A Generic Approach for Escaping Saddle Points

reading group
present by Hongwei Jin

March 2, 2018

Problem

Nonconvex finite-sum problem

$$
\min _{x \in \mathbb{R}^{d}} f(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

- neither f nor f_{i} are necessarily convex
- assumptions
- Lipschitz continuity of gradient on each function

$$
\left\|\nabla f_{i}(\boldsymbol{x})-\nabla f_{i}(\boldsymbol{y})\right\| \leq L\|\boldsymbol{x}-\boldsymbol{y}\|
$$

- Lipschitz continuity of Hessian

$$
\left\|\nabla^{2} f(\boldsymbol{x})-\nabla^{2} f(\boldsymbol{y})\right\| \leq M\|\boldsymbol{x}-\boldsymbol{y}\|
$$

Definitions

- 1st-order stationary point

$$
\left\|\nabla_{f}(\boldsymbol{x})\right\| \leq \varepsilon
$$

\boldsymbol{x} can be a local minimum, local maximum, or a saddle point

- strict-saddle point

$$
\left\|\nabla_{f}(\boldsymbol{x})\right\| \leq \varepsilon \quad \& \quad \lambda_{\min } \nabla^{2} f(\boldsymbol{x})<0
$$

- 2nd-order stationary point

$$
\left\|\nabla_{f}(\boldsymbol{x})\right\| \leq \varepsilon \quad \& \quad \lambda_{\min } \nabla^{2} f(\boldsymbol{x})>-\gamma
$$

Definitions

- 1st-order stationary point

$$
\left\|\nabla_{f}(\boldsymbol{x})\right\| \leq \varepsilon
$$

\boldsymbol{x} can be a local minimum, local maximum, or a saddle point

- strict-saddle point

$$
\left\|\nabla_{f}(\boldsymbol{x})\right\| \leq \varepsilon \quad \& \quad \lambda_{\min } \nabla^{2} f(\boldsymbol{x})<0
$$

- 2nd-order stationary point

$$
\left\|\nabla_{f}(\boldsymbol{x})\right\| \leq \varepsilon \quad \& \quad \lambda_{\min } \nabla^{2} f(\boldsymbol{x})>-\gamma
$$

How to get a fairly GOOD solution?

Background

Provable global optimum

- Low-rank matrix problems (algorithm independent)
- matrix completion [Ge-Lee-Ma, NIPS'16]
all local minima are global minima in the symmetric matrix completion problem
- matrix sensing, matrix completion and robust PCA [Ge-Jin-Zheng, ICML'17]

1) all local optima are global optima 2) no high-order saddle points

- Neural network
- deep learning without poor local minima [Kawaguchi, NIPS'16]
square loss with any depth any width: 1) local minima are global minima 2) if critical point is not global, then it's a saddle 3) exist 'bad' saddle (Hessian has no negative eigenvalue) for deeper network (more than 3 layers)
- two-layer NN with ReLU [Li-Yuan, NIPS'17] input follows Gaussian dist. with standard $O(1 / \sqrt{d})$ init. of weights, SGD converges to global optima
- global optimality conditions for DNN [Yun-Sra-Jabdabaie, accepted ICLR'18] provide necessary and sufficient conditions for global optimality

Background Cont.

ε-approximate local minimum

- Escape strict saddle using gradient
- SGD can escape saddle [Ge-Huang-Jin-Yuan, colt'15]

Noise SGD can escape saddle in the orthogonal tensor decomposition problem

- Gradient descent converges to minimizers [Lee-Simchovitz-Jordan-Recht, Colt'16]

GD converge to minimizer or negative infinity, proved by stable manifold theorem

- PGD can escape saddle [Jin-Ge-Netrapalli-Kakade-Jordan, ICML'17]

Add perturbation when enter the stuck region

- Escape saddle using Hessian explicitly
- Cubic regularization [Nesterov-Polyak, MP'06]
- Escape strict saddle using gradient and Hessian information
- AGD and proximal eigenvector of Hessian [Carmon-Duchi-Hinder-Sidford, arXiv'17]

Run PCA to estimate the smallest eigenvector of Hessian and apply AGD to decrease

- AllenZhu's works: FastCubic, Natasha2, Katyusha X, Neon [AllenZhu, arXiv'17-18]
- Alternate between gradient and Hessian descent [Reddi-Zaheer-Sra-Poczos-Bash-Salakhutdinov-Smola, arXi' 17$]$
Provide a general framework combining gradient and Hessian, and apply SVRG + $\mathrm{HD} / \mathrm{CR}$ to prove the complexities

Second order Stationary Point

Definition

- An Incremental First-order Oracle (IFO) takes an index $i \in[x]$ and a point $x \in \mathbb{R}^{d}$, and returns the pair $\left(f_{i}(x), \nabla f_{i}(x)\right)$.
- An Incremental Second-order Oracle (ISO) takes an index $i \in[x]$, a point $x \in \mathbb{R}^{d}$ and vector $v \in \mathbb{R}^{d}$, and returns the vector $\nabla^{2} f_{i}(x) v$.

