Generative Models for Graphs

Hongwei Jin
2020-10-28
Many Data are Graphs

Social networks

Economic networks

Biomedical networks

Information networks

Internet

Network of neurons
Why Graphs?

• Universal language for describing complex data
 • Networks/graphs from science, nature, and technology are more similar than one would expect

• Shared vocabulary between fields
 • Computer Science, Social science, Physics, Economics, Statistics, Biology

• Data availability (+computational challenges)
 • Web/mobile, bio, health, and medical

• Impact!
 • Social networking, Social media, Drug design
Machine Learning with Graphs

Classical ML tasks in graphs:

• **Node classification**
 • Predict a type of a given node

• **Link prediction**
 • Predict whether two nodes are linked

• **Graph classification**
 • Predict the label of a single graph

• **Community detection**
 • Identify densely linked clusters of nodes

• **Network similarity**
 • How similar are two (sub)networks
Node classification
Link Prediction
Idea – Aggregate Neighbors

- **Key idea:** Generate node embeddings based on *local network neighborhoods*
Idea – Aggregate Neighbors

- **Intuition**: Nodes aggregate information from their neighbors using neural networks.
Example – GCN, GraphSAGE

• **Key idea**: Generate node embeddings based on local network neighborhoods
 • Nodes aggregate “messages” from their neighbors using neural networks

• Graph convolutional network
 • Basic variant: average neighborhood information and stack neural networks

• GraphSAGE
 • Generalized neighborhood aggregation
Graph encoder/decoder
Graph Generation Problem

• We want to generate realistic graphs

• Goal-directed graph generation
 • Generate graphs that optimize given objectives/constraints
 • Drug molecule generation/optimization
Challenges for Graph Generation

- Large and discrete variable output space
 - For n nodes we need to generate n^2 values
 - Graph size (nodes, edges) varies

5 nodes: 25 values
Challenges for Graph Generation

• Isomorphic graphs
 • n-node graph can be represented in $n!$ ways
 • Hard to compute/optimize objective functions (e.g., reconstruction error)
Challenges for Graph Generation

• Complex dependencies
 • Edge formation has long-range dependencies

Example: Generate a ring graph on 6 nodes:

Existence of an edge may depend on the entire graph!
A very General Graph Generation Process

• Loop until not adding new nodes:
 • Add node?
 • Create node
• Loop until not adding new edges:
 • Add edge?
 • Choose an existing node to create edge
Generative Models of Graphs

• **Stochastic graph models**
 - Erdos-Renyi model, Barabasi-Albert model, stochastic block model, small-world model
 - Nice theory, but limited capacity

• **Tree-based models**
 - Tons of tree generation models
 - Only works on trees

• **Graph grammars**
 - Makes hard distinction between what is in the language vs not, hard to use
Deep Generative Models

Setup:

• Assume we want to learn a generative model from a set of data points (i.e., graphs) \{x_i\}
 • \(p_{data}(x)\) is the data distribution, which is never known to us, but we have sampled \(x_i \sim p_{data}(x)\)
 • \(p_{model}(x; \theta)\) is the model, parametrized by \(\theta\), that we use to approximate \(p_{data}(x)\)

Goal

• 1) Make \(p_{model}(x; \theta)\) close to \(p_{data}(x)\)
• 2) Make sure we can sample from \(p_{model}(x; \theta)\), i.e., generate examples from \(p_{model}(x; \theta)\)
Deep Generative Models

1) Make $p_{\text{model}}(x; \theta)$ close to $p_{\text{data}}(x)$

- **Key principle**: maximum likelihood
 - Fundamental approach to modeling distributions

\[
\theta^* = \arg \max_{\theta} \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(x \mid \theta)
\]

- Find θ^*, such that for observed data points $x_i \sim p_{\text{data}}(x)$,
 $\sum_i \log p_{\text{model}}(x_i; \theta^*)$ has the highest value, among all possible choices of θ
- Find the model that is most likely to have generated the observed data x
Deep Generative Models

2) Sample from $p_{model}(x; \theta)$

• **Goal**: sample from a complex distribution

• The most common approaches:
 • 1) Sample from a simple noise distribution
 $$z_i \sim N(0,1)$$
 • 2) Transform the noise z_i via a function $f(\cdot)$
 $$x_i = f(z_i; \theta)$$
 • x_i follows a complex distribution

