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Problem

Nonconvex finite-sum problem

min
x∈Rd

f (x) :=
1

n

n∑
i=1

fi (x)

I neither f nor fi are necessarily convex
I assumptions

– Lipschitz continuity of gradient on each function

‖∇fi (x)−∇fi (y)‖ ≤ L ‖x − y‖

– Lipschitz continuity of Hessian∥∥∇2f (x)−∇2f (y)
∥∥ ≤ M ‖x − y‖



Definitions

I 1st-order stationary point

‖∇f (x)‖ ≤ ε

x can be a local minimum, local maximum, or a saddle point

I strict-saddle point

‖∇f (x)‖ ≤ ε & λmin∇2f (x) < 0

I 2nd-order stationary point

‖∇f (x)‖ ≤ ε & λmin∇2f (x) > −γ

How to get a fairly GOOD solution?
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Background

Provable global optimum
I Low-rank matrix problems (algorithm independent)

– matrix completion [Ge-Lee-Ma, NIPS’16]

all local minima are global minima in the symmetric matrix completion problem
– matrix sensing, matrix completion and robust PCA [Ge-Jin-Zheng, ICML’17]

1) all local optima are global optima 2) no high-order saddle points

I Neural network

– deep learning without poor local minima [Kawaguchi, NIPS’16]

square loss with any depth any width: 1) local minima are global minima 2) if
critical point is not global, then it’s a saddle 3) exist ‘bad’ saddle (Hessian has no
negative eigenvalue) for deeper network (more than 3 layers)

– two-layer NN with ReLU [Li-Yuan, NIPS’17]

input follows Gaussian dist. with standard O(1/
√
d) init. of weights, SGD converges

to global optima
– global optimality conditions for DNN [Yun-Sra-Jabdabaie, accepted ICLR’18]

provide necessary and sufficient conditions for global optimality



Background Cont.

ε-approximate local minimum
I Escape strict saddle using gradient

– SGD can escape saddle [Ge-Huang-Jin-Yuan, COLT’15]

Noise SGD can escape saddle in the orthogonal tensor decomposition problem
– Gradient descent converges to minimizers [Lee-Simchowitz-Jordan-Recht, COLT’16]

GD converge to minimizer or negative infinity, proved by stable manifold theorem
– PGD can escape saddle [Jin-Ge-Netrapalli-Kakade-Jordan, ICML’17]

Add perturbation when enter the stuck region
I Escape saddle using Hessian explicitly

– Cubic regularization [Nesterov-Polyak, MP’06]

I Escape strict saddle using gradient and Hessian information
– AGD and proximal eigenvector of Hessian [Carmon-Duchi-Hinder-Sidford, arXiv’17]

Run PCA to estimate the smallest eigenvector of Hessian and apply AGD to decrease
– AllenZhu’s works: FastCubic, Natasha2, Katyusha X, Neon [AllenZhu, arXiv’17-18]

– Alternate between gradient and Hessian descent [Reddi-Zaheer-Sra-Poczos-Bash-Salakhutdinov-Smola,

arXiv’17]

Provide a general framework combining gradient and Hessian, and apply SVRG +
HD/CR to prove the complexities



Second order Stationary Point

Definition

I An Incremental First-order Oracle (IFO) takes an index i ∈ [x ] and a point
x ∈ Rd , and returns the pair (fi (x),∇fi (x)).

I An Incremental Second-order Oracle (ISO) takes an index i ∈ [x ], a point x ∈ Rd

and vector v ∈ Rd , and returns the vector ∇2fi (x)v .

Pearlmutter’s algorithm

∇f (x + rv) ≈ ∇f (x) + r∇2f (x)v

∇2f (x)v ≈ ∇f (x + rv)−∇f (x)

r

in practice ∇2f (x)v ≈ ∇f (x + rv)−∇f (x − rv)

2r



Generic Framework

Idea

Interleave two subroutines to obtain a second-order critical point

I Gradient-Focused-Optimizer

use the gradient information to decrease the function value

I Hessian-Focused-Optimizer

use the Hessian information to avoid saddle point



Generic Framework (cont.)

I G.1: E [f (y)] ≤ f (x)

I G.2: E
[
‖∇f (y)‖2

]
≤ 1

g(n,ε) E [f (x)− f (z)],

where g is positive function: N×R+ → R+

I H.1: E [f (y)] ≤ f (x)

I H.2: E [f (y)] ≤ f (x)− h(n, ε, γ) when λmin(∇2f (x)) ≤ −γ for some h.



