
 1

CS 581

PROJECT REPORT

INDEXING

SUBMITTED BY
Juhong Liu, Gent Panajoti, Huiyong Xiao

 2

Table of Contents Page

Introduction and Motivation 3

Our Goal 4

Problem and Solution Approach 4

Implementation Details 5

Experimental Settings 12

Results and Discussion 12

Conclusion 36

Acknowledgments 37

References 38

 3

A Report on Indexing by Juhong Liu, Gent Panajoti, and Huiyong Xiao

1. Introduction and Motivation

In order to efficiently process spatial queries, one needs specific access methods

relying on a data structure called an index. These access methods accelerate the access to

data; that is, they reduce the set of objects to be looked at when processing a query.

Processing a spatial query leads to the execution of complex and costly geometric

operations. For operation such as point queries sequentially scanning and checking

whether each object of a large collection contains a point involves a large number of disk

accesses and the repeated expensive evaluation of geometric predicates. Hence, both the

time-consuming geometric algorithm and the large volume of spatial collections stored

on secondary storage motivate the design of efficient spatial access methods, which

reduce the set of objects to be processed.

The most common access methods use B-trees and hash tables, which guarantee

that the number of input/output operations (I/O.) to access data is respectively

logarithmic and constant in the collection size, for exact search queries. A typical

example of exact search is “Find County (whose name=) Cook. “ Unfortunately, these

access methods cannot be used in the context of spatial data. As an example, we take the

B-tree. This structure indexes a collection on a key; that is, an attribute value of every

object of the collection. The B-tree relies on a total order on the key domain, usually the

order on natural numbers, or lexicographic order on strings of cha racters. Because of this

order, interval queries are efficiently answered.

A convenient order for geometric objects in the plane is one that preserves object

proximity. Two objects close in the plane should be close in the index structure. For

example, objects inside a rectangle. They are close in the plane. It is desirable that their

representation in the index also be close, so that a window query can be efficiently

answered. Unfortunately, there is no such total order. The same limitation holds for

hashing. Therefore, a large number of spatial access methods (indexes) were designed to

try as much as possible to preserve object proximity.

 4

The subject of our project is to study the performance of 2D R-tree, Quadtree, 3D

R-tree, and Octree. All these indexes are used to efficiently process spatial queries for

trajectories (in 2D case, the respective routes of the objects, without the timing

information).

2. Our Goal

In this project we are to experimentally compare the running time(s) for: retrieval;

insertion; deletion in 2D R-tree and Quadtree, and 3D R-tree variant and Octree.

The design of the experiment (i.e. bulk insertion, followed by “single”; or chunks of

insertions…) will help us in order to get relevant results and have a valid interpretation.

3. Problem and Solution Approach

Our group focuses on the specific problem of comparing the running time

performance of 2D R-tree and Quadtree, and 3D R-tree variant and Octree. The results of

the experiments help us to decide which index is more efficient than the other(s) for

different purposes. It depends on which operations are going to take place more in a

particular database. This means that in some databases are performed more changes by

inserting or deleting or changing information. We can see these operations to take place

in databases where the movement of objects (cars, trucks etc) is stored time after time.

The changing of the information takes place more in databases which have cellular

telephone data, air-traffic data etc. Also, the amount of data to be inserted, deleted, or

changed it depends on the purpose of a particular database.

We build insertion, deletion, and retrieval algorithms for each four indexes. Then

we compare the running time for each particular algorithm in 2D R-tree and Quadtree,

and 3D R-tree variant and Octree. The input data are trajectories or routes expressed by

(x1, y1, t1), (x2, y2, t2)….or (x1, y1), (x2, y2)…. We perform each operation with 5

groups of different data amounts: 180, 360, 540, 720, 900 for 3 dimensional data

 5

(trajectories) and 200, 400, 600, 800, 1000 for 2 dimensional data (routes). This gives us

a better perception on how fast each algorithm performs with different data amounts.

Thus, we know which index to use for a particular database only by knowing the amount

of data that database has to handle. Besides this, it is important the way that the insertion,

deletion, or range query is performed for each group of data amounts in order to get

relevant results and a valid interpretation. To achieve this we perform the insertion for

each index by performing single insertions after bulk insertion for each group of data

(first insert 95% of the data, then insert 5%). Also, we perform chunk insertions for each

index by inserting 90 (for trajectories) or 100 (for routes) data every time. As for range

query, we perform that for each index by using different range sizes (0.1%, 1%, and

10%). We perform the delete (remove) operation in the same way as we do for insertion

by making single deletion (5% of each group of data amount), followed by bulk deletion

(95% of data) and also by making chunk deletion (90 or 100 data every time).

