
Page 1 of 20

A Survey on Web Services Testing

Huiyong Xiao

hxiao@cs.uic.edu

Department of Computer Science

University of Illinois at Chicago

Abstract

This paper aims to give the reader a general idea of Web Service testing. Web Services

are a collection of standards and protocols that allow us to make processing requests to

remote systems by speaking a common, non-proprietary language and using common

transport protocols such as HTTP or SMTP. Although web services are becoming more

and more popular as an emerging technology, few papers and stuffs are published about

its testing. In this paper, we discussed in detail the architecture and features of Web

Services, and classes of testing technologies on web services, and we gave a typical

toolkit for each sort of testing.

1. Overview

1.1 Web services

- Definition

Different vendor, standards organization, or marketing research firm defines Web

Services in a different way. Gartner, for instance, defines Web Services as "loosely

coupled software components that interact with one another dynamically via standard

Internet technologies." Forrester Research takes a more open approach to Web Services

as "automated connections between people, systems and applications that expose

elements of business functionality as a software service and create new business value."[1]

Basically, Web Services can be considered a universal client-server architecture that

allows disparate systems to communicate with each other without using proprietary client

libraries. In essence, Web Services are a collection of standards and protocols that allow

Page 2 of 20

us to make processing requests to remote systems by speaking a common, non-

proprietary language and using common transport protocols (HTTP, SMTP). As an

emerging technology driven by the will to securely expose business logic beyond the

firewall, web services will enable application-to-application e-marketplace interaction,

removing the inefficiencies of human intervention. Through Web Services companies can

encapsulate existing business processes, publish them as services, search for and

subscribe to other services, and exchange information throughout and beyond the

enterprise [2].

- An example (travel agent)

Normally without web services, if you want to book a holiday over the Internet you

might browse a travel agent’s web site to select a holiday and book it. Of course, you

may also hire a car and check on the weather. However, behind the scenes, the web

server might actually be accessing data in a proprietary format in some kind of database,

or communicating, again in a proprietary fashion, to back-office systems to get

information about your holiday.

Now, let us consider a web service for the holiday booking, which is respond to

requests for flight information from travel agents’ web sites. What is more, these web

services will be able to publicize their existence and communicate with web sites, and

other web services, in an open, public format. When you book a holiday, you’ll still

browse to your travel agent’s web site but behind the scenes something different will

happen. To find holiday details, rather than access proprietary data in a database, the web

server will access different web services for flight, accommodation and weather

information. Figure 1 describes the layout of such a web service [3].

Page 3 of 20

End User Travel Agents
Web Site

Flight Availability
Web Service

Hotel Bookings
Web Service

Auto Hire
Web Service

Internet

Internet

Book vacation

Book flig
hts

Book hotel

Book auto

Figure 1 Layout of the web service for holiday booking example

- Web service architectures

Due to the variety of the definition of web services, the architecture of a Web

Services stack varies from one organization to another. The number and complexity of

layers for the stack depend on the organization. Each stack requires Web Services

interfaces to get a Web Services client to speak to an application server or middleware,

such as Common Object Request Broker Architecture (CORBA), Java 2 Enterprise

Edition (J2EE), and .NET. To enable the interface, you need Simple Object Access

Protocol (SOAP), SOAP with Attachments (SwA), and Java Remote Method Invocation

(RMI) among other Internet protocols. Here we give out the web services stack from

WebServices.Org as shown in Table 1. One can refer to paper [3] for other web services

stacks and the comparison between them.

Table 1 Web Services stack from WebServices.Org

Layer Example

Service Negotiation Trading Partner Agreement

Workflow, Discovery, Registries UDDI, ebXML registries, IBM WSFL, MS XLANG

Page 4 of 20

Service Description Language WSDL/WSCL

Messaging SOAP/XML Protocol

Transport Protocols HTTP, HTTPS, FTP, SMTP

Business Issues Management, Quality of Service, Security, Open

Standards

Service Negotiation

The business logic process starts at the Services Negotiation layer (the top) with, say,

two trading partners negotiating and agreeing on the protocols used to aggregate Web

Services. This layer is also referred to as the Process Definition Layer covering document,

workflow, transactions, and process flow.

Workflow, Discovery, Registries

The stack then moves to the next layer to establish workflow processes using Web

Services Flow Language (WSFL) and MS XLANG, an XML-based language to describe

workflow processes and spawn them. The W3C web site has not indicated whether it has

received the WSFL proposal for consideration. If it has, the proposal has not yet been

posted on the web site.