Pearlmutter's algorithm

$$
\begin{array}{ll}
& \nabla f(\boldsymbol{x}+r \boldsymbol{v}) \approx \nabla f(\boldsymbol{x})+r \nabla^{2} f(\boldsymbol{x}) \boldsymbol{v} \\
& \nabla^{2} f(\boldsymbol{x}) \boldsymbol{v} \approx \frac{\nabla f(\boldsymbol{x}+r \boldsymbol{v})-\nabla f(\boldsymbol{x})}{r} \\
\text { in practice } \quad & \nabla^{2} f(\boldsymbol{x}) \boldsymbol{v} \approx \frac{\nabla f(\boldsymbol{x}+r \boldsymbol{v})-\nabla f(\boldsymbol{x}-r \boldsymbol{v})}{2 r}
\end{array}
$$

Generic Framework

Idea

Interleave two subroutines to obtain a second-order critical point

- Gradient-Focused-Optimizer use the gradient information to decrease the function value
- Hessian-Focused-Optimizer use the Hessian information to avoid saddle point

Generic Framework (cont.)

```
Algorithm 1 Generic Framework
    Input - Initial point: \(x^{0}\), total iterations \(T\), error threshold parameters \(\epsilon, \gamma\) and probability \(p\)
    for \(t=1\) to \(T\) do
        \(\left(y^{t}, z^{t}\right)=\operatorname{Gradient}-F o c u s e d-O p t i m i z e r ~\left(~\left(x^{t-1}, \epsilon\right)(\right.\) refer to G. 1 and G.2)
        Choose \(u^{t}\) as \(y^{t}\) with probability \(p\) and \(z^{t}\) with probability \(1-p\)
        \(\left(x^{t+1}, \tau^{t+1}\right)=\operatorname{HesSIAN}-\operatorname{FocUSEd}-\operatorname{OptimiZer}\left(u^{t}, \epsilon, \gamma\right)(\) refer to \(\mathbf{H . 1}\) and H.2)
        if \(\tau^{t+1}=\varnothing\) then
            Output set \(\left\{x^{t+1}\right\}\)
        end if
    end for
    Output set \(\left\{y^{1}, \ldots, y^{T}\right\}\)
```

- G.1: $\mathrm{E}[f(\boldsymbol{y})] \leq f(\boldsymbol{x})$
- G.2: $\mathrm{E}\left[\left\|\nabla_{f}(\boldsymbol{y})\right\|^{2}\right] \leq \frac{1}{g(n, \epsilon)} \mathrm{E}[f(\boldsymbol{x})-f(z)]$, where g is positive function: $\mathbb{N} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$
- H.1: $\mathrm{E}[f(\boldsymbol{y})] \leq f(\boldsymbol{x})$
- H.2: $\mathrm{E}[f(\boldsymbol{y})] \leq f(\boldsymbol{x})-h(n, \epsilon, \gamma)$ when $\lambda_{\text {min }}\left(\nabla^{2} f(\boldsymbol{x})\right) \leq-\gamma$ for some h.

Main Theorem

Theorem

Let $\Delta=f\left(x^{0}\right)-B$ and $\theta=\min \left((1-p) \epsilon^{2} g(n, \epsilon), p h(n, \epsilon, \gamma)\right)$. Also, let set Γ be the output of Algorithm with Gradient-Focused-Optimizer satisfying G. 1 and G. 2 and Hessian-Focused-Optimizer satisfying H. 1 and H.2. Furthermore, T be such that $T>\Delta / \theta$. Suppose the multiset $S=\left\{i_{1}, \ldots, i_{k}\right\}$ are k indices selected independently and uniformly randomly from $\{1, \ldots,|\Gamma|\}$. Then the following holds for the indices in S :

- y^{t}, where $t \in\left\{i_{1}, \ldots, i_{k}\right\}$ is a (ϵ, γ)-critical point with probability at least $1-\Delta /(T \theta)$.
- If $k=O\left(\frac{\log (1 / \zeta)}{\log (\Delta /(T \theta)))}\right)$, with at least probability $1-\zeta$, at least one iterate y^{t} where $t \in\left\{i_{1}, \ldots, i_{k}\right\}$ is a (ϵ, γ)-critical point.

