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Many Data are Graphs

Information networks

e of RNA

Economic networks

Internet

Network of neurons



Why Graphs?

* Universal language for describing complex data

e Networks/graphs from science, nature, and technology are more similar than
one would expect

e Shared vocabulary between fields
e Computer Science, Social science, Physics, Economics, Statistics, Biology

e Data availability (+computational challenges)
* Web/mobile, bio, health, and medical

* Impact!
e Social networking, Social media, Drug design



Machine Learning with Graphs

Classical ML tasks in graphs:

 Node classification
* Predict a type of a given node
 Link prediction
* Predict whether two nodes are linked

e Graph classification
e Predict the label of a single graph

e Community detection
 |dentify densely linked clusters of nodes

 Network similarity
e How similar are two (sub)networks
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|dea — Aggregate Neighbors

* Key idea: Generate node embeddings based on /ocal network
neighborhoods
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|dea — Aggregate Neighbors

* Intuition: Nodes aggregate information from their neighbors using

neural networks Parameterized by neural network .
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Example — GCN, GraphSAGE

* Key idea: Generate node embeddings based on |local network
neighborhoods

 Nodes aggregate “messages” from their neighbors using neural networks

* Graph convolutional network
e Basic variant: average neighborhood information and stack neural networks

e GraphSAGE

* Generalized neighborhood aggregation




Graph encoder/decoder

Encoder
Graph Regularization, Graph
convolutions e.g., dropout convolutions
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Graph Generation Problem

 We want to generate realistic graphs

—

Given a large Generate a
real graph synthetic graph

e Goal-directed graph generation

e Generate graphs that optimize given objectives/constraints
* Drug molecule generation/optimization



Challenges for Graph Generation

e Large and discrete variable output space
e For n nodes we need to generate n? values
e Graph size (nodes, edges) varies

O
e.o‘e —

5 nodes: 25 values

||k, |, |O
O|lRr|O|O|kK

R Rr|lo|lo|kr

R | O|lRr|~]|O
O|lrRr|L|O|O




Challenges for Graph Generation

e Isomorphic graphs
 n-node graph can be represented in n! ways
e Hard to compute/optimize objective functions (e.g., reconstruction error)
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Challenges for Graph Generation

e Complex dependencies
e Edge formation has long-range dependencies

Example: Generate a ring graph on 6 nodes:
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Existence of an edge may depend on the entire graph!



A very General Graph Generation Process

e Loop until not adding new nodes:
e Add node?
* Create node

e Loop until not adding new edges:
 Add edge?
e Choose an existing node to create edge

Add node (0)? Add edge? Add node (1)? Add edge? Pick node (0) to
(yes/no) (yes/no) (yes/no) (yes/no) add edge (0,1)
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1 ® ®
Generation steps
Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
/no) add edge (0,2) (yves/no)
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Generative Models of Graphs

e Stochastic graph models

e Erdos-Renyi model, Barabasi-Albert model, stochastic block model, small-
world model

* Nice theory, but limited capacity

e Tree-based models
e Tons of tree generation models
* Only works on trees

* Graph grammars
 Makes hard distinction between what is in the language vs not, hard to use



Deep Generative Models

Setup:

 Assume we want to learn a generative model from a set of data
points (i.e., graphs) {x;}
* Daata(X) is the data distribution, which is never known to us, but we have

sampled X; ~ Paqq(X)
* Dmodel(X; 8) is the model, parametrized by 6, that we use to approximate

Pdata (x)
Goal

e 1) Make P01 (X; 0) close to Pygeq (X)

 2) Make sure we can sample from p,,,401(X; 0) , i.e., generate
examples from p,,, 401 (X; 0)



Deep Generative Models

1) Make D.,0401(X; 0) close to pigeq (X)

e Key principle: maximum likelihood
 Fundamental approach to modeling distributions

0" — arg gnax Ermpane. 108 Dmodel(T | )

* Find 8%, such that for observed data points x; ~ Paara (%),
2108 Dimoder (X5 87) has the highest value, among all possible choices of 6

* Find the model that is most likely to have generated the observed data x



Deep Generative Models

2) Sample from ppde1(X; 0)
e Goal: sample from a complex distribution

e The most common approaches:
e 1) Sample from a simple noise distribution

z;~N(0,1)

e 2) Transform the noise z; via a function f () -

X, = f(2;6)