Another issue of the experiment is the use of different sizes of leaf nodes. In our

experiments we set the MAXLEAFNODE (maximum size of leaf node) in three different

values: 16, 32 and 64.for trajectories and 32, 64 and 128 for routes.

4. Implementation Details

In our project we have implemented four indexing as we mentioned before. These

indexing are Quadtree, Octree, 2D R-tree, and 3D R-tree variant. In this part of the report

we explain the implementation of these indexing. Because the operations of insertion,

deletion, and range search are similar, we explain their implementation in two groups. In

the first group we treat 2D R-tree and 3D R-tree variant, while in the second group are

Quadtree and Octree. Quadtree and 2D R-tree are indexes for two-dimensional objects,

which are routes in this project. Octree and 3D R-tree are indexes for three-dimensional

objects, which are trajectories in this project.

4.1. R-Tree Index Structure

 6

R-tree is height-balanced tree similar to a B-tree with index records in its leaf nodes

containing pointers to data object. Nodes correspond to disk pages if the index is disk-

resident. Leaf nodes in a R-tree contain index record entries of the form

(I, tuple-identifier)

where tuple-identifier refers to a tuple in the database and I is an n-dimensional

rectangle which is the bounding box of the spatial object indexed. Non- leaf nodes contain

entries of the form

(I, child-pointer)

where child-pointer is the address of a lower node in the R-tree and I covers all

rectangles in the lower node’s entries. We let M be the maximum number of entries that

will fit in one node, and let m = M/2 be a parameter specifying the minimum number of

entries in a node.

The properties of an R-tree are:

• Every leaf node contains between m and M index records unless it is the root.

• For each index record (I, tuple-identifier) in al leaf node, I is the smallest

rectangle the spatially contains the n-dimensional data object represented by the

indicated tuple.

• Every non- leaf node has between m and M children unless it is the root.

• For each entry (I, child-pointer) in a non-leaf node, I is the smallest rectangle

contains the rectangles in the child node.

• The root node has at least two children unless it is a leaf.

• All leaves appear on the same level.

4.1.1 Search Algorithm in an R-tree
• Search subtrees – If N (root node) is not a leaf, check each entry E to determine

whether E I overlaps search rectangle S. For all overlapping entries, we invoke

Search algorithm on the tree whose root node is pointed to by Ep [2].

• Search leaf node – If N is a leaf node, then we return all trajectories or routes of

this node.

4.1.2 Insert Algorithm in an R-tree (see Fig. 1.a and Fig. 1.b for illustration)

 7

• Find position for new record – Invoke ChooseLeaf algorithm to select a leaf node

L in which to place E.

• Add record to leaf node – If L has room for another entry, install E. Otherwise

invoke SplitNode algorithm to obtain L and LL containing E and all the old

entries of L.

• Propagate changes upward – Invoke AdjustTree algorithm on L, also passing LL

if a split was performed.

• Grow tree taller – If node split propagation caused the root to split, create a new

root whose children are the two resulting nodes.

Fig. 1.a – Before the trajectory 9 is inserted in 2D R-tree

 8

Fig. 1.b – After the insertion of the trajectory 9 in 2D R-tree
In the above illustration, the MAXLEAFSIZE is 3

4.1.3 ChooseLeaf Algorithm in an R-tree
• Initialize – Set X to be the root node

• Leaf check – If X is a leaf, return X.

• Choose subtree – If X is not a leaf, let F be the entry in X whose rectangle F I

needs least enlargement to include E I. Resolve ties by choosing the entry with the

rectangle of smallest area.

• Descend until a leaf is reached – Set X to be the child node pointed to by Fp and

repeat from step 2 of ChooseLeaf algorithm.

4.1.4 AdjustTree Algorithm in an R-tree
• Initialize – Set X = L If L was split previously, set XX to be the resulting second

node.

• Check if done – If X is the root, stop.

• Adjust covering rectangle in parent entry – Let P be the parent node of X, and let

EX be X’s entry in P. Adjust EX I so that it tightly encloses all entry rectangles in X

• Propagate node split upward – If X has a partner XX resulting from an earlier

split, create a new entry EXX with EXXp pointing to XX and EXX I enclosing all

rectangles in XX. Add EXX to P if there is room. Otherwise, invoke SplitNode

algorithm to produce P and PP containing EXX and P’s old entries.

