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What’s a hybrid system?

•A hybrid system consists of a discrete system 
with an analog component.

•For example:
–An automobile engine whose fuel injection 

(continuous) is regulated by a microprocessor 
(discrete).

–A digital controller of an analog plant.
–Medical equipments, manufacturing controllers, and 

robots etc.

What’s a hybrid system? (cont’d)

•A run of a hybrid system is a sequence of 
steps.

•Within each step the system state evolves 
continuously according to a dynamical law 
until a transition occurs.

•With time elapsing, when the variable 
changes to break the invariant condition, state 
transitions will take place instantaneously.
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Hybrid Automaton
• Intuitively –the plant example:

– The discrete state of the controller à vertices of a graph 
(locations)

– The discrete dynamics of the controller à edges of the graph 
(transitions)

– The continuous state of the plant à points in RRn 

– The continuous dynamics of the plant à differential 
equations (activities)

– Each transition may cause a discrete change in the state of the 
plant, as determined by a synchronization label.

– The behavior of the controller depends on the state of the 
plant: when violating the invariant condition, a transition 
happens.

• l0 : x (t) = ?e-Kt, so     = dx/dt = -K?e-Kt = -Kx
• l1 : x (t) = ?e-Kt+h(1-?e-Kt),      = K(h-x)

Formal definition for Hybrid Automaton

H = (Loc, Var, Lab, Edg, Act, Inv)

Initial conditions
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Locations

•A unique name identifying each location.
•State invariants:

–While the control stays in a location, the 
variables must satisfy the invariant conditions.

–The state invariants decide how long the 
automaton can stay in the location.

•Flow relations:
–How continuous variables evolve.

Arcs
• Each arc represents a state transition from a source 

location to a target location.
• Synchronization labels:

– Two hybrid automaton synchronize on the common set 
of Synchronization labels.

• Guarded assignments:
– Represent jump conditions using guards and update the 

state variables by assignments.
– Assuming two variables x1, x2 , and x’i refers to the value 

of xi after the transition: “x1= x2 , x1:= x2” stands for “x1= 
x2  ̂  x’1= 2x2  ̂  x’2= x2 ”.

– “x = m” stands for “ x = m ^ x’ = x ”.
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Linear Hybrid Automaton

•Two concepts:
–A linear term : a linear combination of the variables 

in Var with integer coefficients.

–A linear formula: a boolean combination of 
inequalities between linear terms over Var .

•Linear Hybrid Automaton: a time-deterministic 
hybrid system whose activities, invariants, and 
transition relations can be defined by linear 
expressions over the set Var of variables.

Special cases of Linear Hybrid Automaton

• Discrete system : All variables are discrete.
– x is a discrete variable, if Act(l, x)=0 for each l∈Loc.

• Finite-state system : All variables are propositions.
– x is a proposition variable, if µ(e, x) ∈{0,1} for each e∈Edg.

• Timed Automaton : 
– 1) All variables are propositions or clocks,
– 2) the linear expressions are boolean combinations of inequalities 

of the form x#c or x-y#c, where c is a nonnegative integer and 
#∈{<, =, =, >, =}.

– x is a clock, if Act(l, x)=1 for each l, and µ(e, x) ∈{0,x} for each e.
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Special cases of Linear Hybrid Automaton

• Multirate timed system : All variables are propositions or
skewed clocks.
– x is a skewed clock, if Act(l, x)=k for each l, where k∈Z; and µ(e, x) 
∈{0,x} for each e.

– N-rate timed system: a multirate timed system whose skewed 
clocks proceed at n different rates.

• Integrator system : All variables are propositions or 
integrators.
– x is an integrator, if Act(l, x)={0, 1} for each l and µ(e, x) ∈{0,x} for 

each e.

• Parameter:
– x is an parameter, if µ(e, x) = x for each e.
– We obtain parameterized versions of above system by admitting 

parameters

Example: A mutual-exclusion protocol

•The asynchronous shared-memory system that 
consists of two processes P1 and P2 with atomic 
read and write operations.

•Each process has a critical section and at each 
time instant, at most one of the two processes is 
allowed to be in its critical section.
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Example: A mutual-exclusion protocol

repeat
repeat

await k=0
k := i
delay b

until k = i
Critical section
k:=0

forever

Reachability problems for Linear Hybrid Automaton

• If there is a run of system H that starts in state s and 
ends in state s’, then the state s’is reachable from the 
state s , written             .

• reachability question: if                for two given states s
and s’of a hybrid system.

• Theorem 3.1. The reachability problem is decidable 
for simple multirate timed systems.

• Theorem 3.2. The reachability problem is undecidable
for 2-rate timed systems.

• Theorem 3.3. The reachability problem is undecidable
for simple integrator systems.
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The runs of a hybrid system
• A finite or infinite sequence: ([H ] is the set of runs of H ) 

• where states s i = ( li ,vi  ) ∈S , nonnegative reals ti∈RR=0, and 
activities fi∈Act( li ) , such that for all i = 0:
– 1. fi (0) = v i ,
– 2. for all 0 = t = ti , fi (t) ∈Int( li ) ,
– 3. the state s i+1 is a transition successor of the state s i’= (li , fi (ti ) ) .