Gradient-Focused-Optimizer: SVRG

```
Algorithm \(2 \operatorname{SVRG}\left(x^{0}, \epsilon\right)\)
    Input: \(x_{m}^{0}=x^{0} \in \mathbb{R}^{d}\), epoch length \(m\), step sizes \(\left\{\eta_{i}>0\right\}_{i=0}^{m-1}\), iterations \(T_{g}, S=\left\lceil T_{g} / m\right\rceil\)
    for \(s=0\) to \(S-1\) do
        \(\tilde{x}^{s}=x_{0}^{s+1}=x_{m}^{s}\)
        \(g^{s+1}=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(\tilde{x}^{s}\right)\)
        for \(t=0\) to \(m-1\) do
            Uniformly randomly pick \(i_{t}\) from \(\{1, \ldots, n\}\)
            \(v_{t}^{s+1}=\nabla f_{i_{t}}\left(x_{t}^{s+1}\right)-\nabla f_{i_{t}}\left(\tilde{x}^{s}\right)+g^{s+1}\)
            \(x_{t+1}^{s+1}=x_{t}^{s+1}-\eta_{t} v_{t}^{s+1}\)
        end for
    end for
    Output: \((y, z)\) where \(y\) is Iterate \(x_{a}\) chosen uniformly random from \(\left\{\left\{x_{t}^{s+1}\right\}_{t=0}^{m-1}\right\}_{s=0}^{S-1}\) and \(z=x_{m}^{S}\).
```


Lemma

Suppose $\eta_{t}=\eta=1 / 4 L n^{2 / 3}, m=n$ and $T_{g}=T_{\epsilon}$, which depends on ϵ, then SVRG is a Gradient-Focused-Optimizer with $g(n, \epsilon)=T_{\epsilon} / 40 L n^{2 / 3}$

Hessian-Focused-Optimizer: HessianDescent

```
Algorithm 3 Hessiandescent \((x, \epsilon, \gamma)\)
1: Find \(v\) such that \(\|v\|=1\), and with probability at least \(\rho\) the following inequality holds: \(\left\langle v, \nabla^{2} f(x) v\right\rangle \leq\)
    \(\lambda_{\min }\left(\nabla^{2} f(x)\right)+\frac{\gamma}{2}\).
2: Set \(\alpha=\left|\left\langle v, \nabla^{2} f(x) v\right\rangle\right| / M\).
3: \(u=x-\alpha \operatorname{sign}(\langle v, \nabla f(x)\rangle) v\).
4: \(y=\arg \min _{z \in\{u, x\}} f(z)\)
5: Output: \((y, \diamond)\).
```


Lemma

HessianDescent is a Hessian-Focused-Optimizer with $h(n, \epsilon, \gamma)=\frac{\rho}{24 M^{2}} \gamma^{3}$.

Proposition

The time complexity of finding $v \in \mathbb{R}^{d}$ that $\|v\|=1$, and with probability at least ρ the following inequality holds: $\left\langle v, \nabla^{2} f(x) v\right\rangle \leq \lambda_{\min }\left(\nabla^{2} f(x)\right)+\frac{\gamma}{2}$ is $O\left(n d+n^{3 / 4} d / \gamma^{1 / 2}\right)$.

Hessian-Focused-Optimizer: HessianDescent (cont.)

Theorem

Suppose SVRG with $m=n, \eta_{t}=\eta=1 / 4 L n^{2 / 3}$ for all $t \in\{1, \ldots, m\}$ and $T_{g}=\frac{40 L n^{2 / 3}}{\epsilon^{1 / 2}}$ is used as Gradient-Focused-Optimizer and HessianDescent is used as Hessian-Focused-Optimizer with $q=0$, then Algorithm finds a $(\epsilon, \sqrt{\epsilon})$-second order critical point in $T=O\left(\frac{\Delta}{\min (p, 1-p) \epsilon^{3 / 2}}\right)$ with probability at least 0.9 .