WSFL specifies how a Web Service is interfaced with another. With it, you can

determine whether the Web Services should be treated as an activity in one workflow or

as a series of activities. While WSFL complements WSDL (Web Services Definition

Language) and is transition-based, XLANG is an extension of WSDL and block

structured-based. WSFL supports two model types: flow and global models. The flow

model describes business processes that a collection of Web Services needs to achieve.

The global model describes how a set of Web Services interacts with one another.

XLANG, on the other hand, allows orchestration of Web Services into business processes

and composite Web Services. WSFL is strong on model presentation while XLANG does

well with long-running interaction of Web Services.

Among the software supporting WSFL is IBM MQ Series Workflow (now known as

WebSphere Process Manager) that automates business process flows, optimizes

Enterprise Application Integration (EAI) with people workflow, provides scalability, and

Page 5 of 20

complies with the Workflow Coalition and multi-platform capabilities. MSXLANG is the

language implemented in BizTalk, the XML integration server from Microsoft.

Web Services that can be exposed may, for example, get information on credit

validation activities from a public directory or registry, such as Universal Description,

Discovery and Integration (UDDI). The ebXML, E-Services Village, BizTalk.org, and

xml.org registries, and Bowstreet's (a stock service brokerage) Java-based UDDI (jUDDI)

are other directories that could be used with UDDI in conjunction with Web Services for

business-to-business (B2B) transactions in a complex EAI infrastructure under certain

conditions.

Hewlett Packard Company, IBM, Microsoft, and SAP launched beta implementations

of their UDDI sites that have conformed to the latest specification (UDDI v2), including

enhanced support for deploying public and private Web Service registries, and the

interface (SOAP/HTTP API) that the client could use to interact with the registry server.

In addition to the public UDDI Business Registry sites, enterprises can also deploy

private registries on their intranet to manage internal Web Services using the UDDI

specification. Access to internal Web Service information may also be extended to a

private network of business partners.

Service Description Language

As you move down the stack, you need WSDL to specify how to connect to a Web

Service. This language is an XML format for describing network services. With it,

service requesters can search for and find the information on services via UDDI, which,

in turn, returns the WSDL reference that can be used to bind to the Web Service.

Web Service Conversational Language (WSCL) helps developers use the XML

Schema to better describe the structure of data in a common format (say, with new data

types) the customers, Web browsers, or indeed any XML enabled software programs can

recognize. This protocol can be used to specify a Web Service interface and to describe

service interactions.

Messaging

Now, we get to the Messaging Layer in the stack where SOAP acts as the envelope

for XML-based messages, covering message packaging, routing, guaranteed delivery and

security. Messages are sent back and forth regarding the status of various Web Services

Page 6 of 20

as the work progresses (say, from customer order to shipping product out of the

warehouse).

Transport Protocols

When a series of messages completes its rounds, the stack goes to its last layer: the

transport layer, using Hypertext Transfer Protocol (HTTP), Secure HTTP (HTTPS),

Reliable HTTP (HTTPR), File Transfer Protocol (FTP), or Standard Mail Transfer

Protocol (SMTP). Then, each Web Service takes a ride over the Internet to provide a

service requester with services or give a status to a service provider or broker.

Business Issues

Finally, the Business Issues row in the table lists other key areas of importance to the

use and growth of Web Services. Without consideration to these points, Web Services

could quickly become objects of ridicule.

- Two types of web services (intranet/internet web services)

There are two broad types of web services – web services used in an intranet and web

services used on the Internet. Intranet web services are web services used internally by

organizations but not exposed to the general public. For example, an intranet web service

might be responsible for handling vacations requests from employees. The company’s

intranet web site would then access this web service and employees could request

vacations. Managers could authorize the vacations and colleagues could check when

other employees were on holiday. Human resources could then write a simple application

in Visual Basic to make sure that helpdesk staffs don’t take all their vacation at the same

time. All this is possible without having detailed knowledge of how or where this

information is kept.

1.2 Challenges in testing web services

Testing intranet and Internet web services provides subtly different problems. With an

intranet web service, you, as an organization, are likely to have control over who has

access your web service. Since it is on an internal network, only internal users can have

access to it, so you have a theoretical maximum. Similarly, you can make certain

Page 7 of 20

assumptions about security. With an Internet web service, anybody can access it. This

means that there are additional scalability and security considerations.

