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1 Problem

One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This
problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a
calculation involving the posterior density. This note is for the review of variational inference, a method used to
approximate posterior densities for Bayesian models.

Let’s set up the the general problem. Consider a joint density of latent variables z = z1:m and observations
x = x1:n, the task is to calculate the posterior:

p(z|x) =
p(z,x)

p(x)
.

1.1 Motivation

MCMC. We can get the probability density by MCMC sampling.

1. construct an ergodic Markov chain on z whose stationary distribution is the posterior p(z|x);

2. sample from the chain to collect samples from the stationary distribution, such as Metropolis-Hastings algorithm
and Gibbs sampler;

3. approximate the posterior with an empirical estimate constructed from the collected samples.

Variational Inference. VI measures the posterior probability density by optimizing a family of densities, instead
of MCMC sampling.

1. posit a family of approximate densities Q, a set of densities over the latent variables;

2. try to find the member of that family which minimizing the Kullback-Leibler (KL) divergence to the exact
posterior:

q∗(z) = argmin
q(z)∈Q

DKL(q(z)||p(z|x)). (1)

3. approximate the posterior with the optimized member of the family q∗(·).

Comparison Both variational inference and MCMC solve the same problem to estimate the posterior probability
density, while they have different approaches and properties. The relative accuracy of variational inference and
MCMC is still known. In real applications, choice between variational inference and MCMC still needs more cares.

2 KL Divergence

In the classical VI, the model adopts the KL divergence to measure the distance between two distributions. However,
we will take a closer look why and how the KL divergence works for the distance measure.
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VI MCMC

approach optimize on a set of densities sample from Markov chain
guarantee find a density close to the target can find the exact density

computation faster slower
data size suit for large suit for small

distribution adopt stochastic optimization methods easily hard to be parallel
model complexity mixture models (not suit for Gibbs sampling) mixture model (Gibbs sampling)

Table 1: VI v.s. MCMC

2.1 Entropy

In the information theory, the information is defined as I(x) = − log p(x), and the entropy is defined as the measure-
ment of the expected information you can get if one of the events happens.

H(P ) = E [I(x)] = E [− log p(x)] ,

and explicitly, it is written as H(P ) = −
∑
i p(xi) log p(xi).

Example 1. The entropy of exponential distribution p(x) = λe−λx is 1− log λ.

Another definition is the cross entropy, which is defined as H(P,Q) = −
∑
i p(xi) log q(xi).

2.2 KL divergence

KL divergence is also known as relative entropy, which is more descriptive name. The entropy measures the average
information, and the relative entropy measures the “distance” from one distribution to another.

Definition 1 (KL divergence). For two probability distributions P and Q, the KL divergence with respect to P is
defined as

DKL(P ||Q) =
∑

i
p(xi) log

p(xi)

q(xi)
.

From the definition, we can see if P and Q are close “almost everywhere”, then the divergence goes to 0. KL
divergence can also be written as the difference of expectation with respect to P , that is

DKL(P ||Q) = E [log p]− E [log q] .

2.3 Properties of KL divergence

• Non-negative: DKL(P ||Q) ≥ 0 (to show it).

Lemma 1 (Gibbs inequality). Suppose P = {p1, · · · , pn} is a probability distribution, then for any other
probability distribution Q, then following inequality holds

−
n∑
i

pi log pi ≤ −
n∑
i

pi log qi.

Note that the difference of two sides is exactly the KL divergence with respect to P .

• None symmetric: DKL(P ||Q) 6= DKL(Q||P ). It is obvious based on the definition, but the geometric meaning
is more intuitive. Thus KL divergence is not a proper divergence measure between two distributions.
To enrich the content, a large class of different divergences are the so called f-divergences. And a list of common
divergences is listed in the table.

Definition 2 (f-divergence). Given two distributions P and Q that possess, respectively, an absolutely continuos
density function p and q with respect to base measure dx defined on the domain χ, we define the f-divergence
as

Df (P ||Q) =

∫
χ

q(x)f

(
p(x)

q(x)

)
dx,

where f is the generator function: R+ → R is a convex, lower-semicontinous function satisfying f(1) = 0.
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Name Df (P ||Q) f(·)
KL

∫
p(x) log p(x)

q(x)dx u log u

Reverse KL
∫
q(x) log p(x)

q(x)dx − log u

Person χ2
∫ (p(x)−q(x))2

p(x) dx (u− 1)2

Squared Hellinger
∫

(
√
p(x)−

√
q(x))2dx (

√
u− 1)2

Jensen-Shannon 1
2

∫
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x)dx u log u− (u+ 1) log u+1

2

GAN
∫
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x)dx− log(4) u log u− (u+ 1) log(u+ 1)

• Additive for independent distributions: if P1, P2 are independent distributions and similar like Q1, Q2, then
the KL divergence for the joint distribution has

DKL(P ||Q) = DKL(P1||Q1) +DKL(P2||Q2).

• Joint convexity: for any 0 ≤ λ ≤ 1

DKL(λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λDKL(P1||Q1) + (1− λ)DKL(P2||Q2).

This follows from the convexity of the mapping (p, q) 7→ qf(p/q) on R2
+,

3 Variational Inference

Bring our problem of estimating the posterior p(z|x) together with KL divergence, our main task is to find a best
approximation density q(z) from the family Q such that it has the minimum KL divergence. In other words, the
approximated density is the closest one among the density family.

However, this problem itself is still hard to solve. We can write the conditional density as p(z|x) = p(z,x)
p(x) .