Corollary

The overall running time of algorithm to find a $(\epsilon, \sqrt{\epsilon})$-second order critical point with parameter settings used in Theorem 2, is $O\left(n d / \epsilon^{3 / 2}+n^{3 / 4} d / \epsilon^{7 / 4}+n^{2 / 3} d / \epsilon^{2}\right)$

Hessian-Focused-Optimizer: CubicDescent

Cubic Regularization

$$
\boldsymbol{v}=\arg \min _{\boldsymbol{v}}\langle\nabla f(\boldsymbol{x}), \boldsymbol{v}\rangle+\frac{1}{2}\left\langle\boldsymbol{v}, \nabla^{2} f(\boldsymbol{v}) \boldsymbol{v}\right\rangle+\frac{M}{6}\|\boldsymbol{v}\|^{3}, \quad \boldsymbol{x}_{t+1}=\boldsymbol{x}_{t}+\boldsymbol{v}
$$

Theorem

Suppose SVRG with $m=n, \eta_{t}=\eta=1 / 4 L n^{2 / 3}$ for all $t \in\{1, \ldots, m\}$ and $T_{g}=\frac{40 L n^{2 / 3}}{\epsilon^{1 / 2}}$ is used as Gradient-Focused-Optimizer and CubicDescent is used as Hessian-Focused-Optimizer with $q=0$, then Algorithm finds a $(\epsilon, \sqrt{\epsilon})$-second order critical point in $T=O\left(\frac{\Delta}{\min (p, 1-p) \epsilon^{3 / 2}}\right)$ with probability at least 0.9 .

Corollary

The overall running time of algorithm to find a $(\epsilon, \sqrt{\epsilon})$-second order critical point with parameter settings used in Theorem 3, is $O\left(n d^{w} / \epsilon^{3 / 2}+n^{2 / 3} d / \epsilon^{2}\right)$

Overall

	GFO	HFO		Overall
		Iteration	Comp. per iter.	
SVRG + HD	$O\left(\frac{n d}{\epsilon^{3 / 2}}+\frac{n^{3 / 4} d}{\epsilon^{2}}\right)$	$O\left(\frac{1}{\epsilon^{3 / 2}}\right)$	$O\left(n d+\frac{n^{3 / 4} d}{\epsilon^{1 / 4}}\right)$	$O\left(\frac{n d}{\epsilon^{3 / 2}}+\frac{n^{3 / 4} d}{\epsilon^{7 / 4}}+\frac{n^{2 / 3} d}{\epsilon^{2}}\right)$
SVRG + CD	$O\left(\frac{n d}{c^{3 / 2}}+\frac{n^{3} / 4 d}{\epsilon^{2}}\right)$	$O\left(\frac{1}{\mathrm{~s}^{3 / 2}}\right)$	$O(n d w)$	$O\left(\frac{n w^{w}}{3 / 2}+\frac{n^{2 / 3} d}{L^{2}}\right)$

Algorithms ${ }^{1}$

point	Algorithm	Complexity (non-convex)	Hessian info.
Approx. sta. pt.	GD	$O\left(\frac{n d}{\epsilon_{d}}\right)$	NO
Approx. sta. pt.	SGD	$O\left(\frac{d}{\epsilon^{4}}\right)$	NO
Approx. sta. pt.	SVRG	$O\left(n d+\frac{n^{2 / 3} d}{\epsilon^{2}}\right)$	NO
Approx. local min.	perturbed SGD	$O\left(\frac{d^{c}}{\epsilon^{2}}\right)^{4}$	NO
Approx. local min.	cubic regularization	$O\left(\frac{n d^{w-1}+n d^{w}}{\epsilon^{3 / 2}}\right)$	Yes (explicit)
Approx. local min.	FastCubic	$O\left(\frac{n d}{\epsilon^{3 / 2}}+\frac{n^{3 / 4} d}{\epsilon^{7 / 4}}\right)$	Yes
Approx. local min.	AGD+NCD	$O\left(\frac{n d}{\epsilon^{3 / 2}}+\frac{n^{3 / 4} d}{\epsilon^{7 / 4}}\right)$	Yes
Approx. local min.	SVRG + HD	$O\left(\frac{n d}{\epsilon^{3 / 2}}+\frac{n^{3 / 4} d}{\epsilon^{7 / 4}}+\frac{n^{2 / 3} d}{\epsilon^{2}}\right)$	Yes
Approx. local min.	SVRG + CD	$O\left(\frac{n d w}{\epsilon^{3 / 2}}+\frac{n^{2 / 3} d}{\epsilon^{2}}\right)$	Yes

[^0]
Open Questions

- GFO: SVRG, Adam, SMD, etc. How to analysis the performance?
- HFO: acceleration of cubic?
- only first-order oracle? without Hessian-vector product?
- how to handle the "flat" saddle problem?

[^0]: ${ }^{1}$ May subject to change