Another challenge in testing web services is that they do not inherently display a user

interface that can be tested. Although some development tools will build a web page

around a web service, this is not part of the web service itself. For example, Visual

Studio .NET will generate a page which allows you to invoke methods of web services

and view the XML returned but this is not very efficient for anything but the simplest of

web services. This lack of user interface means that web services are hard to test

manually, but are an ideal candidate for automated testing. A consequence of this is that

some programming skills are almost certainly needed for testers who need to test web

services. A web service is not the sort of application you can test by key-bashing.

1.3 Different types of testing

In general, there are five different sorts of testing as follows that you can carry out on

web services [3, 4, 5]:

Proof of concept testing

There are many different choices to be made to build a web service– which tool

vendor to use, which programming language and which database backend, for instance.

So we will have to understand if the architecture we have chosen for the web service is

the correct one. If we can clarify and resolve these issues early in the development

lifecycle, then we will save a lot of time and money further on down the line.

Functional testing

Functional testing is to ensure the conformance of the functionality of the web service

with the expected. The functionality includes if the web services implement security /

authentication, or if the web services support all the expectative communications

protocols, or how the web services deal with the unexpected access requests from clients.

Especially to say, bounds testing and error checking is most important.

Regression testing

A regression test is normally a cut-down version of a functional test. Its aim is to

guarantee that the web service is still working between builds or releases. For instance, is

Page 8 of 20

the performance still acceptable after the latest builds? Since regression testing is a

repetitive task in its nature, it will usually be automated.

Load / stress testing

The aim of load / stress testing is to find the scalability of the web service with the

possible increase of the number of accessing clients. While functional and regression

testing are facilitating to make sure the correctness of the web service with a single user,

what we need to know now is if it is capable of coping with 10, 100 or 1000 users, or

how many users it will cope with. In load testing, response time is an important

referential criterion to ensuring the normal load of the web services.

Monitoring

Once the web service is started and being used by real clients, it will be essential to

monitor the web service, ensuring if the response time of the web service is adequate etc.

2. Proof of concept testing

Proof of concept testing is usually designed and applied as early as possible in the

development life cycle, so that we are able to make sure the architecture right very early

in the development process (illustrated in Figure 2). To some extent, a proof of concept

test is normally a cut-down load test. But here, there’s no need to run it on powerful

hardware, or get exact answers. The aim of proof of concept testing is to answer the

question like “Are we going in the right direction?”

Figure 2 Role of Proof of concept in web services testing

Presently, there exist few tools concentrating on Proof of concept testing. The

Advanced .NET Testing System (ANTS) released by Red Gate is used for the complete

Page 9 of 20

life-cycle testing of XML web services, .NET Web Applications, and conventional Web

sites. Among many toolkits in the ANTS suite, ANTS <concept> is used for proof-of-

concept testing for companies experimenting with XML Web Services, Web applications,

and sites written in Visual Studio .NET.

ANTS <concept> features the ability to understand the capacity and response times of

your new .NET Web services so you can load test up to 100 virtual users for testing

architecture and designs, and recordable scripts for automated testing. ANTS is written

entirely in Visual Studio .NET; Visual Basic .NET is the scripting language. Figure 3

shows the user interface of ANTS <concept>.

Figure 3 user interface snapshot of ANTS <concept>

Some key point about ANTS <concept>:

1. The ability to understand the capacity and response times of your prototype .NET

web applications and services. Load test with up to 100 virtual users for concept testing

architecture and designs. If you require more virtual users than this then ANTS <load>

may be more appropriate for your needs.

2. Web Services Methods are treated as objects within a Visual Basic .NET allowing

powerful scripts to be constructed. Details can be inserted from a database into your web

service to mimic realistic load situations. Scripting is in the familiar environment of

Page 10 of 20

Visual Studio using Visual Basic - which means you have a short and permanently useful

learning curve.

3. Recordable scripts for automated testing of browser based web applications.

4. ANTS is written entirely in C# using Visual Studio .NET. It features Visual Studio

for Applications and was the first product, globally, to do so.

3. Functional and Regression Testing

Functional testing, simply stated, verifies that an application or a service does what it

is supposed to do and doesn't do what it shouldn't do [6]. For example, if you were

functionally testing a word processing application, a partial list of checks you would

perform includes creating, saving, editing, spell checking and printing documents. (Again,

this list is quite incomplete!)

Positive functional testing entails exercising the application's functions with valid

input and verifying the outputs are correct. Continuing with the word processing example,

a positive test for the printing function might be to print a document containing both text

and graphics to a printer that is online, filled with paper and for which the correct drivers

are installed.