• Move up to next level – Set X = P and set XX = PP if a split occurred. Repeat

AdjustTree algorithm from step 2.

4.1.5 Deletion Algorithm in an R-tree
• Find nod containing record – Invoke FindLeaf to locate the leaf node L containing

E. Stop if the record was not found.

• Delete record – Remove E from L

• Propagate changes – Invoke CondenseTree algorithm, passing L.

 9

• Shorten tree – If the root node ahs only one child after the tree has been adjusted,

make the child new root

4.1.6 FindLeaf Algorithm in an R-tree
• Search subtrees – If N is not a leaf, check each entry F in N to determine if F I

overlaps E I. For each such entry invoke FindLeaf algorithm on the tree whose

root is pointed to by Fp until E is found or all entries have been checked.

• Search leaf node for record – If N is a leaf, check each entry for record. If N is a

leaf, check each entry to see if it matches E. If E is found return N.

4.1.7 CondenseTree Algorithm in an R-tree
• Initialize – Set X = L. Set Q, the set of eliminated nodes, to be empty.

• Find parent entry – If X is the root, we go to step 6 of this algorithm. Otherwise

let P be the parent of X, and let EX be the X’s entry in P.

• Eleminate under-full node – If X has fewer than m entries, delete EX from P and

add X to set Q.

• Adjust covering rectangle – If X has not been eliminated adjust EX I to tightly

contain all entries in X.

• Move up one level in tree – Set X = P and repeat this algorithm from step 2

• Re-insert orphaned entries – Re- insert all entries of nodes in set Q. Entries from

eliminated leaf nodes are re- inserted in tree leaves as described in algorithm

Insert, but entries from higher-level nodes must be place higher in the tree, so

that leaves of their dependent subtrees will be on the same level as leaves of the

main tree.

4.2. Quadtree and Octree Index Structure

Trajectories or routes to be indexed are mapped to cells obtained by a recursive

decomposition of the space into quadrants, known as quadtree decomposition. The space

is recursively decomposed into quadrants until the number of trajectories or routes

overlapping each quadrant are less than the page capacity. The index is represented as a

 10

quaternary tree (each internal node has four children in Quadtree and eight children in

Octree, one per quadrant). With each leaf is associated a disk page, which stores the

index entries. A trajectory or route appears in as many leaf quadrants as it overlaps.

4.2.1 Insert Algorithm (see Fig. 2.1, 2.2, and 2.3 for illustration)
• Get the root N

• Check for overlapping of the trajectory or the route with the node N. If there is

not overlapping we stop.

• If N is a internal node, repeat step 2 of this algorithm for each child of node N.

• N is a leaf node we insert the trajectory or route.

• If the number of trajectories or routes is more than MAXLEAFSIZE then we

split that leaf node into four (for quad-tree) or eight (for oct-tree) leaf nodes.

Then insert the trajectories or routes in original leaf node to the new leaf nodes.

 Fig. 2.1 Before inserting trajectory five Fig. 2.2 Start splitting the quadrants

 .

 11

 Fig. 2.3 Continue splitting the quadrants

In the above illustration, the MAXLEAFSIZE is 2.

4.2.2 Search Algorithm
• Get the root N

• Check for overlapping of query range and the range of N

• If the answer from the second step is NOT, we return

• If N is internal node, we go to the children of node N and repeat step 2 for each

N’s child.

• If the node is leaf node then we return all trajectories or routes of this node

4.2.3 Deletion Algorithm
• Get the root

• Check for overlapping of trajectory or route and the node range

• If the answer is NOT, we return.

• If the answer is YES and the node N is internal node, we go to the children of N

and repeat step 2 for each child.

• If N is leaf node, we delete the trajectories or routes from N and check the father

for the MINNODESIZE.

• If the number of trajectories or routes is not less than the MINNODESIZE, we

return.

 12

• If the number of trajectories or routes is less than the MINNODESIZE, we delete

all the children of the father and change the father into a leaf node.

• For the father of node N, go step 6

5. Experimental Settings

The algorithms were implemented in the C++ language under the SunOS operating

system on the Sun Microsystems Ultra 5 machines in the Computer Science laboratory.

Experiments were compared by the amount of time they take on these computers using

clock() function in the C++ programming language. This function returns the number of

clock ticks (the CPU time taken) the program has taken. We ran all four algorithms on

five different groups of trajectories or routes (180, 360, 540, 720, and 900 trajectories or

200, 400, 600, 800 and 1000 routes) and we measure the running time for insertion,

remove, and range search as we describe at Problem and Solution Approach part of this

report.