» x; follows a complex distribution

Use deep neural networks
to design f



Maximum Likelihood
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Goodfellow, Tutorial on NeurlPS 2016



Types of Deep Generative Models

e Variational Autoencoders (VAEs) ™
e VAEs, Kingma et al. 2014

e Generative Adversarial Networks (GANSs)

e GANs, Goodfellow et al. 2014 Extend to deeF’ graph

generative models

* Deep Auto-regressive Models (ARs)
e ARs, Oord et al. 2016




VAES, Kingma et al. 2014

as(zlx) | T |/ po(x|z)
e Latent variable model Ercodss | l /| Decoder
* An encoder q4(2z]x) Network \i"j Network

e A decoder pg(x|z) N |

* Maximizing the likelihood log p(x)

* Inference intractable since z is continuous.

* Maximizing the variational lower-bound L(¢, 0; x)
e Reparametrization trick for jointly optimizing encoder and decoder

L(¢p,0;x)
= [qug, (z]|x) l()g Pe (X'Z) T KL[QQ') (le)Hp(z)]

Reconstruction Regularization



GANS, Goodfellow et al. 2014

e A two-player minimax game
* GeneratorG:z - x
* Discriminator D: x — {0, 1}

data

e Generator aims to fool the discriminator

nt random variable
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e Discriminator aims to distinguish between real data and generated
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ARS, oordetal. 2016
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Hidden
Layer

 Example of deep auto-regressive model

Hidden

e Recurrent Neural Networks Layer
e PixelRNN, Pixel CNN (Oord et al. 2016) =
* Generate an image pixel by pixel OO0 00OOO00000000

* A neural network is used to model the conditional distribution

e WaveNet (Oord et al. 2016)

-
p(x) = Hp (¢ | 21, ... 24—1)
t=1



VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)

* VAE framework for graph generation
e Graph as input data
* Encoder: graph neural networks + gated pooling = graph representation

e Decoder: output a probabilistic fully-connected graph of predefined
maximum size
* Model the existence of nodes, edges and their attributes independently
e Graph matching is required



VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)
 Input: graph G = (4,E, F)

e A:adjacency matrix, E: edge attribute tensor, F: node attribute matrix

P(G|G) by graph matching
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VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018)
 Input: graph G = (4,E, F)

e A:adjacency matrix, E: edge attribute tensor, F: node attribute matrix

G
L(¢,0;x) ’
= [qug, (z|x) log Po (IlZ) - KL[Qq‘) (Z|A")||p(Z)]
Reconstruction Regularization

 New reconstruction loss:

logp(G|z) = A4 logp(A'|z) + Aplogp(F|z) + Ag logp(E|2)



VAE based Graph Generative Model

GraphVAE (Simonovsky and Komodakis, 2018), graph decoder

 Restrict the domain to the set of all graphs on maximum k nodes (k 1s
around tens)

» Output a probabilistic fully-connected graph G = (4, E, F) on k nodes at

once

* Model the existence of nodes and edges as Bernoulli variables
* Model the node and edge attributes as Multinomial variables

« A€0,1

kxk contains both node probabilities A,, and edge probabilities 4, for

nodes a #b

« E€[0,1

« Fel0,1]

kexkxde indicates the probabilities for edge attributes
kxdn indicates the probabilities for node attributes

e Inference: taking edge- and node-wise argmax in 4, E, and F.

* Graph Matching must be used for calculating the reconstruction loss

T Find corresponding X € {0,1}**", mapping between G and G , COST



GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018)
* An implicit, likelihood-free generative model for molecule generation

e Combined with reinforcement learning to encourage the generated
molecules with desired chemical properties

e Generator: generating molecules from a prior distribution
* Discriminator: distinguishing the generated samples and real samples

e Reward network:

e Learns to assign a reward to each molecule to match a score provided by an
external software

e |nvalid molecules always receive zero rewards.



GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018), Generator

* A probabilistic fully-connected graph
e X € RV*T: atom types
o A € RVXNXT. hond types

 Objective function: L(0) = ALycany + (1 — A)Lg;

Sampledi lllllll
~ ™ = Rewardnetwa rk
1 0]
~ ' " Gen | "n '
| H; - NH % 0
—_
T S




GAN based Graph Generative Model

MolGAN (Cao and Kipf 2018), Discriminator and Reward Network

e Learning molecule/graph representations with a variant of neural
message passing algorithms

e Same architectures for discriminator and reward network

 Reward network for approximating the score by an external software
e Trained with real samples and generated samples

Adjacency tensor A Sampled A Graph




AR based Graph Generative Model

GraphRNN, You et al. 2018
* Idea: Generating graphs via sequentially adding nodes and edges

Generation process S;'I

=, T
(O—
Lo,

Graph G with node ordering m can be uniquely mapped into a
sequence of node and edge additions S™

T
2; 3; 4) SS)



AR based Graph Generative Model

Node-level sequence
GraphRNN, You et al. 2018 —
 The sequence S™ has two levels: node and edge i [i e

0|1

 Node-level: at each step, a new node is added 1

Edge-level
sequence

Adjacency matrix

e Edge-level: at each step add a new edge

Generation process S™

R G S e



AR based Graph Generative Model

GraphRNN, You et al. 2018

e Transform graph generation problem into a sequence generation
problem

* Two processed required:
e Generate a state for new node (node-level)
e Generate edges for the new node based on its state (edge-level)

e Approach: RNN



AR based Graph Generative Model

GraphRNN, You et al. 2018
 GraphRNN has two RNNs: node-level RNN and edge-level RNN

* Relationship between two RNNs:

* Node-level RNN generates the initial state for edge-level RNN

* Edge-level RNN generates edges for the new node, then update node-level
RNN state using generated results



AR based Graph Generative Model

GraphRNN, You et al. 2018

denote the RNN that encodes the “graph
state” vector h; in its hidden state, updated by the predicted adjacency
vector S;* for node 7 (v;)

Blue arrows represent the edge-level RNN, whose hidden state is

initialized by the graph-level RNN, that is used to predict the adjacency
vector S;* for node m(v;) o he by ha hs hs
O—OB O—OB
Ty
SOS— — ) e o

Sample + Edge-level Update
iy —_—
S4 Node-level Update
QT




AR based Graph Generative Model

GraphRNN, You et al. 2018

* RNN model s,: State of RNN after time t
X¢: Input to RNN at time ¢t
V¢: Output of RNN at time t
W,U,V: parameter matrices, o(-): non-linearity

YVt

ﬂ(Z) (1) (1) St = U(W Xt + U - St—l)
St—1 = = s (2)yy =V s

1)

Xt

More expressive cells: GRU, LSTM, etc.



AR based Graph Generative Model

GraphRNN, You et al. 2018
e Goal: generate sequences

yl _______ i yz yT = EOS
1 t
So = 505:}‘ = 5; = =) Sz .. ST_1ED
| ) L]
X1 = S0S "i‘"’ X2=VY1 X3 =Y2

Xty = N
SOS (zero vector) to initialize t+1 = Ve Deterministic, not so good



AR based Graph Generative Model

GraphRNN, You et al. 2018
* Probabilistic: ¥y = D moder (Xe|X1, ** ) X¢—1; 0)

Sy = SOS =) I=>S1l=> = 5; = =) S3
Tt ft )

x; =S0S X2~Y1 X3~Y2

X¢+1 1S sampled from y;ixi11 ~ V¢



AR based Graph Generative Model

GraphRNN, You et al. 2018

e Testing:

So = S0S #

y; follows Bernoulli distribution (choice of p,,04e1)
p |means value 1 has prob. p, value 0 has prob. 1 —p

Y1 = (03] Yo = |04 y3 = | 0.7
=) 51 = =) S = =) S3 v

x1 =S50S - Xo r 0.9 X3 T 0.4

x2 = 1 x3 = 1




AR based Graph Generative Model

GraphRNN, You et al. 2018

* Training: We observe a sequence y~ of edges [1,0,...]