The denominator contains the marginal density of the observations, also called the evidence. We calculate it by
marginalizing out the latent variables from the joint density:

p(x) =

∫
p(z,x)dz.

The integral itself is unavailable or requires exponential time to compute. That’s why the inference is hard.

3.1 ELBO

Consider the KL divergence between the candidate distribution and the posterior

DKL(q(z)||p(z|x)) =
∑
i

q(zi) log
q(zi)

p(zi|xi)
=
∑
i

q(zi) log
q(zi)p(xi)

p(zi, xi)

=
∑
i

q(zi) log
q(zi)

p(zi, xi)
p(xi) =

∑
i

q(zi) log
q(zi)

p(zi, xi)
+
∑
i

q(zi) log p(xi)

= DKL(q(z)||p(z,x)) + log p(x)

Note that the LHS is our objective, and the first term of RHS is the KL divergence between the q(z) and p(z,x),
plus a fixed term log p(x). Rewrite the equation as:

DKL(q(z)||p(z|x)) + ELBO(q) = log p(x), (2)

where ELBO(q) is called the evidence lower bound (EBLO). Specifically, it is

ELBO(q) = −DKL(q(z)||p(z,x))

= E [log p(z,x)]− E [log q(z)]

= E [log p(x|z)] + E [log p(z)]− E [log q(z)]

= E [log p(x|z)]−DKL(q(z)||p(z)).
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Observations:

• log p(x) ∈ [−∞, 0],

• KL divergence is always positive, the smaller the better,

• ELBO is the negation of KL divergence between q(z) and p(z,x),

• minimizing the KL divergence is equivalent to maximizing the ELBO,

• the first term of ELBO is the log-likelihood, which is optimized by the EM algorithm,

• maximizing the ELBO is still hard.

3.2 Mean-field variational family

Minimizing the KL divergence is the same as maximizing the ELBO. Therefore, to find q(z) is equivalent to maximize
the ELBO

ELBO(q) =
∑

q(z) log
q(z)

p(z,x)

This is still hard to solve, so why not make assumptions on z, in order to restrict the family of distribution.

Assumption 1. z are independent with each other, i.e.,

q(z) =

m∏
i=1

q(zi)

There is no further assumptions about the distribution. In particular, we place no restriction on the function
forms of the individual factor q(zi). This factorized form is called mean field variational inference, which originally
comes from physics.

3.3 Coordinate Ascent

Using the ELBO and the mean-field family, we can approximate conditional inference as an optimization problem.
Here we will introduce a commonly used algorithm for solving this optimization problem, coordinate ascent variational
inference.

Observations.

• Instead of optimizing q(z), under the independence assumption, we can try to alternatively optimize one by
one;

• The complete conditional of latent variable zj is its conditional density given all of the other latent variables
and the observations, p(zj |z−j ,x);

• The optimal q(zj) is proportional to the expected log of the complete condition:

q∗(zj) ∝ exp {E−j [log p(zj |z−j ,x)]}

• q(zj) is also proportional to

q∗(zj) ∝ exp {E−j [log p(zj , z−j ,x)]}

• coordinate ascent is closely related to Gibbs sampling. The Gibbs sampler maintains a realization of latent
variables and iteratively samples from each variable’s complete conditional, while coordinate ascent takes the
expected log and uses this quantity to set each variable’s variational factor.

• The ELBO is a non-convex problem, but the coordinate ascent will eventually converge to local optimum?

4



3.4 Exponential Family Conditionals

One remaining question is whether there is a general form for models in which the coordinate updates in mean field
variational inference are easy to compute and lead to closed-form updates? The answer is yes, and the form is called
exponential family.

Models with conditional densities that are in an exponential family has the form in short

p(x) = h(x) exp
{
η>t(x)− a(η)

}
(3)

And explicitly, in our problem it is

p(zj |z−j ,x) = h(zj) exp
{
η(z−j ,x)>t(zj)− a(η(z−j ,x))

}
, (4)

where h, η, t, a are functions that parameterize the exponential family.

Facts.

• it is called exponential family conditional models, a special case is conditional conjugate models with local and
global variables;

• the log normalizer a(η) = log
∫

exp
{
η>t(x)

}
dx ensures the density integrates to one;

• the gradient calculates the expected sufficient statistics: x = ∇ηa(η)

• different choices of parameters lead to many popular densities, including normal, gamma, exponential, etc.

Derivation.

• the log of the conditional:

log p(zj |z−j ,x) = log h(zj) + η(z−j ,x)>t(zj)− a(η(z−j ,x)).

• expectation of this with respect to q(z−j):

Eq−j
[log p(zj |z−j ,x)] = log h(zj) + Eq−j

[
η(z−j ,x)>t(zj)

]
− Eq−j

[a(η(z−j ,x))] .

• last term doesn’t depend on q(z−j), then:

q∗(zj) ∝ h(zj) exp
{
Eq−j

[η(z−j ,x)]
>
t(zj)

}
It is in the same exponential family as the conditional.
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• Given each latent variable a variational parameter νj , the full approximation is

q(z|ν) =
∏
j

q(zj |νj).

then the coordinate ascent algorithm updates each variational parameter as

ν∗j = Eq−j
[η(z−j ,x)] .

• extend to stochastic variational inference (SVI).

3.5 Open problems

• optimize over other measures, instead of KL divergence;

• get rid of independence assumptions with mean field family;

• explore the interface between VI and MCMC;

• understand statistical profile of VI.
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