Use deep neural networks to design f
Maximum Likelihood

- Explicit density
 - Tractable density
 - Fully visible belief nets
 - MADE
 - PixelRNN
 - Change of variables models (nonlinear ICA)
 - Approximate density
 - Variational
 - Markov Chain

- Implicit density
 - Markov Chain
 - GSN

Direct GAN
Types of Deep Generative Models

- Variational Autoencoders (VAEs)
 - VAEs, Kingma et al. 2014

- Generative Adversarial Networks (GANs)
 - GANs, Goodfellow et al. 2014

- Deep Auto-regressive Models (ARs)
 - ARs, Oord et al. 2016

- ...
VAEs, Kingma et al. 2014

• Latent variable model
 • An encoder $q_\phi(z|x)$
 • A decoder $p_\theta(x|z)$

• Maximizing the likelihood $\log p(x)$
 • Inference intractable since z is continuous.

• Maximizing the variational lower-bound $\mathcal{L}(\phi, \theta; x)$
 • Reparametrization trick for jointly optimizing encoder and decoder

\[
\mathcal{L}(\phi, \theta; x) = \mathbb{E}_{q_\phi(z|x)} \log p_\theta(x|z) - KL[q_\phi(z|x)||p(z)]
\]
GANs, Goodfellow et al. 2014

- A two-player minimax game
 - Generator $G: z \rightarrow x$
 - Discriminator $D: x \rightarrow \{0, 1\}$

- Discriminator aims to distinguish between real data and generated data
- Generator aims to fool the discriminator

$$\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$
• Example of deep auto-regressive model
 • Recurrent Neural Networks
• PixelRNN, Pixel CNN (Oord et al. 2016)
 • Generate an image pixel by pixel
 • A neural network is used to model the conditional distribution
• WaveNet (Oord et al. 2016)

\[
p(x) = \prod_{t=1}^{T} p(x_t | x_1, \ldots, x_{t-1})
\]
VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)

- VAE framework for graph generation
 - Graph as input data
 - **Encoder**: graph neural networks + gated pooling ➔ graph representation
 - **Decoder**: output a probabilistic fully-connected graph of predefined maximum size
 - Model the **existence of nodes, edges and their attributes** independently
 - Graph matching is required
VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)

• Input: graph $G = (A, E, F)$
 • A: adjacency matrix, E: edge attribute tensor, F: node attribute matrix

$P(G|\hat{G})$ by graph matching

\sim
VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)

• Input: graph $G = (A, E, F)$
 • A: adjacency matrix, E: edge attribute tensor, F: node attribute matrix

\[
\mathcal{L}(\phi, \theta; x) = \mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z) - KL[q_{\phi}(z|x)||p(z)]
\]

• New reconstruction loss:

\[
\log p(G|z) = \lambda_A \log p(A'|z) + \lambda_F \log p(F|z) + \lambda_E \log p(E|z)
\]
VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018), graph decoder

- Restrict the domain to the set of all graphs on maximum k nodes (k is around tens)
- Output a probabilistic fully-connected graph $\tilde{G} = (\tilde{A}, \tilde{E}, \tilde{F})$ on k nodes at once
 - Model the existence of nodes and edges as Bernoulli variables
 - Model the node and edge attributes as Multinomial variables
 - $\tilde{A} \in [0,1]^{k \times k}$ contains both node probabilities \tilde{A}_{aa} and edge probabilities \tilde{A}_{ab} for nodes $a \neq b$
 - $\tilde{E} \in [0,1]^{k \times k \times d_e}$ indicates the probabilities for edge attributes
 - $\tilde{F} \in [0,1]^{k \times d_n}$ indicates the probabilities for node attributes
- Inference: taking edge- and node-wise argmax in \tilde{A}, \tilde{E}, and \tilde{F}.
- **Graph Matching** must be used for calculating the reconstruction loss

Find corresponding $X \in \{0,1\}^{k \times n}$, mapping between G and \tilde{G}, COST
GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018)

