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Many Data are Graphs

Social networks Economic networks Biomedical networks

Information networks Internet Network of neurons



Why Graphs? 

• Universal language for describing complex data
• Networks/graphs from science, nature, and technology are more similar than 

one would expect

• Shared vocabulary between fields
• Computer Science, Social science, Physics, Economics, Statistics, Biology

• Data availability (+computational challenges)
• Web/mobile, bio, health, and medical

• Impact!
• Social networking, Social media, Drug design



Machine Learning with Graphs

Classical ML tasks in graphs:
• Node classification

• Predict a type of a given node
• Link prediction

• Predict whether two nodes are linked
• Graph classification

• Predict the label of a single graph
• Community detection

• Identify densely linked clusters of nodes
• Network similarity

• How similar are two (sub)networks



Node classification



Link Prediction



Idea – Aggregate Neighbors

• Key idea: Generate node embeddings based on local network 
neighborhoods



Idea – Aggregate Neighbors

• Intuition: Nodes aggregate information from their neighbors using 
neural networks

Parameterized by neural network



Example – GCN, GraphSAGE

• Key idea: Generate node embeddings based on local network 
neighborhoods

• Nodes aggregate “messages” from their neighbors using neural networks

• Graph convolutional network
• Basic variant: average neighborhood information and stack neural networks

• GraphSAGE
• Generalized neighborhood aggregation



Graph encoder/decoder

vector embedding

Encoder

Decoder



Graph Generation Problem

• We want to generate realistic graphs

• Goal-directed graph generation
• Generate graphs that optimize given objectives/constraints

• Drug molecule generation/optimization



Challenges for Graph Generation

• Large and discrete variable output space
• For 𝑛𝑛 nodes we need to generate 𝑛𝑛2 values
• Graph size (nodes, edges) varies



Challenges for Graph Generation

• Isomorphic graphs
• 𝑛𝑛-node graph can be represented in 𝑛𝑛! ways
• Hard to compute/optimize objective functions (e.g., reconstruction error)



Challenges for Graph Generation

• Complex dependencies
• Edge formation has long-range dependencies



A very General Graph Generation Process

• Loop until not adding new nodes:
• Add node?
• Create node
• Loop until not adding new edges:

• Add edge?
• Choose an existing node to create edge



Generative Models of Graphs

• Stochastic graph models
• Erdos-Renyi model, Barabasi-Albert model, stochastic block model, small-

world model
• Nice theory, but limited capacity

• Tree-based models
• Tons of tree generation models
• Only works on trees

• Graph grammars
• Makes hard distinction between what is in the language vs not, hard to use



Deep Generative Models

Setup:
• Assume we want to learn a generative model from a set of data 

points (i.e., graphs) {𝒙𝒙𝑖𝑖}
• 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙) is the data distribution, which is never known to us, but we have 

sampled 𝒙𝒙𝑖𝑖 ∼ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙)
• 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝒙𝒙; 𝜃𝜃) is the model, parametrized by 𝜃𝜃, that we use to approximate 
𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙)

Goal
• 1) Make 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝒙𝒙;𝜃𝜃) close to 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙)
• 2) Make sure we can sample from 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝒙𝒙;𝜃𝜃) , i.e., generate 

examples from 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝒙𝒙;𝜃𝜃)



Deep Generative Models

1) Make 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝒙𝒙;𝜃𝜃) close to 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙)
• Key principle: maximum likelihood

• Fundamental approach to modeling distributions

• Find 𝜃𝜃∗, such that for observed data points 𝒙𝒙𝑖𝑖 ∼ 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙), 
∑𝑖𝑖 log 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝒙𝒙𝑖𝑖; 𝜃𝜃∗) has the highest value, among all possible choices of 𝜃𝜃

• Find the model that is most likely to have generated the observed data 𝒙𝒙



Deep Generative Models

2) Sample from 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝒙𝒙;𝜃𝜃)
• Goal: sample from a complex distribution
• The most common approaches:

• 1) Sample from a simple noise distribution

• 2) Transform the noise 𝒛𝒛𝑖𝑖 via a function 𝑓𝑓(⋅)

• 𝒙𝒙𝑖𝑖 follows a complex distribution

Use deep neural networks 
to design 𝑓𝑓



Goodfellow, Tutorial on NeurIPS 2016



Types of Deep Generative Models

• Variational Autoencoders (VAEs)
• VAEs, Kingma et al. 2014

• Generative Adversarial Networks (GANs)
• GANs, Goodfellow et al. 2014

• Deep Auto-regressive Models (ARs)
• ARs, Oord et al. 2016

• …

Extend to deep graph 
generative models



VAEs, Kingma et al. 2014

• Latent variable model
• An encoder 𝑞𝑞𝜙𝜙(𝒛𝒛|𝒙𝒙)
• A decoder 𝑝𝑝𝜃𝜃(𝒙𝒙|𝒛𝒛)

• Maximizing the likelihood log 𝑝𝑝(𝒙𝒙)
• Inference intractable since 𝒛𝒛 is continuous.