• For time-deterministic systems, we can omit the subscripts fi
from the next relation.

• The run ? diverges if ? is infinite and the infinite sum S i=0 ti
diverges.

The following slides are presented 
by Xin Li
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The algorithmic analysis of 
hybrid system

•Research motivation
•Background
•Forward analysis
•Backward analysis
•Discussion

Research Motivation
•Purpose of automatic verification: Given 

a system and a correctness property, 
does the system satisfy the property?

Automatic 
Verifier

system

?
property
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Research Motivation
•Modeling of hybrid systems:

The runs of a hybrid system: the state can  
change in two ways:

Until invariant 
becomes false

ActivitiesNo ChangeContinuousFlow

Followed by 
new flow

Transition  
Relation

ChangeInstant & 
discrete

Jump

ValuationLocationNature

Research Motivation

•Reachability issue: Now that a run of a hybrid 
system is a finite/infinite sequence of “flows” 
and “jumps”, can we guarantee a system is safe?

“The reachability problem is central to the verification of 
hybrid systems…  a set R⊆Σ of states is an invariant of 
the hybrid system H iff no state in Σ-R is reachable from 
an initial state of H.”
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Research Motivation
•Decidability issue: Are we always able to know 

if a hybrid system is safe or unsafe?

Reachability analysis is a search over an infinite state 
space. For linear hybrid system, the termination of this 
procedure is not guaranteed. Additional techniques 
(approximation analysis) may help the convergence of 
this process.

Background
• Sets

∈ membership ⊆ subset ∩ set intersection ∪Set 
union –set difference

• Quantifiers
Notation:(∀ x P(x)) “for all x P(x) is true.”
Notation:(∃ x P(x)) “there exists an x such that P(x) is true.”

• Proposition Logic: 
A disjunction ∨ is true if either of its parameters are true. 
A conjunction ∧ is true only when both parameters (called 
conjuncts) are true.
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Forward Analysis
•General procedure of verification process:

Start from the initial state, then trace the state 
change as system runs, finally check if this process 
converge. 

•State change during flow process:
The forward time closure <P>l

’of P at l is the set of 
valua-tions that are reachable from some valuation v 
∈ P l ∈ Loc, valuation P ⊆ V, ∈ P by letting time 
progress.

v’ ∈ <P>l’ iff ∃v ∈V, t ∈ R≥0.v ∈P ∧ tcpl[v](t) ∧v’= ϕ[v](t)

Forward Analysis
What does it mean?

Invariant factor: tcpl[v](t) : time can progress: iff ∀ 0≤
t’≤ t, ϕ[v](t) ∈ Inv(l). ϕ[v](t) : activity at time t. 

•State change during jump process:
v’ ∈ poste[P] iff ∃v ∈V.v ∈P ∩ Inv(l) ∧ (v, v’) ∈µ ∧ v’∈
Inv(l) 

µ: transition relation. For a linear hybrid system:

(v, v’) ∈µ iff v(ψ) ∧ ∀ x ∈ Var. v (αx) ≤ v’(x) ≤ v(βx)
ψ⇒ { x:= [αx, βx]| x ∈ Var}
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Forward Analysis

•Extension to “region”— a set of state:
flow: <R>’= l ∈ loc∪(l ,<Rl>l)’
jump: post[R] = e= (l, l’) ∈edge ∪(l,’poste[Rl])
Combine them together, for the i step:

P i+1= poste[<Pi>’li]
Proposition 4.1: least fixpoint. 
Proposition 4.2: linearity of sets.

Forward Analysis

•Example:
Prove y ≥ 60 ⇒ 20z ≤ y.
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Forward Analysis

•Analysis:
Initial state defined by linear formula:
ψ I = (pc = 1 ∧ x = y = z = 0) pc: control variable

At location 1:ψ 1 = <x = y = z =0 ∨ post(2,1)ψ 2]>1’
At location 2: ψ 2 = <false ∨ post(1,2)[ψ 1]>2’
For step i: ψ 1, i =  ψ 1, i–1 ∨ <post (2,1)[ψ 2, i-1]>1’

ψ 2, i =  ψ 2, i–1 ∨ <post (1,2)[ψ 1, i-1]>1’

Forward Analysis

•Result: 
ψR = (pc = 1 ∧ ψ1) (pc = 2∧ψ 2)
ψ1 = (x ≤ 1 ∧ x=y=z) ∨ (x ≤ 1 ∧ x ≤ z ∧ y + 30x ≥31z )
ψ2 = (z ≤ 1 ∧ y=x+z ∧ x ≥ 0) ∨ y ≥ x + 31z - 30
Therefore, y ≥ 60 ⇒ 20z ≤ y.



15

Backward Analysis

•An “mirror” approach of forward analysis.
The differences:
§ The initial state is the “unsafe condition”. 
§ “Propagation”is done “backward”
§ It takes six iterations to converge.
§ Converge conditions do not contain that initial 

state, so the original statement proven.

Discussion

•Other approaches:
§ Approximation analysis.
§ Minimization.

•Questions…


