
i

Table of Contents

Form Identifying ... 2
1. Introduction... 2
2. Related work ... 2
3. Basic elements in an HTML from .. 3
4. Logic structure of an HTML form.. 4
5. Implementation of Form Identifying .. 5
6. Future work... 12

2

Form Identifying

1. Introduction

A lot of web sites use the interface consisting of an HTML form to let users submit their
queries. Figure 1 shows such a typical HTML form. It will be helpful for us to perform
automatic information collection if we can identify or recognize each field of these
HTML forms and feed the user’s query into the corresponding input field. However, the
fact that different web sites might use HTML forms with different layouts and
compositions because of the unstructured nature and flexibility of HTML syntax makes
the identification process not that easy.
Since it is infeasible to specifically build a different information collector for every
particular information source, we proposed a solution to the form identifying by utilizing
the structural and semantic information in this project, and based on this solution we
construct the architecture with a user feedback mechanism to achieve our identification
goal.

Figure 1 A typical HTML form

In particular, the domain we are focusing on is electronic paper searching interfaces in
the form of HTML forms. For the purpose of this project, we intend to recognize or
identify input fields such as “Title”, “Author”, “Date”, and “ISSN” from the analyzed
form.

2. Related work

Presently, few people are doing research on HTML Form Recognition or Extraction,
although it in fact is promising for extensive applications. Currently, there exist some
HTML Form Management Systems such as LiquidOffice developed by Cardiff Corp
(http://www.cardiff.com/LiquidOffice). But most of them are doing form management by
just specifying the semantic of each form manually, not doing the semantic recognition
(semi-)automatically.

This report is organized as follows. In next section, we will discuss the physically basic
elements of an HTML form. Based on this, we then discuss the logical structure of a form
in section 4. Section 5 describes the whole process of the form identifying. A conclusion
and the future work are given in section 6.

3

3. Basic elements in an HTML from

From the point of view of HTML syntax, a form may physically consist of the following
three types of basic elements. These elements may serve as different logic or semantic
roles in the form, which is discussed later in section 4.

1) Plain text
A plain text is the pure text we see from the HTML browser. But in HTML
representation, a piece of plain text usually has markups around to decorate itself. For
example,
Author.
We can always filter the plain text, like Author in this example, out of the surrounding
markups.

2) Input tag
In HTML representation, an input tag usually contains three attributes such as type,
name, and value. Below is an example of an input tag.
<input type=“text” name=“title” value=“…”>
The value of the type attribute might be “text”, “checkbox”, “radio”, “image”, “hidden”,
“submit”, “reset”, “button”, and “password”. We will only look at the first three types,
since the latter ones are seldom or never used for the user to input data in a form.
Sometimes, the type attribute is absent in an input tag. In this situation, it is by default of
type “text”.
In most cases, the value of the value attribute is blank or absent. Even if it exists, it just
means the initial value of this input tag when the form is loaded into the HTML browser.
In practice, the user will always fill his/her query data into an input tag, not using its
initial value.

3) Select tag
A select tag also has the name attribute. But in stead of having the value attribute, its
value is a list of option tags. For example,
<select name=“year”> <option value=“1999”>1999 <option …> … </select>
Each option tag has a value attribute and a corresponding text. The text is what the user
will see in the HTML browser.

We notice that the semantic of an element might be derived from three sources:

1. The plain text beside an input or select tag;
2. The values of the name attribute of an input or select tag.
3. We also notice that a select tag contains a list of more or less values (option

tags), which may present certain features like “the value of a year field is
sometimes a 4-digit number”.

Based on this, we construct a meta-dictionary and a value-feature base for identifying
each field of the form by deriving semantics from the above three sources in that form. In
turn, knowledge of the meta-dictionary and the value-feature base can also be extended

4

from these three sources during the process of recognition and the user’s feedback. We
will discuss this in detail later in this report.

4. Logic structure of an HTML form

In section 2, we discussed the basic elements that are included in a form. Logically, these
tags may act as different roles in a form. For instance, a plain text is often used to convey
semantic of a field in a form. In this section, we will discuss the logic structure of an
HTML form and see how each logic part uses the basic tags in section 2.

Figure 2 is the hierarchical logic structure of an HTML form. Typical examples for each
element of the structure are given below it.

Figure 2 Hierarchical logic structure of an HTML form

In most cases, an HTML form logically contains a list of input fields combined by means
of Boolean fields.

