all $t \in \{1, ..., m\}$ and $T_g = \frac{40Ln^{2/3}}{\epsilon^{1/2}}$ is used as Gradient-Focused-Optimizer and CubicDescent is used as Hessian-Focused-Optimizer with q = 0, then Algorithm finds a $(\epsilon, \sqrt{\epsilon})$ -second order critical point in $T = O(\frac{\Delta}{\min(p,1-p)\epsilon^{3/2}})$ with probability at least 0.9.

Corollary

The overall running time of algorithm to find a $(\epsilon, \sqrt{\epsilon})$ -second order critical point with parameter settings used in Theorem 3, is $O(nd^w/\epsilon^{3/2} + n^{2/3}d/\epsilon^2)$

	GFO	HFO		Overall
		Iteration	Comp. per iter.	
SVRG + HD	$O(rac{nd}{\epsilon^{3/2}}+rac{n^{3/4}d}{\epsilon^2})$	$O(rac{1}{\epsilon^{3/2}})$	$O(nd + rac{n^{3/4}d}{\epsilon^{1/4}})$	$O(\frac{nd}{\epsilon^{3/2}} + \frac{n^{3/4}d}{\epsilon^{7/4}} + \frac{n^{2/3}d}{\epsilon^2})$
SVRG + CD	$O(\frac{nd}{\epsilon^{3/2}} + \frac{n^{3/4}d}{\epsilon^2})$	$O(rac{1}{\epsilon^{3/2}})$	$O(nd^{w})$	$O(\frac{nd^w}{\epsilon^{3/2}}+\frac{n^{2/3}d}{\epsilon^2})$

point	Algorithm	Complexity (non-convex)	Hessian info.
Approx. sta. pt.	GD	$O(\frac{nd}{\epsilon^2})$	NO
Approx. sta. pt.	SGD	$O(\frac{d}{\epsilon^4})$	NO
Approx. sta. pt.	SVRG	$O(nd + \frac{n^{2/3}d}{\epsilon^2})$	NO
Approx. local min.	perturbed SGD	$O(\frac{d^{C}}{\epsilon^{4}})$	NO
Approx. local min.	cubic regularization	$O(rac{nd^{w-1}+nd^w}{\epsilon^{3/2}})$	Yes (explicit)
Approx. local min.	FastCubic	$O(rac{nd}{\epsilon^{3/2}}+rac{n^{3/4}d}{\epsilon^{7/4}})$	Yes
Approx. local min.	AGD+NCD	$O(\frac{nd}{\epsilon^{3/2}} + \frac{n^{3/4}d}{\epsilon^{7/4}})$	Yes
Approx. local min.	SVRG + HD	$O(rac{nd}{\epsilon^{3/2}} + rac{n^{3/4}d}{\epsilon^{7/4}} + rac{n^{2/3}d}{\epsilon^2})$	Yes
Approx. local min.	SVRG + CD	$O(rac{nd^w}{\epsilon^{3/2}}+rac{n^{2/3}d}{\epsilon^2})$	Yes

¹May subject to change

Open Questions

- GFO: SVRG, Adam, SMD, etc. How to analysis the performance?
- ► HFO: acceleration of cubic?
- only first-order oracle? without Hessian-vector product?
- how to handle the "flat" saddle problem?