Main Theorem

Theorem

Let ∆ = f (x0)− B and θ = min
(
(1− p)ε2g(n, ε), ph(n, ε, γ)

)
. Also, let set Γ be the

output of Algorithm with Gradient-Focused-Optimizer satisfying G.1 and G.2 and
Hessian-Focused-Optimizer satisfying H.1 and H.2. Furthermore, T be such that
T > ∆/θ. Suppose the multiset S = {i1, ..., ik} are k indices selected independently
and uniformly randomly from {1, ..., |Γ|}. Then the following holds for the indices in S :

I y t , where t ∈ {i1, ..., ik} is a (ε, γ)-critical point with probability at least
1−∆/(Tθ).

I If k = O( log(1/ζ)
log(∆/(Tθ))) ), with at least probability 1− ζ, at least one iterate y t

where t ∈ {i1, ..., ik} is a (ε, γ)-critical point.



Gradient-Focused-Optimizer: SVRG

Lemma

Suppose ηt = η = 1/4Ln2/3,m = n and Tg = Tε, which depends on ε, then SVRG is a
Gradient-Focused-Optimizer with g(n, ε) = Tε/40Ln2/3



Hessian-Focused-Optimizer: HessianDescent

Lemma

HessianDescent is a Hessian-Focused-Optimizer with h(n, ε, γ) = ρ
24M2γ

3.

Proposition

The time complexity of finding v ∈ Rd that ‖v‖ = 1, and with probability at least ρ
the following inequality holds:

〈
v ,∇2f (x)v

〉
≤ λmin(∇2f (x)) + γ

2 is

O(nd + n3/4d/γ1/2).



Hessian-Focused-Optimizer: HessianDescent (cont.)

Theorem

Suppose SVRG with m = n, ηt = η = 1/4Ln2/3 for all t ∈ {1, ...,m} and Tg = 40Ln2/3

ε1/2

is used as Gradient-Focused-Optimizer and HessianDescent is used as
Hessian-Focused-Optimizer with q = 0, then Algorithm finds a (ε,

√
ε)-second

order critical point in T = O( ∆
min(p,1−p)ε3/2 ) with probability at least 0.9.

Corollary

The overall running time of algorithm to find a (ε,
√
ε)-second order critical point with

parameter settings used in Theorem 2, is O(nd/ε3/2 + n3/4d/ε7/4 + n2/3d/ε2)



Hessian-Focused-Optimizer: CubicDescent

Cubic Regularization

v = arg min
v
〈∇f (x), v〉+

1

2

〈
v ,∇2f (v)v

〉
+

M

6
‖v‖3 , x t+1 = x t + v

Theorem

Suppose SVRG with m = n, ηt = η = 1/4Ln2/3 for all t ∈ {1, ...,m} and Tg = 40Ln2/3

ε1/2

is used as Gradient-Focused-Optimizer and CubicDescent is used as
Hessian-Focused-Optimizer with q = 0, then Algorithm finds a (ε,

√
ε)-second

order critical point in T = O( ∆
min(p,1−p)ε3/2 ) with probability at least 0.9.

Corollary

The overall running time of algorithm to find a (ε,
√
ε)-second order critical point with

parameter settings used in Theorem 3, is O(ndw/ε3/2 + n2/3d/ε2)



Overall

GFO HFO Overall
Iteration Comp. per iter.

SVRG + HD O( nd
ε3/2 + n3/4d

ε2 ) O( 1
ε3/2 ) O(nd + n3/4d

ε1/4 ) O( nd
ε3/2 + n3/4d

ε7/4 + n2/3d
ε2 )

SVRG + CD O( nd
ε3/2 + n3/4d

ε2 ) O( 1
ε3/2 ) O(ndw ) O(nd

w

ε3/2 + n2/3d
ε2 )



Algorithms1

point Algorithm Complexity (non-convex) Hessian info.

Approx. sta. pt. GD O(nd
ε2 ) NO

Approx. sta. pt. SGD O( d
ε4 ) NO

Approx. sta. pt. SVRG O(nd + n2/3d
ε2 ) NO

Approx. local min. perturbed SGD O(d
C

ε4 ) NO

Approx. local min. cubic regularization O(nd
w−1+ndw

ε3/2 ) Yes (explicit)

Approx. local min. FastCubic O( nd
ε3/2 + n3/4d

ε7/4 ) Yes

Approx. local min. AGD+NCD O( nd
ε3/2 + n3/4d

ε7/4 ) Yes

Approx. local min. SVRG + HD O( nd
ε3/2 + n3/4d

ε7/4 + n2/3d
ε2 ) Yes

Approx. local min. SVRG + CD O(nd
w

ε3/2 + n2/3d
ε2 ) Yes

1May subject to change



Open Questions

I GFO: SVRG, Adam, SMD, etc.
How to analysis the performance?

I HFO: acceleration of cubic?

I only first-order oracle? without
Hessian-vector product?

I how to handle the “flat” saddle
problem?
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