• Maximizing the variational lower-bound ℒ(𝜙𝜙,𝜃𝜃;𝒙𝒙)
• Reparametrization trick for jointly optimizing encoder and decoder



GANs, Goodfellow et al. 2014

• A two-player minimax game
• Generator G: 𝒛𝒛 → 𝒙𝒙
• Discriminator D: 𝒙𝒙 → {0, 1}

• Discriminator aims to distinguish between real data and generated 
data

• Generator aims to fool the discriminator



ARs, Oord et al. 2016

• Example of deep auto-regressive model
• Recurrent Neural Networks

• PixelRNN, Pixel CNN (Oord et al. 2016)
• Generate an image pixel by pixel
• A neural network is used to model the conditional distribution

• WaveNet (Oord et al. 2016)



VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)
• VAE framework for graph generation

• Graph as input data
• Encoder: graph neural networks + gated pooling  graph representation
• Decoder: output a probabilistic fully-connected graph of predefined 

maximum size
• Model the existence of nodes, edges and their attributes independently
• Graph matching is required



VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)
• Input: graph 𝐺𝐺 = (𝐴𝐴,𝐸𝐸,𝐹𝐹)

• 𝐴𝐴: adjacency matrix, 𝐸𝐸: edge attribute tensor, 𝐹𝐹: node attribute matrix



VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)
• Input: graph 𝐺𝐺 = (𝐴𝐴,𝐸𝐸,𝐹𝐹)

• 𝐴𝐴: adjacency matrix, 𝐸𝐸: edge attribute tensor, 𝐹𝐹: node attribute matrix

• New reconstruction loss:

log 𝑝𝑝 𝐺𝐺 𝑧𝑧 = 𝜆𝜆𝐴𝐴 log 𝑝𝑝 𝐴𝐴′ 𝑧𝑧 + 𝜆𝜆𝐹𝐹 log 𝑝𝑝 𝐹𝐹 𝑧𝑧 + 𝜆𝜆𝐸𝐸 log 𝑝𝑝(𝐸𝐸|𝑧𝑧)

G



VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018), graph decoder

Find corresponding 𝑋𝑋 ∈ 0,1 𝑘𝑘×𝑛𝑛, mapping between 𝐺𝐺 and �𝐺𝐺 , COST



GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018)
• An implicit, likelihood-free generative model for molecule generation
• Combined with reinforcement learning to encourage the generated 

molecules with desired chemical properties
• Generator: generating molecules from a prior distribution
• Discriminator: distinguishing the generated samples and real samples
• Reward network:

• Learns to assign a reward to each molecule to match a score provided by an 
external software

• Invalid molecules always receive zero rewards.



GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018), Generator
• A probabilistic fully-connected graph

• 𝑋𝑋 ∈ 𝑅𝑅𝑁𝑁×𝑇𝑇: atom types
• 𝐴𝐴 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁×𝑇𝑇: bond types

• Objective function: 𝐿𝐿 𝜃𝜃 = 𝜆𝜆𝐿𝐿𝑊𝑊𝑊𝑊𝐴𝐴𝑁𝑁 + 1 − 𝜆𝜆 𝐿𝐿𝑅𝑅𝑅𝑅



GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018), Discriminator and Reward Network
• Learning molecule/graph representations with a variant of neural 

message passing algorithms
• Same architectures for discriminator and reward network
• Reward network for approximating the score by an external software

• Trained with real samples and generated samples



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Idea: Generating graphs via sequentially adding nodes and edges

Graph 𝐺𝐺 with node ordering 𝜋𝜋 can be uniquely mapped into a 
sequence of node and edge additions 𝑆𝑆𝜋𝜋

𝑆𝑆𝜋𝜋 = (S1𝜋𝜋, S2𝜋𝜋 , S3𝜋𝜋, S4𝜋𝜋, S5𝜋𝜋)



AR based Graph Generative Model

GraphRNN, You et al. 2018
• The sequence 𝑆𝑆𝜋𝜋 has two levels: node and edge
• Node-level: at each step, a new node is added
• Edge-level: at each step add a new edge 



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Transform graph generation problem into a sequence generation 

problem

• Two processed required:
• Generate a state for new node (node-level)
• Generate edges for the new node based on its state (edge-level)

• Approach: RNN



AR based Graph Generative Model

GraphRNN, You et al. 2018
• GraphRNN has two RNNs: node-level RNN and edge-level RNN

• Relationship between two RNNs:
• Node-level RNN generates the initial state for edge-level RNN
• Edge-level RNN generates edges for the new node, then update node-level 