Negative functional testing involves exercising application functionality using a

combination of invalid inputs, unexpected operating conditions and other "out-of-

bounds" scenarios. Continuing the word processing example, a negative test for the

printing function might be to disconnect the printer from the computer while a document

is printing. What probably should happen in this scenario is a plain-English error message

appears, informing the user what happened and instructing him/her on how to remedy the

problem. What might happen, instead, is the word processing software simply hangs up

or crashes because the "abnormal" loss of communications with the printer isn't handled

properly.

Regression testing is the process of testing changes to computer programs to make

sure that the older programming still works with the new changes. Regression testing is a

normal part of the program development process and, in larger companies, is done by

code testing specialists. Test department coders develop code test scenarios and exercises

that will test new units of code after they have been written. These test cases form what

Page 11 of 20

becomes the test bucket. Before a new version of a software product is released, the old

test cases are run against the new version to make sure that all the old capabilities still

work. The reason they might not work is because changing or adding new code to a

program can easily introduce errors into code that is not intended to be changed.

Obviously, Regression testing can be considered as some kind of cut-down functional

testing to some degree. Actually that’s why existing testing productions for the functional

testing and regression testing are commonly integrated into a single program.

 In order to provide the fastest, most accurate means of conducting automated

function and regression testing for Web applications, we have to find appropriate testing

tools [7]. Developers and QA (quality assurance) professionals responsible for Web

development will have to use this automated software testing tool throughout the entire

application life cycle from early in development through application deployment. The

following list the main requirements from the functional and regression testing tools.

Stay Ahead of Changing Web Applications

As the business-critical Web applications proliferate and the technology underlying

them becomes more complex, automated testing becomes essential. To provide real value,

an automated testing solution must help you keep pace with applications that can change

rapidly. The scripts you create for these tests might also be used as the basis for

conducting load and scalability tests, and for monitoring after you have deployed your

application.

Focus on Testing, Not Programming Test Scripts

Testers should be allowed to write comprehensive tests without programming in a

proprietary scripting language. A powerful, intuitive Visual Script technology, an

automated test case generator, sophisticated content matching, and the ability to execute

data-driven tests etc. all may be considered into the features of the testing tool.

Create Sophisticated Test Scripts Quickly

Such testing tool should maximize productivity by virtually eliminating the need for

programming and provides multiple ways to create tests.

Fix Web Applications Efficiently

Page 12 of 20

Users may be allowed to drill into problems quickly and focus on implementing

solutions. For example, e-Tester's Visual Script graphically displays the contents of each

Web page and test cases using an intuitive tree format, shown as Figure 4. Any errors or

differences identified by e-Tester are highlighted using an intuitive system of color-coded

flags, so that users can quickly and easily create scripts that test all the objects on each

page and indicate errors with color-coded flags.

Figure 4 Graphic interface of e-Tester for users to solve errors

e-Tester from Empirix is an Enterprise-caliber, easy-to-use solution for automated

functional testing and regression testing of Web applications. Its key features can be

summarized as:

1. Visual Script technology provides the fastest and easiest way to create test scripts,

with no programming required.

2. Extending Visual Scripts with Visual Basic for Applications and other standard

programming languages allows you to handle a wide array of testing challenges.

3. The Data Bank Wizard simplifies creation of data-driven tests.

Page 13 of 20

4. Visual test results provide an ideal way for Development, QA, and Operations

groups to communicate and share data.

5. Test management and integration with defect tracking make e-Tester the

centerpiece of a total quality solution.

6. e-Tester scripts integrate seamlessly with Empirix scalability, monitoring, test

management, and defect tracking components to provide a comprehensive

enterprise application performance solution.

4. Load / Stress testing

In order to know how the web service responds as more and more users are simulated,

we must keep all other factors (hardware and networking, for example) constant to carry

out the testing in a controlled environment. This is important to produce objective results.

The ultimate goal of load testing is to reassure you, and confirm if the web service

will respond acceptably for up to x clients making y requests a second. Unpredictable

user behavior and system variables expose the web service to the risk of highly visible

failure. Load and stress testing offers the following advantages [8]:

§ Predictable and budgeted costs

§ Avoidance of costly retroactive fixes

§ More accurate scalability projections

§ Optimal performance leading to an increased return on investment

There are several aspects of load and stress testing. To conduct load testing, we apply

stress to the web services by simulating real users and real activity.