1) Boolean field: stands for the Boolean relationships between input fields. Usually, this
field could be represented as either a select tag (like the example in Figure 2), or just
blank (as shown in Figure 1). The Boolean field in the latter situation generally means
“AND” operation.

2) Input field: An input field stands for a semantically complete field for the user to input
the query data. It consists of three logic properties such as name, usage, and value. These
properties may have different HTML representations (i.e. the basic tags in section 3)
from each other, and even a single property may have various HTML
representations in different situation.

• Name: conveys the semantic of an input field. A name property can be in the form
of a piece of plain text like “Title”, “Abstract”, and “Author First Name” in
Figure 2.
It also can be a select tag as shown in Figure 3. The select tags used as the name
properties often present such a characteristic as: they have the same value lists
(option tags), but have different initial values, which are the (semantic) names of
different input fields.

5

For example, the form in Figure 3 has three select tags, whose value lists are all
{“author”, “Title”, “Anywhere in Article”}, respectively serving as the
name property of three input fields.

Figure 3 an example of the name property in the form of a select tag

• Usage: is usually represented in a select tag as shown in Figure 3.1. The usage

property is used to specify the usage of the query data inputted by the user. For
example, the “with all the words” means that only the documents containing all
the words of the query data (inputted by the user as the value property) will
be taken as matched results and returned to the user.
In many cases, the usage property is absent in an input field, which means exactly
the same thing as what the “with all the words” means.
The select tags used as the usage properties also present such a characteristic as:
they have the same value lists (option tags), and have the same initial values. For
example, the four select tags in Figure 2 all have the same initial values as “with
all the words”.

Figure 3.1 an example of usage property

• Value: represents the value of an input field. This value is in fact the query data

that the user inputs by means of HTML tags such as input tags (see Figure 2) or
select tags (see Figure 4).

Figure 4 an example of the value property in the form of select tags

5. Implementation of Form Identifying

Figure 5 shows the architecture of the form identifying system. Roughly speaking, the
whole process consists of four steps such as filtering, partitioning, recognizing, and
feedback. And two simplified knowledge bases are used in our architecture, which are the
Meta-Dictionary and the Value-Feature. They can be extensible based on the user’s
feedback.

6

Figure 5 Architecture of the system of Form Identifying

In brief, the task of each step is as follows:

• Filtering: is mainly to analyze an HTML page in the form of a data streaming,
and filter the tags that don’t contribute to the HTML form(s), and then return a list
of three types of basic tags (see section 3).

• Partitioning: is to utilize the syntax feature (i.e., the logic structure discussed in
section 4) of the form to partition all the tags got from Filtering into pieces of
input fields.

• Recognizing: is to utilize the Meta-Dictionary, the Value-Feature, and the Trial-
feedback method to recognize the semantics of each input field got from the
previous step.

• Feedback: means the system adjust itself according to the feedbacks from the
user.

In the following, we will discuss each step in detail by using concrete examples.

1) Filtering
The IE system reads from an HTML file or an URL the HTML streaming data that
contains one or more HTML forms. By analyzing this streaming data, the system will
filter away all the useless HTML tags, just retaining the three basic elements (i.e., plain
text, input tags, and select tags).
After this, the system will standardize these basic tags, including:

• Getting rid of redundant spaces and html tags across the plain text. For example,
<TD ALIGN="right">Title: </TD> è Title

• Constructing a value list for each select tag by taking the text in each of its option
tag as a value in this value list. For example,

7

• Generating a select tag to replace neighboring radio or checkbox input tags, by

taking the text of these radio or checkbox input tags as the value list of the select
tag.

Thus the result of filtering is a list of standardized HTML tags.

2) Partitioning
After filtering away all the useless HTML tag and text, we get a form consisting of a list
of standardized HTML tags such as plain text, select tag, and input tag (type=text). Now,
we can utilize the following logic structure (syntax) features of a form to partition the
form into input fields (which so far are not recognized semantically) for the use of the
next step (recognizing).

• Boolean fields: A Boolean field is usually in the form of select tag with value list
as “AND”, “OR”, and “NOT”. For example, in Figure 6, the form can partitioned
by the Boolean fields (the select tags displayed as “And”) into three input fields.