The second phase of our experiment is to compare the running time results that we

obtain by our algorithms. That is; we compare the running time of Quadtree and 2D R-

tree, Octree and 3D R-tree variant. For all insertions (single and chunk), range searches

(0.1 %, 1 %, and 10 %), and removes (single and chunk) we build graphs where we see

the performance of Quadtree algorithm compare with 2d R-tree, and Octree algorithm

compare with 3D R-tree variant. All the results of these comparisons are included in

Results and Discussion part of this report.

6. Results and Discussion

2 Dimensional with Leaf Size 32

 13

 2d_single_insert_32

 2d_chunk_insert_32

 14

 2d_search_0.1%_32

 2d_search_1%_32

 15

 2d_search_10%_32

 2d_single_remove_32

 16

 2d_chunk_remove_32

2 Dimensional with Leaf Size 64

 2d_single_insert_64

 17

 2d_chunk_insert_64

 2d_search_0.1%_64

 18

 2d_search_1%_64

 2d_search_10%_64

 19

 2d_single_remove_64

 2d_chunk_remove_64

2 Dimensional with Leaf Size 128

 20

 2d_single_insert_128

 2d_chunk_insert_128

In above plot, when data number is 500, the time performance of quad tree for

chunk insertion is much longer than other chunk insertion. We think when data number is

 21

400, the leaf nodes of the quad tree are almost full, so when another 100 data insert, many

leaf nodes split, this operation takes much time. After these nodes split, many of the leaf

nodes are far from full, so when another 100 data insert, it takes less time, since few of

them split.

 2d_search_0.1%_128

 22

 2d_search_1%_128

 2d_search_10%_128

 23

 2d_single_remove_128

 2d_chunk_remove_128

Similar as we discuss for the figure 2d_chunk _insert_128, the reason for the peak

of R-tree in data equal to 900 is that the leaf nodes are nearly empty when the number of

 24

data is equal to 1000. So, another 100 data remove makes many leaf nodes removed and

some internal nodes change to leaf nodes.

3 Dimensional with Leaf Size 16

 3d_single_insert_16

 25

 3d_chunk_insert_16

The same reason as we discussed in figure 2d_chunk_insertion_128 leads to the two

peaks when data is 450 and 810.

 3d_search_0.1%_16

 26

 3d_search_1%_16

 3d_search_10%_16

 27

 3d_single_remove_16

 3d_chunk_remove_16

The same reason as we discussed in figure 2d_chunk_remove_128 leads to the two

peaks when data is 720.

 28

3 Dimensional with Leaf Size 32

 3d_single_insert_32

 3d_chunk_insert_32

 29

The same reason as we discussed in figure 2d_chunk_insertion_128 leads to the two

peaks when data is 540 and 810.

 3d_search_0.1%_32

 3d_search_1%_32

 30

 3d_search_10%_32

 3d_single_remove_32

 31

 3d_chunk_remove_32

The same reason as we discussed in figure 2d_chunk_insertion_128 leads to the

two peaks when data is 720.

3 Dimensional with Leaf Size 64

 32

 3d_single_insert_64

 3d_chunk_insert_64

The same reason as we discussed in figure 2d_chunk_insertion_128 leads to the two

peaks when data is 540 and 810.

 33

 3d_search_0.1%_64

 3d_search_1%_64

 34

 3d_search_10%_64

 3d_single_remove_64

 35

 3d_chunk_remove_64

 The same reason as we discussed in figure 2d_chunk_insertion_128 leads to the

two peaks when data is 720.

6.1 Analysis of algorithm:
From the description of the algorithm in implementation details of our report, it is

obvious that the more the data are, the longer the time performance for operations

(insertion, range search and remove) is. Generally our experiment result reflected this

except some noise.

6.2 Noise and solution:
There are two main sources of noise:

l We use the function clock() measure the time it takes the index tree to do

operation. The granularity of result returned by this function is 10,000. So, the

results we get are something like 0, 10,000, 20,000…..It is not accurate enough.

l We did our experiment in bert.cs.uic.edu. Many students share the machine at

the same time, this makes the measure of time not accurate.

For the second source of noise, we tried to do our experiment when there are few

students use bert, such as at the holiday mornings.

 36

For the first source of noise, we tried to do some operations, such as range search,

for many times, so we can get more accurate result. But for the insertion or remove

operations, we cannot use the same method, since such operation changes the tree.