We can perform capacity testing to determine the maximum load the web service

can handle before failing. Capacity testing reveals the web services’ ultimate limit.

We may also perform scalability testing to determine how effectively the web

service will expand to accommodate an increasing load. Scalability testing allows us to

plan the web service capacity improvements as the business grows, and to anticipate

problems that could cost the revenue down the line. Scalability testing also reveals when

Page 14 of 20

your site cannot maintain good performance at higher usage levels, even with increased

capacity.

While carrying out the load testing, the tool being used should be able to identify how

the following values change as we increase the number of clients. These are all

measurements of how the client is experiencing the web service:

1. Time to connect: This is the time it takes to make a connection from the client to

the web service. This should be as low as possible.

2. Time to first byte: This is the time it takes for the client to start receiving data

back from the web service. If the web service needs to do a lot of thinking for

each request, then this time could be significant.

3. Time to last byte : This is the time it takes for the client to receive the last byte of

information back from the service. If the service needs to return a large amount of

data (if it is returning maps, or images, for example), then this could be significant.

Notice that the way these measurements change as the load on the web service is

increased. Ideally we want these metrics to remain constant. It's very likely that we’ll find

that the web service scales (i.e. the response time for requests remains constant) until a

certain number of virtual users, and then it stops scaling. To troubleshoot this, we have to

analyze the performance on the server the service is running on. Keep in mind that the

saturated CPU, the thrashing disk, or the network traffic all possibly causes such kind of

performance problems.

Page 15 of 20

Figure 5 Web services with different scalability properties

In the example in Figure 5, Web Service 1 scales well until about 120 requests /

second (the time to last byte is constant), but then stops scaling. Web service 2 scales

poorly - as the number of requests / second increases, the responsiveness decreases

linearly.

In order to solve the problem when the system hits a bottleneck, we may add another

processor to the server, or even add another server to see if it doubles its capacity. If the

web service will scale in this way, then we will be able to cope with extra demand by

adding more and more hardware at the problem. If the web service doesn't scale in this

way, it means the web service won't perform no matter how much money is spent on

expensive hardware.

e-Load [6] is a robust Web load testing solution that enables you to easily and

accurately test the scalability and performance of your Web applications. Companies use

this automated software load testing solution to predict how well their Web applications

will handle user load. It can be used during application development and post-

deployment to conduct stress testing. Generally speaking, e-Load mainly focuses on the

following aspects in the load testing.

Page 16 of 20

Ensure the Scalability of Your Enterprise Web Applications

The Internet affords you the opportunity to reach millions of new customers and

business partners and to interact with existing ones in entirely new ways. In order to

fully exploit that opportunity, you must ensure that your mission-critical Web

applications effectively handle all levels of user traffic.

Whether they are serving tens or thousands of users, your Web applications must

always be prepared to provide swift, seamless service. Under very heavy loads, the many

technologies that support your Web applications can interact in unpredictable ways,

jeopardizing your users' Quality of Experience. For that reason, it is necessary to

thoroughly load and stress test those applications or risk alienating potential customers as

well as loyal Web constituents.

 Create Accurate Load Tests Quickly and Easily

Using e-Load, a scalability testing solution that was designed specifically for the Web,

you can deploy new Web applications with confidence and ensure that existing ones can

handle growing, volatile demand. e-Load, part of the award-winning e-Test suite, is the

only load testing tool that requires no programming and can reuse regression tests

without modification. An intuitive graphical user interface and our powerful Visual

Script technology reduce testing time and enable you to create representative load

scenarios with ease.

 e-Load's intelligent architecture allows you to generate extremely large loads without

purchasing additional testing hardware or sacrificing accuracy.

Page 17 of 20

Figure 6 a snapshot of the graphic interface of e-Load

Pinpoint Bottlenecks to Improve Performance

e-Load comes with enterprise-caliber, integrated data collection and analysis tools

that enable you to precisely and effectively eliminate performance problems. ServerStats

provides a real-time, detailed view of the performance of each tier of the system under

test. e-Reporter leverages this data to generate customized reports that allow you to

analyze the application's performance under load and pinpoint bottlenecks. e-Reporter,

available as a Windows-based application or through a Web portal, allows you to create

reports and share critical information anywhere in your enterprise.

 e-Load is a flexible, robust load testing solution that can be configured to meet the

unique needs of your organization. Seamless integration with functional and regression

testing and monitoring solutions from Empirix, combined with an extensive set of options,

make e-Load a comprehensive Web application performance solution that can grow with

you as your needs evolve. e-Load produces real- time graphs and reports to show you

results while a test is in progress (See Figure 6).

