Generative Models for Graphs

Hongwei Jin 2020-10-28

Many Data are Graphs

Social networks

Information networks

Economic networks

Biomedical networks

Network of neurons

Why Graphs?

- Universal language for describing complex data
 - Networks/graphs from science, nature, and technology are more similar than one would expect
- Shared vocabulary between fields
 - Computer Science, Social science, Physics, Economics, Statistics, Biology
- Data availability (+computational challenges)
 - Web/mobile, bio, health, and medical
- Impact!
 - Social networking, Social media, Drug design

Machine Learning with Graphs

Classical ML tasks in graphs:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Graph classification
 - Predict the label of a single graph
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

Node classification

Link Prediction

Idea – Aggregate Neighbors

 Key idea: Generate node embeddings based on *local network* neighborhoods

Idea – Aggregate Neighbors

 Intuition: Nodes aggregate information from their neighbors using neural networks

Example – GCN, GraphSAGE

- Key idea: Generate node embeddings based on local network neighborhoods
 - Nodes aggregate "messages" from their neighbors using neural networks
- Graph convolutional network
 - Basic variant: average neighborhood information and stack neural networks
- GraphSAGE
 - Generalized neighborhood aggregation

Graph encoder/decoder

Graph Generation Problem

• We want to generate realistic graphs

- Goal-directed graph generation
 - Generate graphs that optimize given objectives/constraints
 - Drug molecule generation/optimization

Challenges for Graph Generation

- Large and discrete variable output space
 - For n nodes we need to generate n^2 values
 - Graph size (nodes, edges) varies

5 nodes: 25 values

Challenges for Graph Generation

• Isomorphic graphs

- *n*-node graph can be represented in *n*! ways
- Hard to compute/optimize objective functions (e.g., reconstruction error)

Challenges for Graph Generation

- Complex dependencies
 - Edge formation has long-range dependencies

Example: Generate a ring graph on 6 nodes:

Existence of an edge may depend on the entire graph!

A very General Graph Generation Process

- Loop until not adding new nodes:
 - Add node?
 - Create node
 - Loop until not adding new edges:
 - Add edge?
 - Choose an existing node to create edge

Generative Models of Graphs

- Stochastic graph models
 - Erdos-Renyi model, Barabasi-Albert model, stochastic block model, smallworld model
 - Nice theory, but limited capacity
- Tree-based models
 - Tons of tree generation models
 - Only works on trees
- Graph grammars
 - Makes hard distinction between what is in the language vs not, hard to use

Deep Generative Models

Setup:

- Assume we want to learn a generative model from a set of data points (i.e., graphs) $\{x_i\}$
 - $p_{data}(x)$ is the data distribution, which is never known to us, but we have sampled $x_i \sim p_{data}(x)$
 - $p_{model}(\mathbf{x}; \theta)$ is the model, parametrized by θ , that we use to approximate $p_{data}(\mathbf{x})$

Goal

- 1) Make $p_{model}(\mathbf{x}; \theta)$ close to $p_{data}(\mathbf{x})$
- 2) Make sure we can sample from $p_{model}(x; \theta)$, i.e., generate examples from $p_{model}(x; \theta)$

Deep Generative Models

- 1) Make $p_{model}(\mathbf{x}; \theta)$ close to $p_{data}(\mathbf{x})$
- Key principle: maximum likelihood
 - Fundamental approach to modeling distributions

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$$

- Find θ^* , such that for observed data points $x_i \sim p_{data}(x)$, $\sum_i \log p_{model}(x_i; \theta^*)$ has the highest value, among all possible choices of θ
- Find the model that is most likely to have generated the observed data *x*

Deep Generative Models

- 2) Sample from $p_{model}(\mathbf{x}; \theta)$
- Goal: sample from a complex distribution
- The most common approaches:
 - 1) Sample from a simple noise distribution

