The algorithmic analysis of hybrid system

Authors: R.Alur, C. Courcoubetis etc. Course teacher: Prof. Ugo Buy Xin Li, Huiyong Xiao Nov. 13, 2002

Summary

- What's a hybrid system?
- Definition of Hybrid Automaton
- Subclasses
- Examples
- Reachability problems of Linear Hybrid Automata

What's a hybrid system?

- A hybrid system consists of a discrete system with an analog component.
- For example:
 - An automobile engine whose fuel injection (continuous) is regulated by a microprocessor (discrete).
 - A digital controller of an analog plant.
 - Medical equipments, manufacturing controllers, and robots etc.

Hybrid Automaton

- Intuitively the plant example:
 - The discrete state of the controller \rightarrow vertices of a graph (*locations*)
 - The discrete dynamics of the controller \rightarrow edges of the graph (*transitions*)
 - The continuous state of the plant \rightarrow points in \mathbb{R}^n
 - The continuous dynamics of the plant → differential equations (*activities*)
 - Each transition may cause a discrete change in the state of the plant, as determined by a <u>synchronization label</u>.
 - The behavior of the controller depends on the state of the plant: when violating the *invariant condition*, a transition happens.

Locations

- A unique *name* identifying each location.
- State invariants:
 - While the control stays in a location, the variables must satisfy the invariant conditions.
 - The state invariants decide how long the automaton can stay in the location.
- *Flow relations*:
 - How continuous variables evolve.

Linear Hybrid Automaton

- Two concepts:
 - A *linear term*: a linear combination of the variables in *Var* with integer coefficients.
 - A *linear formula*: a boolean combination of inequalities between *linear terms* over *Var*.
- *Linear Hybrid Automaton*: a time-deterministic hybrid system whose <u>activities</u>, <u>invariants</u>, and <u>transition relations</u> can be defined by linear expressions over the set *Var* of variables.

Special cases of Linear Hybrid Automaton

- <u>Multirate timed system</u>: All variables are *propositions* or *skewed clocks*.
 - x is a *skewed clock*, if Act(l, x)=k for each l, where $k \in \mathbb{Z}$; and $\mu(e, x) = \{0, x\}$ for each e.
 - <u>N-rate timed system</u>: a multirate timed system whose skewed clocks proceed at n different rates.
- *Integrator system*: All variables are *propositions* or *integrators*.
 - χ is an *integrator*, if $Act(l, \chi)=\{0, 1\}$ for each l and $\mu(e, \chi) = \{0, \chi\}$ for each e.

• Parameter:

- $-\chi$ is an *parameter*, if $\mu(e, \chi) = \chi$ for each *e*.
- We obtain *parameterized* versions of above system by admitting parameters

The runs of a hybrid system

• A finite or infinite sequence: $([\mathcal{H}] \text{ is the set of runs of } \mathcal{H})$

 $\rho: \quad \sigma_0 \mapsto_{f_0}^{t_0} \sigma_1 \mapsto_{f_1}^{t_1} \sigma_2 \mapsto_{f_2}^{t_2} \cdots$

• where states $s_i = (l_i, v_i)$ *S*, nonnegative reals t_i R⁼⁰, and activities $f_i \quad Act(l_i)$, such that for all i = 0:

$$-1.f_i(0) = v_i,$$

- $2. \text{ for all } 0 = t = t_i, f_i(t) \quad Int(l_i),$
- 3. the state s_{i+1} is a <u>transition successor</u> of the state $s_i' = (l_i, f_i(t_i))$.
- For time-deterministic systems, we can omit the subscripts f_i from the *next relation*.
- The run ? diverges if ? is infinite and the infinite sum $S_{i=0} t_i$ diverges.

The algorithmic analysis of hybrid system

- Research motivation
- Background
- Forward analysis
- Backward analysis
- Discussion

Research Motivation

• Modeling of hybrid systems:

The runs of a hybrid system: the state can change in two ways:

	Nature	Location	Valuation	
Jump	Instant & discrete	Change	Transition Relation	Followed by new flow
Flow	Continuous	No Change	Activities	Until invariant becomes false

Research Motivation

• Reachability issue: Now that a run of a hybrid system is a finite/infinite sequence of "**flow**s" and "jumps", can we guarantee a system is safe?

"The reachability problem is central to the verification of hybrid systems... a set R⊆Σ of states is an invariant of the hybrid system H iff no state in Σ-R is reachable from an initial state of H."

Research Motivation

• Decidability issue: Are we always able to know if a hybrid system is safe or unsafe?

Reachability analysis is a search over an infinite state space. For linear hybrid system, the termination of this procedure is not guaranteed. Additional techniques (approximation analysis) may help the convergence of this process.

Forward Analysis

• Extension to "region" — a set of state: flow: $\langle R \rangle' = {}_{l \ \hat{l} \ loc} \cup (l, \langle R_l \rangle_l)'$ jump: post[R] = ${}_{e=(l, l') \in edge} \cup (l, 'post_e[R_l])$ Combine them together, for the *i* step: P ${}_{i+1}$ = post_e[$\langle P_i \rangle'_{li}$] Proposition 4.1: least fixpoint. Proposition 4.2: linearity of sets.

Forward Analysis

• Analysis:

Initial state defined by linear formula: $\psi_{I} = (pc = 1 \land x = y = z = 0) \quad pc: \text{ control variable}$ At location 1: $\psi_{1} = \langle x = y = z = 0 \lor \text{post}_{(2,1)}\psi_{2}] \rangle_{1}$ ' At location 2: $\psi_{2} = \langle \text{false} \lor \text{post}_{(1,2)[}\psi_{1}] \rangle_{2}$ ' For step i: $\psi_{1,i} = \psi_{1,i-1} \lor \langle \text{post}_{(2,1)} [\psi_{2,i-1}] \rangle_{1}$ ' $\psi_{2,i} = \psi_{2,i-1} \lor \langle \text{post}_{(1,2)} [\psi_{1,i-1}] \rangle_{1}$ '

Backward Analysis

• An "mirror" approach of forward analysis. The differences:

- The initial state is the "unsafe condition".
- "Propagation" is done "backward"
- It takes six iterations to converge.
- Converge conditions do not contain that initial state, so the original statement proven.

