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Nonconvex finite-sum problem

min  f(x):= %Z fi(x)
i=1

xcRd

» neither f nor f; are necessarily convex
» assumptions
— Lipschitz continuity of gradient on each function

[Vi(x) = VAi(y)l < Lllx =yl
— Lipschitz continuity of Hessian

|V2F(x) = V2 (y)|| < Mx —y]



» 1st-order stationary point
IVe(x)l < e
x can be a local minimum, local maximum, or a saddle point
» strict-saddle point

[Ve(x¥)| <6 & AminV3F(x) <0

» 2nd-order stationary point

Strict saddle point Non-strict saddle point

IVe(x)| <€ & AminV3F(x) > —y



» 1st-order stationary point
IVe(x)l < e
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» 2nd-order stationary point

Strict saddle point Non-strict saddle point

V()| <e & AminV3F(x) > —v
How to get a fairly GOOD solution?



Background

Provable global optimum
» Low-rank matrix problems (algorithm independent)

— matrix completion [Ge-Lee-Ma, NIPS'16]

all local minima are global minima in the symmetric matrix completion problem
— matrix sensing, matrix completion and robust PCA [Ge-Jin-Zheng, IcML'17]

1) all local optima are global optima 2) no high-order saddle points

» Neural network

— deep learning without poor local minima [Kawaguchi, NIPS'16]
square loss with any depth any width: 1) local minima are global minima 2) if
critical point is not global, then it's a saddle 3) exist ‘bad’ saddle (Hessian has no
negative eigenvalue) for deeper network (more than 3 layers)

— two-layer NN with RelLU [Li-vuan, niPS'17]
input follows Gaussian dist. with standard O(1/v/d) init. of weights, SGD converges
to global optima

— global optimality conditions for DNN [vun-Sra-Jabdabaie, accepted ICLR'18]
provide necessary and sufficient conditions for global optimality



Background Cont.

g-approximate local minimum
» Escape strict saddle using gradient
— SGD can escape saddle [Ge-Huang-Jin-Yuan, COLT'15]
Noise SGD can escape saddle in the orthogonal tensor decomposition problem
— Gradient descent converges to minimizers [Lee-Simchowitz-Jordan-Recht, COLT'16]
GD converge to minimizer or negative infinity, proved by stable manifold theorem
— PGD can escape saddle [in-Ge-Netrapalii-Kakade-Jordan, ICML'17]
Add perturbation when enter the stuck region
» Escape saddle using Hessian explicitly
— Cubic regularization [Nesterov-Polyak, MP'06]
» Escape strict saddle using gradient and Hessian information
— AGD and proximal eigenvector of Hessian [carmon-Duchi-Hinder-Sidford, arXiv'17]
Run PCA to estimate the smallest eigenvector of Hessian and apply AGD to decrease
— AllenZhu's works: FastCubic, Natasha2, Katyusha X, Neon [alienzhu, arxiv'17-1g]
— Alternate between gradient and Hessian descent [Reddi-Zaheer-Sra-Poczos-Bash-Salakhutdinov-Smola,
arXiv'17]
Provide a general framework combining gradient and Hessian, and apply SVRG +
HD/CR to prove the complexities



Second order Stationary Point

Definition
» An Incremental First-order Oracle (IFO) takes an index i € [x] and a point
x € RY, and returns the pair (fi(x), V£(x)).

» An Incremental Second-order Oracle (ISO) takes an index i € [x], a point x € R
and vector v € R9, and returns the vector V2f;(x)v.

Pearlmutter’s algorithm

VF(x + rv) = VF(x) + rV2f(x)v
v~ Vi(x+rv)—Vf(x)
r
Vi(x+rv)—Vf(x—rv)
2r

V2f(x)

in practice  V2f(x)v ~



Interleave two subroutines to obtain a second-order critical point

» Gradient-Focused-Optimizer
use the gradient information to decrease the function value

» Hessian-Focused-Optimizer
use the Hessian information to avoid saddle point



Generic Framework (cont.)

Algorithm 1 Generic Framework

1: Input - Initial point: 2, total iterations T', error threshold parameters e, v and probability p
2: fort =1to T do
3:  (y',2') = GRADIENT-FOCUSED-OPTIMIZER (z° ", €) (refer to G.1 and G.2)

4:  Choose u' as y* with probability p and z* with probability 1 — p

5 (x't!, rtt!) = HESSIAN-FOCUSED-OPTIMIZER (uf, €, y) (refer to H.1 and H.2)
6: if 7' = 2 then

7 Output set {z' ™'}

8: end if

9: end for

10: Output set {y*, ..., y"}

> G.1: E[f(y)] < f(x)
> G2 E|IVe(y)I?] < 725Elf(x) - f(2)]
where g is positive function: N x RT — R™

> H.1: E[f(y)] < f(x)
> H.2: E[f(y)] < f(x) — h(n,€,7) when Anin(V2f(x)) < — for some h.