• 2) Transform the noise
$$z_i$$
 via a function $f(\cdot)$ Use deep neural networks to design f
 $x_i = f(z_i; \theta)$

• **x**_i follows a complex distribution

Types of Deep Generative Models

- Variational Autoencoders (VAEs)
 - VAEs, Kingma et al. 2014
- Generative Adversarial Networks (GANs)
 - GANs, Goodfellow et al. 2014
- Deep Auto-regressive Models (ARs)
 - ARs, Oord et al. 2016

Extend to deep graph generative models

VAES, Kingma et al. 2014

- Latent variable model
 - An encoder $q_{\phi}(\boldsymbol{z}|\boldsymbol{x})$
 - A decoder $p_{\theta}(\boldsymbol{x}|\boldsymbol{z})$
- Maximizing the likelihood $\log p(\mathbf{x})$
 - Inference intractable since *z* is continuous.
- Maximizing the variational lower-bound $\mathcal{L}(\phi, \theta; \mathbf{x})$
 - Reparametrization trick for jointly optimizing encoder and decoder

$$\mathcal{L}(\phi, \theta; x) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \log p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) - KL[q_{\phi}(\boldsymbol{z}|\boldsymbol{x})||p(\boldsymbol{z})]$$
Reconstruction Regularization

GANS, Goodfellow et al. 2014

- A two-player minimax game
 - Generator G: $z \rightarrow x$
 - Discriminator D: $x \rightarrow \{0, 1\}$

- Discriminator aims to distinguish between real data and generated data
- Generator aims to fool the discriminator

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{z}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

ARs, Oord et al. 2016

- Example of deep auto-regressive model
 - Recurrent Neural Networks
- PixelRNN, Pixel CNN (Oord et al. 2016)
 - Generate an image pixel by pixel
 - A neural network is used to model the conditional distribution
- WaveNet (Oord et al. 2016)

$$p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1})$$

Input 🔘

Output • • • • • • • • • • • • • • •

 Hidden Layer
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 <t

GraphVAE (Simonovsky and Komodakis, 2018)

- VAE framework for graph generation
 - Graph as input data
 - Encoder: graph neural networks + gated pooling → graph representation
 - Decoder: output a probabilistic fully-connected graph of predefined maximum size
 - Model the existence of nodes, edges and their attributes independently
 - Graph matching is required

GraphVAE (Simonovsky and Komodakis, 2018)

- Input: graph G = (A, E, F)
 - A: adjacency matrix, E: edge attribute tensor, F: node attribute matrix

GraphVAE (Simonovsky and Komodakis, 2018)

- Input: graph G = (A, E, F)
 - A: adjacency matrix, E: edge attribute tensor, F: node attribute matrix

$$\mathcal{L}(\phi, \theta; \mathbf{x})^{\mathbf{G}} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) - KL[q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})]$$
Reconstruction
Regularization

• New reconstruction loss:

 $\log p(G|z) = \lambda_A \log p(A'|z) + \lambda_F \log p(F|z) + \lambda_E \log p(E|z)$

GraphVAE (Simonovsky and Komodakis, 2018), graph decoder

- Restrict the domain to the set of all graphs on maximum k nodes (k is around tens)
- Output a probabilistic fully-connected graph $\tilde{G} = (\tilde{A}, \tilde{E}, \tilde{F})$ on k nodes at once
 - · Model the existence of nodes and edges as Bernoulli variables
 - Model the node and edge attributes as Multinomial variables
 - $\tilde{A} \in [0,1]^{k \times k}$ contains both node probabilities \tilde{A}_{aa} and edge probabilities \tilde{A}_{ab} for nodes $a \neq b$
 - $\tilde{E} \in [0,1]^{k \times k \times d_e}$ indicates the probabilities for edge attributes
 - $\tilde{F} \in [0,1]^{k \times d_n}$ indicates the probabilities for node attributes
- Inference: taking edge- and node-wise argmax in \tilde{A} , \tilde{E} , and \tilde{F} .
- Graph Matching must be used for calculating the reconstruction loss