The key features of e-Load can be summarized as:

§ Maximize the efficiency and cost effectiveness of your Web infrastructure

Page 18 of 20

§ Easily and accurately ensure that mission-critical applications reliably handle

peak loads

§ Improve load capacity of Web applications throughout their entire life cycle

§ Pinpoint performance bottlenecks with ease using powerful analysis and reporting

tools

5. Monitoring

Despite copious testing, unforeseen problems can still occur once a system is placed

into the production environment and made available to increasing thousands of users and

customers. In most situations, these problems are typically related to performance. To

stem these problems, some companies have implemented 'early warning' systems to

continuously monitor key transactions and business functions [9].

The monitoring systems provided by software vendors are typically extensions of

existing load-testing tools. They contain the ability to identify specific components within

the application, and allow QA analysts or system administrators to establish acceptable

thresholds for response time or transaction usage. In addition, these thresholds can be

established to exclusively monitor transactions or business functions during specific

times of the day when load is expected to be heavy.

But although usage of these tools can prove beneficial, they must be balanced with

any known or perceived resource constraints within the environment. We've got to watch

out for overhead and make sure the monitoring tool doesn't impact response time.

6. Automation

The most important question to ask in planning for test automation is whether to

automate at all. There are certain aspects of testing— such as performance and stress

testing— that require automation. You must decide the extent of test automation from a

management standpoint. Nearly every book on software testing offers advice on

determining the utility of automation efforts. For the most part, they can be summarized

by a set of basic guidelines. Take the effort to develop automated testing when:

§ There is a set of API functions with a significant number of potential test cases.

§ Responses to inputs can be categorized as "pass" or "fail" and do not require

human interpretation.

Page 19 of 20

§ A significant number of bug regression test cases exist with simple pass/fail

evaluation criteria.

§ It's less expensive in terms of time, resources, and funding to pay a software

design engineer in Test to write, maintain, and run test automations than to

employ multiple software test engineers to perform manual testing.

After making the decision to automate, start automation efforts early in the project.

The APIs will change, as will the user interface elements of the ASP files. Still, it is

effective to have the automation tests evolve along with the service software. Test

developers should be involved in the code review process so that a sound knowledge of

the intended direction of the project code is established. The process of automation starts

as soon as the API functions are published to the project team. Once the test developer

has the functions available, they should start writing test cases. The process of writing

test cases for automation should go something like what is described next.

For every API function, write down every conceivable permutation of the input

variables. List all boundary conditions:

1. Write a proposed test case for each variation of the input parameters. Attempt to

exceed the limits of any underlying database fields. Throw in attempts at security

violations, such as buffer overflow attacks. Examine all use cases defined during

the process of creating the functional specification. Many use cases will be

suitable as automation candidates. Any that are not are important test cases for

manual testing.

2. Cull all the duplicates. Challenge each parameter and move on.

3. Write your final list of cases. Give this list, along with an API reference, to a

reviewer and have them see if you have missed anything.

4. Revise the list of cases and start writing code.

Automated testing of the Favorites Service consisted of both direct function calls to

the API and sending SOAP messages through Internet Information Services (IIS) to the

API. For more details on the automated test process used in the Favorites Service, see our

article Favorites Service Test Tools and Scripts.

Page 20 of 20

7. Summary

The purpose of this paper is to give the reader a general idea of Web Service testing.

As an emerging technology driven by the will to securely expose business logic beyond

the firewall, Web Services enable application-to-application e-marketplace interaction,

removing the inefficiencies of human intervention. However, few materials and

information are published with respect to the testing on web services so far. In this paper,

we discussed in detail the architecture and features of Web Services, and classes of

testing technologies on web services. For each sort of testing technology, we gave and

discuss a typical toolkit.

References

[1] Judith M. Myerson, Web Service Architectures, http://www.webservicesarchitect.com

[2] Colin Adam, Why Web Services?, http://www.webservices.org

[3] Neil Davidson, Testing web services white paper, http://www.red-gate.com

[4] Web services testing: Beyond SOAP, http://searchwebservices.techtarget.com

[5] Testing Web Services Today and Tomorrow, http://www.therationaledge.com

[6] http://www.testwareinc.com

[7] http://www.empirix.com

[8] http://www.codeproject.com

[9] Testing e-commerce, http://www.adtmag.com