Additionally, we generated ten ranges for the each range size (0.1%, 1% and 10%)

to do the search experiment. We hope this can give us the average time for the search of

the range size. But sometimes, we were in bad luck. In the figure 3d_search_10%_32, the

time for oct-tree for the search operation of 900 data is less than that of 720 data. We

think most of the ten search ranges are in sparse area of the special data.

The goal of our project is to compare the time performance of quad-tree (oct-tree)

and R-tree. We don’t mind the inaccurate result, as long as we can get conclusion from

the results.

7. Conclusions

Based on the above experiments results, we can get such conclusion as: For the

operation of insertion or remove, the time performance of 2D R-tree is better than the one

of Quadtree. For the range search operation, they are similar. Sometimes, quad-tree

performs better than R-tree. Sometimes, R-tree performs better than quad-tree. The time

performance of 3D R-tree is better than the one of Octree. The reasons for such

conclusion are:

Quadtree and Octree are space-driven structures, which are based on partitioning of

the embedding space into rectangular cells, independently of the distribution of the

objects (trajectories or routes). Whereas, 2D R-tree and 3D R-tree variant are data driven

structures, which are organized by partitioning the set of objects, as opposed to the

embedding space. The partitioning adapts to the objects' distribut ion in the embedding

space. Such difference between the natures of these two indexing methods leads to the

following facts:

l In R-trees, we use an MBR (minimal boundary range) to contain and represent a

route or trajectory, whereas in quad-tree and oct-tree, we don’t use MBRs. So when

we perform insertion and deletion in a quad-tree or oct-tree, more time has to be cost

 37

on calculating if a route or trajectory intersects with the existing cells. The reason is

that for quad-ree or oct-tree we must calculate if every line segment of a route or

trajectory intersects with the cells.

l Every internal node of R-tree has MAXLEAFNODE (In our experiment,

MAXLEAFNODE can be 16, 32, 64 or 128) children. Whereas, each intern node has

4 children in quad-tree, and 8 children in oct-tree. So the depth of R-tree may be

much lower than the depth of quad-tree or oct-tree, which leads to the inefficiency of

quad-tree and oct-tree.

l In quad-tree or oct-tree, a trajectory or a route can be duplicated in neighbor cells.

This increases the index size, decreases the access performance, and leads to a

possibly expensive sort of the result for duplicate removal. While in R-tree, a

trajectory or a route can only appear in a single leaf node.

l The structure of R-trees (2D and 3D variants), while keeping the tree balanced,

adapts to the skewness of a data distribution. A region of the search space populated

with a large number of objects generates a large number of neighbor tree leaves. In

the case of quad-tree or oct-tree, mapping those spatial objects to a one-dimensional

order (B+-Tree) causes the clustering loss, i.e., some branches in the tree might be

long, corresponding to regions with a high density of trajectories or routes, whereas

others might be short. So, if a range searching is going along a shorter branch in a

quad-tree or oct-tree than in an R-tree, it will run faster.

8. Acknowledgments

We thank Professor Trajcevski and Professor Wolfson for their valuable help,

advice, and enriching presentations, which made it possible for us to implement the

different algorithms.

 38

9. References:

1. Spatial Access Methods, Chapter 6 of the book Spatial Databases with

application to GIS by P. Rigaux, M. School, and A. Voisard, published by Morgan

Kauffman, 2002

2. R-Trees A Dynamic Index Structure For Spatial Searching, Research Paper by

Antonin Guttman, University of California, Berkeley, 1984

3. A Quadtree-Based Dynamic Attribute Indexing Method by Jamel Tayeb, Ozgur

Ulusoy and Ouri Wolfson, The Computer Journal, Vol. 41, No. 3, 1998

4. Moving object databases: issues and solutions, by O. Wolfson, B. Xu, S.

Chamberlain, and L. Jiang, International Conference on Scientific and Statistical

Database Management, Proceedings / International Conference on Scientific and

Statistical Database, 1998

5. Quadtree and R-tree indexes in Oracle spatial: a comparison using GIS data by

Ravi Kanth V Kothuri, Siva Ravada, and Danial Abugov, ACM SIGMOD '2002

June 4-6, Madison, Wisconsin, USA, 2002

6. Specifications of efficient indexing in Spatiotemporal Databases by Yannis

Theodoridis, Timos Sellis, Apostolos N. Papadopoulos and Yannis

Manolopoulos, ICDE, 1998.

7. Storage and Retrieval of Moving Objects by Hae Don Chon, Divyakant Agrawal,

Amr El Abbadi, CIKM, 2000