Find corresponding $X \in \{0,1\}^{k \times n}$, mapping between G and \tilde{G} , COST

MolGAN (Cao and Kipf 2018)

- An implicit, likelihood-free generative model for molecule generation
- Combined with reinforcement learning to encourage the generated molecules with desired chemical properties
- Generator: generating molecules from a prior distribution
- **Discriminator**: distinguishing the generated samples and real samples
- Reward network:
 - Learns to assign a reward to each molecule to match a score provided by an external software
 - Invalid molecules always receive zero rewards.

MolGAN (Cao and Kipf 2018), Generator

- A probabilistic fully-connected graph
 - $X \in \mathbb{R}^{N \times T}$: atom types
 - $A \in R^{N \times N \times T}$: bond types
- Objective function: $L(\theta) = \lambda L_{WGAN} + (1 \lambda)L_{RL}$

MolGAN (Cao and Kipf 2018), Discriminator and Reward Network

- Learning molecule/graph representations with a variant of neural message passing algorithms
- Same architectures for discriminator and reward network
- Reward network for approximating the score by an external software
 - Trained with real samples and generated samples

GraphRNN, You et al. 2018

• Idea: Generating graphs via sequentially adding nodes and edges

Graph G with node ordering π can be uniquely mapped into a sequence of node and edge additions S^{π}

- The sequence S^{π} has two levels: node and edge
- Node-level: at each step, a new node is added
- Edge-level: at each step add a new edge

- Transform graph generation problem into a sequence generation problem
- Two processed required:
 - Generate a state for new node (node-level)
 - Generate edges for the new node based on its state (edge-level)
- Approach: RNN

- GraphRNN has two RNNs: node-level RNN and edge-level RNN
- Relationship between two RNNs:
 - Node-level RNN generates the initial state for edge-level RNN
 - Edge-level RNN generates edges for the new node, then update node-level RNN state using generated results

GraphRNN, You et al. 2018

Green arrows denote the node-level RNN that encodes the "graph state" vector h_i in its hidden state, updated by the predicted adjacency vector S_i^{π} for node $\pi(v_i)$

Blue arrows represent the edge-level RNN, whose hidden state is initialized by the graph-level RNN, that is used to predict the adjacency vector S_i^{π} for node $\pi(v_i)$ h_1 h_2 h_3 h_4 h_5 h_6

GraphRNN, You et al. 2018

• RNN model

- *s_t*: State of RNN after time *t*
- x_t: Input to RNN at time t
- y_t: Output of RNN at time t
- W, U, V: parameter matrices, $\sigma(\cdot)$: non-linearity

$$s_{t-1} \Rightarrow \begin{array}{c} y_t \\ \uparrow (2) \\ RNN \\ cell \\ x_t \end{array} (1) \\ s_t \\ (2) \\ y_t = V \cdot s_t \\ \uparrow \\ x_t \end{array}$$

• More expressive cells: GRU, LSTM, etc.

GraphRNN, You et al. 2018

• Goal: generate sequences

Deterministic, not so good

GraphRNN, You et al. 2018

• Probabilistic: $y_t = p_{model}(x_t | x_1, \cdots, x_{t-1}; \theta)$

 x_{t+1} is sampled from $y_t: x_{t+1} \sim y_t$

- Training:
- We observe a sequence y* of edges [1,0,...]
- Principle: Teacher Forcing -- Replace input and output by the real sequence

- Training: Loss L : Binary cross entropy
 - Minimize:

$$L = -[y_1^* \log(y_1) + (1 - y_1^*) \log(1 - y_1)]$$

- If $y_1^* = 1$, we minimize $-\log(y_1)$, making y_1 higher
- If $y_1^* = 0$, we minimize $-\log(1 y_1)$, making y_1 lower
- This way, y_1 is **fitting** the data samples y_1^*

- Evaluation:
 - Define similarity metrics for graphs
 - No efficient graph isomorphism test that can be applied to any class of graphs
 - Solution:
 - Visual similarity
 - Graph statistics similarity: degree distribution, cluster coefficient, diameter of graphs, etc.