• An implicit, likelihood-free generative model for molecule generation
• Combined with reinforcement learning to encourage the generated molecules with desired chemical properties
• **Generator**: generating molecules from a prior distribution
• **Discriminator**: distinguishing the generated samples and real samples
• **Reward network**:
 • Learns to assign a reward to each molecule to match a score provided by an external software
 • Invalid molecules always receive zero rewards.
GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018), Generator

- A probabilistic fully-connected graph
 - $X \in R^{N \times T}$: atom types
 - $A \in R^{N \times N \times T}$: bond types

- Objective function: $L(\theta) = \lambda L_{WGAN} + (1 - \lambda)L_{RL}$
GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018), Discriminator and Reward Network

- Learning molecule/graph representations with a variant of neural message passing algorithms
- Same architectures for discriminator and reward network
- Reward network for approximating the score by an external software
 - Trained with real samples and generated samples
AR based Graph Generative Model

GraphRNN, You et al. 2018

- **Idea:** Generating graphs via **sequentially** adding nodes and edges

Graph G with node ordering π can be uniquely mapped into a sequence of node and edge additions S^π
AR based Graph Generative Model

GraphRNN, You et al. 2018

• The sequence S^π has two levels: node and edge
• Node-level: at each step, a new node is added
• Edge-level: at each step add a new edge
AR based Graph Generative Model

GraphRNN, You et al. 2018

• Transform graph generation problem into a sequence generation problem

• Two processed required:
 • Generate a state for new node (node-level)
 • Generate edges for the new node based on its state (edge-level)

• Approach: RNN
AR based Graph Generative Model

GraphRNN, You et al. 2018

- GraphRNN has two RNNs: node-level RNN and edge-level RNN

- Relationship between two RNNs:
 - Node-level RNN generates the initial state for edge-level RNN
 - Edge-level RNN generates edges for the new node, then update node-level RNN state using generated results
AR based Graph Generative Model

GraphRNN, You et al. 2018

Green arrows denote the node-level RNN that encodes the “graph state” vector h_i in its hidden state, updated by the predicted adjacency vector S_i^π for node $\pi(v_i)$

Blue arrows represent the edge-level RNN, whose hidden state is initialized by the graph-level RNN, that is used to predict the adjacency vector S_i^π for node $\pi(v_i)$
AR based Graph Generative Model

GraphRNN, You et al. 2018

- RNN model
 - s_t: State of RNN after time t
 - x_t: Input to RNN at time t
 - y_t: Output of RNN at time t
 - W, U, V: parameter matrices, $\sigma(\cdot)$: non-linearity

\[
\begin{align*}
(1) \quad s_t &= \sigma(W \cdot x_t + U \cdot s_{t-1}) \\
(2) \quad y_t &= V \cdot s_t
\end{align*}
\]

- More expressive cells: GRU, LSTM, etc.
AR based Graph Generative Model

GraphRNN, You et al. 2018

• Goal: generate sequences

\[x_{t+1} = y_t \]

SOS (zero vector) to initialize

Deterministic, not so good
AR based Graph Generative Model

GraphRNN, You et al. 2018

• Probabilistic: $y_t = p_{model}(x_t| x_1, \ldots, x_{t-1}; \theta)$

x_{t+1} is sampled from $y_t: x_{t+1} \sim y_t$
AR based Graph Generative Model

GraphRNN, You et al. 2018

- **Testing:**
 - y_t follows **Bernoulli distribution** (choice of p_{model})
 - p means value 1 has prob. p, value 0 has prob. $1 - p$

```
s_0 = SOS

x_1 = SOS

y_1 = 0.9

s_1

y_2 = 0.4

x_2 \sim 0.9
x_2 = 1

s_2

y_3 = 0.7

x_3 \sim 0.4
x_3 = 1

s_3 ...
```
AR based Graph Generative Model

GraphRNN, You et al. 2018

- **Training:**
 - We observe a sequence y^* of edges $[1,0,...]$
 - **Principle:** Teacher Forcing -- Replace input and output by the real sequence
AR based Graph Generative Model

GraphRNN, You et al. 2018

- **Training:**
 - **Loss** L: **Binary cross entropy**
 - **Minimize:**
 $$L = -[y_1^* \log(y_1) + (1 - y_1^*) \log(1 - y_1)]$$