Principle: Teacher Forcing -- Replace input
and output by the real sequence

Compute yi‘ R - - - - yé“ = |0 y§ = | 1
loss u’yl = |09 u' Yo = |0.4 U' y3 = |07
1 1 1
So = SOS = = s; = = 5; B =) S3
1) . | 1

x; = SOS Xy = 1 X3




AR based Graph Generative Model

GraphRNN, You et al. 2018

* Training:

Loss L : Binary cross entropy
Minimize:
L = —[y;log(y1) + (1 — y1)log(1 — y1)]

Compute y' =],

loss U,

Y1 =109

If y; = 1, we minimize —log(y,), making y; higher
If y; = 0, we minimize —log(1 — y;), making y; lower
This way, y, is fitting the data samples y;



AR based Graph Generative Model

GraphRNN, You et al. 2018

e Evaluation:
e Define similarity metrics for graphs
* No efficient graph isomorphism test that can be applied to any class of graphs

e Solution:
e Visual similarity

e Graph statistics similarity: degree distribution, cluster coefficient, diameter of graphs,
etc.
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AR based Graph Generative Model

GraphRNN, You et al. 2018
* Visual Similarity: e Graph statistics Similarity:

Grid
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=11]
g
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1 ] 1
P = 12 0.10
— Real —— Real
>0 T EA § >0.08 - — BA
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O 11 > 6 GraphRNN-S o GraphRNN-S
=2 ~—— GraphRNN = —— GraphRNN
2 2 0.04
o 4 o
.E a | 8.0.02
©
o 0 - ~ 0.00 - - - .
m 00 01 02 03 04 05 06 0 10 20 30 40
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MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018

 Molecule generation as sequential decisions
 Add nodes and edges
e A Markov decision process

e Goal: discover molecules that optimize desired properties while
incorporating chemical rules.

* GCPN: A general model for goal-directed graph generation with RL
e Optimize adversarial loss and domain-specific rewards with policy gradients
e Acts in an environment that incorporates domain-specific rules.



MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018

* Goal-Directed Graph Generation
e Optimize a given objective (High scores)
e e.g., drug-likeness (black box)

e Obey underlying rules (Valid)

e e.g., chemical valency rules

e Are learned from examples (Realistic)
e e.g., Imitating a molecule graph dataset



MDP based Graph Generative Model

GCPN: Graph Convolutional Policy Network, You et al. 2018

* GCPN = graph representation + reinforcement learning
» Reinforcement learning optimizes intermediate/final rewards (High scores)

e Graph Neural Network captures complex structural information, and enables
validity check in each state transition (Valid)

e Adversarial training imitates examples in given datasets (Realistic)



MDP based Graph Generative Model

GCPN, You et al. 2018, MDP
M =(S5,A4,P,R,y)

e States S = {s;} consists of all possible intermediate and final graphs
* Action A = {a;} modification made to the current graph at each step
e State transitional dynamics P

e Reward function R

Discount factor y
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MDP based Graph Generative Model

GCPN, You et al. 2018, State space

* s, as the intermediate generated graph G,

* (, contains a single node that represents a carbon atom
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MDP based Graph Generative Model

GCPN, You et al. 2018, Action Space

* A set of atoms C =U;_, C; to be added during each step

e Actions

e Connecting a new atom (; to a node in G;
e Connecting existing nodes within G;
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MDP based Graph Generative Model

GCPN, You et al. 2018, State Transition Dynamic

* Incorporate domain-specific rules in the state transition dynamics.
Only carry out actions that obey the given rules

* Infeasible actions by the policy network are rejected and state
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MDP based Graph Generative Model

GCPN, You et al. 2018, Reward Design

e Step rewards: step-wise validity rewards and adversarial rewards

* Final rewards: a sum over domain-specific reward

e Final property scores, penalization of unrealistic molecules, adversarial
rewards
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MDP based Graph Generative Model

GCPN, You et al. 2018, Results

Starting structure Finished structure
1 < §
hets J—f?pf\\
832 -0.71
O—‘LO’\? k3 JON
-5.55 1.78



Reinforcement Learning

Maximum Likelihood

l Direct

/
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More

* Generating graphs in other domain
* 3D mesh reconstruction, scene graphs, knowledge graphs, etc.

e Scale up to large graphs

e Hierarchical action space, allowing high-level action like adding a structure at
a time

e Leverage the sparse structure of graphs (Dai et al. 2020)

* More on graph neural networks + reinforcement learning
e Relational deep reinforcement learning (Zambaldi et al. 2018)

 New discrepancy on graphs
e Gromov Wasserstain distance (Bunne et al. 2019)
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