Main Theorem

Theorem

Let A = f(x°) — B and 6 = min ((1 — p)e?g(n, €), ph(n,€,7)). Also, let set T be the
output of Algorithm with Gradient-Focused-Optimizer satisfying G.1 and G.2 and
Hessian-Focused-Optimizer satisfying H.1 and H.2. Furthermore, T be such that
T > A/6. Suppose the multiset S = {i, ..., ix} are k indices selected independently
and uniformly randomly from {1, ...,|['|}. Then the following holds for the indices in S:

> vyt wheret € {i,...,ix} is a (e,7)-critical point with probability at least
1—-A/(TH).

> Ifk = O(%), with at least probability 1 — (, at least one iterate y*
where t € {i, ..., ik} is a (€, ~)-critical point.



Algorithm 2 SVRG (20, )

1: Input: 9, = z° € RY, epoch length m, step sizes {n; > 0}"5", iterations 7}, S = [T, /m]
2: fors=0to S —1do
=t =,
gt = ! = 2 VA(E)

fort—Otom—ldo

Uniformly randomly pick 4 from {1,...,n}

ot = Vi) - VL @) + g7

st =it et
end for
10: end for
11: Output: (y, z) where y is Iterate ., chosen uniformly random from {{z;**}7" 5" i 5_0 Dand z = a3,

Suppose n; =1 = 1/4Ln?/3,m = n and T, = T., which depends on ¢, then SVRG is a
Gradient-Focused-Optimizer with g(n,e) = T./40Ln?/3

DX N R W




Hessian-Focused-Optimizer: HessianDescent

Algorithm 3 HESSIANDESCENT (z, €,7)

1: Find v such that H’UH = 1, and with probability at least p the following inequality holds: (v, V*f(z)v) <
Amin (V2 (2 >>

: Seta = |(v, z)z>|/]\[
Tu=x—a §1gn(( ), V f(z)))v.
Dy = arg min.e {uz} f(2)

: Output: (y, ¢).

s W

Lemma

HessianDescent is a Hessian-Focused-Optimizer with h(n, e, v) = 24M2’y

Proposition

The time complexity of finding v € RY that ||v|| = 1, and with probability at least p
the following inequality holds: <v V2f(x v> < Amin(V2F(x)) + % is

O(nd + n3/4d /4/?).



Hessian-Focused-Optimizer: HessianDescent (cont.)

Theorem

Suppose SVRG with m = n,n; = n = 1/4Ln?/3 for all t € {1,...,m} and T, = 40:1’/’2/3
is used as Gradient-Focused-Optimizer and HessianDescent is used as
Hessian-Focused-Optimizer with g = 0, then Algorithm finds a (e, \/€)-second
order critical point in T = O( with probability at least 0.9.

o)
min(p,l—p)e?’/z

Corollary

The overall running time of algorithm to find a (e, \/€)-second order critical point with
parameter settings used in Theorem 2, is O(nd/e3/? + n3/*d /"/* + n?/3d /€?)



Hessian-Focused-Optimizer: CubicDescent

Cubic Regularization
: 1 s M 3
v = argmin (VF(x),v)+ 5 (v,V*f(v)v) + = IvIP, xep1=xc+v

Theorem

Suppose SVRG with m = n,ny =n = 1/4Ln*/3 for all t € {1,...,m} and T, = 40:{}2/3
is used as Gradient-Focused-Optimizer and CubicDescent is used as
Hessian-Focused-Optimizer with g = 0, then Algorithm finds a (e, \/€)-second
order critical point in T = O( ) with probability at least 0.9.

A
min(pvl_p)€3/2

Corollary

The overall running time of algorithm to find a (e, \/€)-second order critical point with
parameter settings used in Theorem 3, is O(nd" /e3/2 + n?/3d/€?)



GFO HFO Overall
Iteration Comp. per iter.

SVRG + HD | O(24 + :/4d) O(37)  O(nd + ) | O 5’72 + o
7 w 2 3
SVRG + CD | O(24 + 5d) | 0(-L;) O(nd™) O(Zr + /d)




Algorithms!

point Algorithm Complexity (non-convex) | Hessian info.
Approx. sta. pt. GD O(’e’—f) NO
Approx. sta. pt. SGD O(g) NO
Approx. sta. pt. SVRG O(nd + "26/23‘1) NO
Approx. local min. perturbed SGD O(‘Zl—f) NO
Approx. local min. | cubic regularization O(”dw;jg”dw) Yes (explicit)
Approx. local min. FastCubic 0(6’3’% + %) Yes
Approx. local min. AGD+NCD 0(6’3’% %) Yes
Approx. local min. SVRG + HD O(49, + m7d 4 r*2d) Yes
Approx. local min. SVRG + CD o(dy + 7d) Yes

May subject to change
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GFO: SVRG, Adam, SMD, etc.
How to analysis the performance?

HFO: acceleration of cubic?

only first-order oracle? without
Hessian-vector product?

how to handle the “flat” saddle
problem?
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