 - Compute loss
 $$y_1^* = 1$$
 $$y_1 = 0.9$$

 - If $y_1^* = 1$, we minimize $-\log(y_1)$, making y_1 higher
 - If $y_1^* = 0$, we minimize $-\log(1 - y_1)$, making y_1 lower
 - This way, y_1 is **fitting** the data samples y_1^*
AR based Graph Generative Model

GraphRNN, You et al. 2018

• Evaluation:
 • Define similarity metrics for graphs
 • No efficient graph isomorphism test that can be applied to any class of graphs
• Solution:
 • Visual similarity
 • Graph statistics similarity: degree distribution, cluster coefficient, diameter of graphs, etc.
AR based Graph Generative Model

GraphRNN, You et al. 2018

- Visual Similarity:
- Graph statistics Similarity:
MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018

• Molecule generation as sequential decisions
 • Add nodes and edges
 • A Markov decision process

• Goal: discover molecules that optimize desired properties while incorporating chemical rules.

• GCPN: A general model for goal-directed graph generation with RL
 • Optimize adversarial loss and domain-specific rewards with policy gradients
 • Acts in an environment that incorporates domain-specific rules.
MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018

- Goal-Directed Graph Generation
 - Optimize a given objective (*High scores*)
 - e.g., drug-likeness (black box)
 - Obey underlying rules (*Valid*)
 - e.g., chemical valency rules
 - Are learned from examples (*Realistic*)
 - e.g., Imitating a molecule graph dataset
MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018

- GCPN = graph representation + reinforcement learning
 - Reinforcement learning optimizes intermediate/final rewards (High scores)
 - Graph Neural Network captures complex structural information, and enables validity check in each state transition (Valid)

- Adversarial training imitates examples in given datasets (Realistic)
MDP based Graph Generative Model

GCPN, You et al. 2018, MDP

\[M = (S, A, P, R, \gamma) \]

- States \(S = \{s_i\} \) consists of all possible intermediate and final graphs
- Action \(A = \{a_i\} \) modification made to the current graph at each step
- State transitional dynamics \(P \)
- Reward function \(R \)
- Discount factor \(\gamma \)
MDP based Graph Generative Model

GCPN, You et al. 2018, State space

- s_t as the intermediate generated graph G_t
- G_0 contains a single node that represents a carbon atom
MDP based Graph Generative Model

GCPN, You et al. 2018, Action Space

• A set of atoms $C = \bigcup_{i=1}^{S} C_i$ to be added during each step
• Actions
 • Connecting a new atom C_i to a node in G_t
 • Connecting existing nodes within G_t
MDP based Graph Generative Model

GCPN, You et al. 2018, State Transition Dynamic

• Incorporate domain-specific rules in the state transition dynamics. Only carry out actions that obey the **given rules**

• Infeasible actions by the policy network are rejected and state remains same
MDP based Graph Generative Model

GCPN, You et al. 2018, Reward Design

• Step rewards: step-wise validity rewards and adversarial rewards
• Final rewards: a sum over domain-specific reward
 • Final property scores, penalization of unrealistic molecules, adversarial rewards
MDP based Graph Generative Model

GCPN, You et al. 2018, Results

Starting structure

-8.32

-5.55

Finished structure

-0.71

-1.78
More

• Generating graphs in other domain
 • 3D mesh reconstruction, scene graphs, knowledge graphs, etc.

• Scale up to large graphs
 • Hierarchical action space, allowing high-level action like adding a structure at a time
 • Leverage the sparse structure of graphs (Dai et al. 2020)

• More on **graph neural networks + reinforcement learning**
 • Relational deep reinforcement learning (Zambaldi et al. 2018)

• New discrepancy on graphs
 • Gromov Wasserstain distance (Bunne et al. 2019)
References

• CS 224W – Machine Learning with Graphs, Stanford University
• Tutorial on Graph Representation Learning, AAAI 2019
• Simonovsky, Komodakis, *GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders*, ICANN’18
• You et al. *GraphRNN: Generating Realistic Graphs with Deep Auto-regressive models*, ICML’18
• You et al. *Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation*, NIPS’18
• Cao, Kipt. *MolGAN: An implicit generative model for small molecular graphs*, 2018
• Li et al. *Learning Deep Generative Models of Graphs*, ICML’18