GraphRNN, You et al. 2018

• Visual Similarity:

• Graph statistics Similarity:

GCPN: Graph Convolutional Policy Network, You et al. 2018

- Molecule generation as sequential decisions
 - Add nodes and edges
 - A Markov decision process
- Goal: discover molecules that optimize desired properties while incorporating chemical rules.
- GCPN: A general model for **goal-directed graph generation** with RL
 - Optimize adversarial loss and domain-specific rewards with policy gradients
 - Acts in an environment that incorporates domain-specific rules.

GCPN: Graph Convolutional Policy Network, You et al. 2018

Goal-Directed Graph Generation

- Optimize a given objective (High scores)
 - e.g., drug-likeness (black box)
- Obey underlying rules (Valid)
 - e.g., chemical valency rules
- Are learned from examples (Realistic)
 - e.g., Imitating a molecule graph dataset

GCPN: Graph Convolutional Policy Network, You et al. 2018

- GCPN = graph representation + reinforcement learning
 - Reinforcement learning optimizes intermediate/final rewards (High scores)
 - Graph Neural Network captures complex structural information, and enables validity check in each state transition (Valid)

• Adversarial training imitates examples in given datasets (Realistic)

GCPN, You et al. 2018, MDP

- $M = (S, A, P, R, \gamma)$
 - States $S = \{s_i\}$ consists of all possible intermediate and final graphs
 - Action $A = \{a_i\}$ modification made to the current graph at each step
 - State transitional dynamics P
 - Reward function *R*
 - Discount factor γ

GCPN, You et al. 2018, State space

- s_t as the intermediate generated graph G_t
- G_0 contains a single node that represents a carbon atom

GCPN, You et al. 2018, Action Space

- A set of atoms $C = \bigcup_{i=1}^{s} C_i$ to be added during each step
- Actions
 - Connecting a new atom C_i to a node in G_t
 - Connecting existing nodes within G_t

GCPN, You et al. 2018, State Transition Dynamic

- Incorporate domain-specific rules in the state transition dynamics.
 Only carry out actions that obey the **given rules**
- Infeasible actions by the policy network are rejected and state remains same

GCPN, You et al. 2018, Reward Design

- Step rewards: step-wise validity rewards and adversarial rewards
- Final rewards: a sum over domain-specific reward
 - Final property scores, penalization of unrealistic molecules, adversarial rewards

GCPN, You et al. 2018, Results

Starting structure

-0.71

-5.55

-8.32

-1.78

More

- Generating graphs in other domain
 - 3D mesh reconstruction, scene graphs, knowledge graphs, etc.
- Scale up to large graphs
 - Hierarchical action space, allowing high-level action like adding a structure at a time
 - Leverage the sparse structure of graphs (Dai et al. 2020)
- More on graph neural networks + reinforcement learning
 - Relational deep reinforcement learning (Zambaldi et al. 2018)
- New discrepancy on graphs
 - Gromov Wasserstain distance (Bunne et al. 2019)

References

- CS 224W Machine Learning with Graphs, Stanford University
- Tutorial on Graph Representation Learning , AAAI 2019
- Simonovsky, Komodakis, GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders, ICANN'18
- You et al. GraphRNN: Generating Realistic Graphs with Deep Auto-regressive models, ICML'18
- You et al. Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, NIPS'18
- Cao, Kipt. MolGAN: An implicit generative model for small molecular graphs, 2018
- Dai et al. Scalable Deep Generative Modeling for Sparse Graphs, ICML'20
- Li et al. Learning Deep Generative Models of Graphs, ICML'18