RNN state using generated results



AR based Graph Generative Model

GraphRNN, You et al. 2018
Green arrows denote the node-level RNN that encodes the “graph 
state” vector ℎ𝑖𝑖 in its hidden state, updated by the predicted adjacency 
vector 𝑆𝑆𝑖𝑖𝜋𝜋 for node 𝜋𝜋 𝑣𝑣𝑖𝑖
Blue arrows represent the edge-level RNN, whose hidden state is 
initialized by the graph-level RNN, that is used to predict the adjacency 
vector 𝑆𝑆𝑖𝑖𝜋𝜋 for node 𝜋𝜋 𝑣𝑣𝑖𝑖



AR based Graph Generative Model

GraphRNN, You et al. 2018
• RNN model



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Goal: generate sequences

𝑥𝑥𝑑𝑑+1 = 𝑦𝑦𝑑𝑑SOS (zero vector) to initialize Deterministic, not so good



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Probabilistic: 𝑦𝑦𝑑𝑑 = 𝑝𝑝𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑚𝑚(𝑥𝑥𝑑𝑑|𝑥𝑥1,⋯ , 𝑥𝑥𝑑𝑑−1; 𝜃𝜃)

𝑥𝑥𝑑𝑑+1 is sampled from 𝑦𝑦𝑑𝑑: 𝑥𝑥𝑑𝑑+1 ∼ 𝑦𝑦𝑑𝑑



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Testing:



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Training:



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Training:



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Evaluation:

• Define similarity metrics for graphs
• No efficient graph isomorphism test that can be applied to any class of graphs
• Solution:

• Visual similarity
• Graph statistics similarity: degree distribution, cluster coefficient, diameter of graphs, 

etc.



AR based Graph Generative Model

GraphRNN, You et al. 2018
• Visual Similarity: • Graph statistics Similarity:



MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018
• Molecule generation as sequential decisions

• Add nodes and edges
• A Markov decision process

• Goal: discover molecules that optimize desired properties while 
incorporating chemical rules.

• GCPN: A general model for goal-directed graph generation with RL
• Optimize adversarial loss and domain-specific rewards with policy gradients
• Acts in an environment that incorporates domain-specific rules.



MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018
• Goal-Directed Graph Generation

• Optimize a given objective (High scores)
• e.g., drug-likeness (black box)

• Obey underlying rules (Valid)
• e.g., chemical valency rules

• Are learned from examples (Realistic)
• e.g., Imitating a molecule graph dataset



MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018
• GCPN = graph representation + reinforcement learning

• Reinforcement learning optimizes intermediate/final rewards (High scores)

• Graph Neural Network captures complex structural information, and enables 
validity check in each state transition (Valid)

• Adversarial training imitates examples in given datasets (Realistic)



MDP based Graph Generative Model

GCPN, You et al. 2018, MDP
• 𝑀𝑀 = (𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅, 𝛾𝛾)

• States 𝑆𝑆 = {𝑠𝑠𝑖𝑖} consists of all possible intermediate and final graphs
• Action 𝐴𝐴 = 𝑎𝑎𝑖𝑖 modification made to the current graph at each step
• State transitional dynamics 𝑃𝑃
• Reward function 𝑅𝑅
• Discount factor 𝛾𝛾



MDP based Graph Generative Model

GCPN, You et al. 2018, State space
• 𝑠𝑠𝑑𝑑 as the intermediate generated graph 𝐺𝐺𝑑𝑑
• 𝐺𝐺0 contains a single node that represents a carbon atom



MDP based Graph Generative Model

GCPN, You et al. 2018, Action Space
• A set of atoms 𝐶𝐶 =∪𝑖𝑖=1𝑠𝑠 𝐶𝐶𝑖𝑖 to be added during each step
• Actions

• Connecting a new atom 𝐶𝐶𝑖𝑖 to a node in 𝐺𝐺𝑑𝑑
• Connecting existing nodes within 𝐺𝐺𝑑𝑑



MDP based Graph Generative Model

GCPN, You et al. 2018, State Transition Dynamic
• Incorporate domain-specific rules in the state transition dynamics. 

Only carry out actions that obey the given rules
• Infeasible actions by the policy network are rejected and state 

remains same



MDP based Graph Generative Model

GCPN, You et al. 2018, Reward Design
• Step rewards: step-wise validity rewards and adversarial rewards
• Final rewards: a sum over domain-specific reward

• Final property scores, penalization of unrealistic molecules, adversarial 
rewards



MDP based Graph Generative Model

GCPN, You et al. 2018, Results



GraphRNN

GraphVAE

MolGAN GCPN

Reinforcement Learning



More

• Generating graphs in other domain
• 3D mesh reconstruction, scene graphs, knowledge graphs, etc.

• Scale up to large graphs
• Hierarchical action space, allowing high-level action like adding a structure at 

a time
• Leverage the sparse structure of graphs (Dai et al. 2020)

• More on graph neural networks + reinforcement learning
• Relational deep reinforcement learning (Zambaldi et al. 2018)

• New discrepancy on graphs
• Gromov Wasserstain distance (Bunne et al. 2019)
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