Figure 6 Input fields partitioned by Boolean fields

• Name property: In the case of a form doesn’t contain explicit Boolean fields, we

can use the name property of the form to partition the form, since an input field
must contain a name property. But we have to handle the two different situations
when the name property is a plain text or a select tag (see the discussion in section
4).

a) Plain text: For example, the form in Figure 7 is partitioned into four Input
fields by plain texts such as “Title”, “Abstract”, “Author First Name”, and

HTMLTag tag{
int type = HTMLTag.SELECT;
String name= “month_start”;
ArrayList valueList = {“January”,
“February”, “March”, “April”, “May”,
“June”, “July”, “August”, “September”,
“October”, “November”, “December”};

};

HTMLTag tag{
int type = HTMLTag.SELECT;
String name= “month_start”;
ArrayList valueList = {“All”, “Conference”,
“Abstracts”, “Patents”, “Articles”,
“Preprints”, “Books”, “Scientist homepages”,
“Company homepages”};

};

input field 1:

input field 2:

input field 3:

8

“Author Last Name”.

Figure 7 Input fields partitioned by plain text

b) Select tag: we can utilize the characteristic (see the discussion in the

section “logic structure of an HTML form”) to partition the form, even
without recognizing its semantics.

Figure 8 Input fields partitioned by select tags

3) Recognizing
After we get a form partitioned into pieces of input fields, we apply subsequently three
methods to recognize the semantic of each input field, which are the Meta-dictionary,
Value-features, and Trial-feedback methods. Give an extraction objective such as “Date”,
“Author”, “ISSN” or “Title” etc., we initially assign 0 to the value of the similarity
between the objective and the current input field. If any of the above three methods
recognize the input field similar to the objective, we will increase the similarity by 1.

• Meta-dictionary
The Meta-dictionary contains a synset (set of synonyms) for each category (semantics
of input fields) such as “Date”, “Author”, “ISSN” and “Title” etc. We call these
categories as extraction objectives. Figure 9 is a fragment of the Meta-dictionary at
one moment in the system. We can see that the objective “Date” has currently seven
synonyms. Physically the Meta-dictionary is represented as a file of XML syntax.

Figure 9 a fragment of the Meta-dictionary

When we utilize the Meta-dictionary to analyze an input field with a given extraction
objective such as “Title” or “Date”, we will see:

i) If the plain text, which acts as the name property of the input field, matches
with the corresponding synset.

input field 1:

input field 2:

input field 3:

Input field 1:

Input field 2:

Input field 3:

Input field 4:

9

ii) If the select tag, which acts as the name property of the input field, has the
initial value that matches with the corresponding synset.

iii) If the value of the NAME attribute of the input tag or select tag, which acts as
the value property of the input field, matches with the corresponding synset.

For each of the above matches that are satisfied, we will consider the semantic of the
current input field similar as objective, and increase the value of the similarity
between the input field and the objective (initially 0) by 1. For example, in the input
field in Figure 10, the plain text “From” matches with the synset “date” in the Meta-
dictionary (see Figure 9), then this input field is similar to the objective “date”.

Figure 10 an example of recognition using the Meta-dictionary

• Value-feature
Here, the Value-feature means the features of the value list of the select tags in a
form. Each Value-feature has 3 attributes such as datatype, length, and pattern.

i) datatype: identifies the data type of the value list of a select tag. Its value
may be “number”, “char”, and “hybrid” (means either number or char).

ii) length: is the length of each value in the value list of a select tag.
iii) pattern: means the pattern the values of the value list of a select tag presents.

For example, ‘pattern=“****-****”’ in Figure 11 means the 5th element
should be ‘-’ with the left 8 elements being character or number.

Figure 11 is a fragment of the Value-feature knowledge base, which is also
represented as a XML syntax file. We can see that the objective “date” has a data type
of “number” and the length of four, and its pattern being four continuous digits. An
“ISSN” input field may have a “hybrid” type, which means a mixture of digits and
characters.

Figure 11 a fragment of the Value-feature

If any select tag in an input field matches with the Value-feature of a given objective
(i.e., all the values of the select tag satisfy the 3 attributes of this Value-feature), we
will consider the semantic of the current input field similar as objective, and increase
the value of the similarity between the input field and the objective by 1.
For example, in the input field in Figure 12, the select tag right behind the “From”
matches with the Value-feature of “date” (see Figure 9), thus this input field is similar
to the objective “date”.

Figure 12 an example of recognition using the Value-feature

• Trial-feedback

10

Here, the Trial-feedback method means, given an extraction objective and the current
input field, we insert the typical testing data for this objective (e.g., "1234-32x3" for
the objective "ISSN") into an input tag in that input field or a select tag, then we
submit this form to get the results that are supposed to match the testing data for the
objective. By analyzing the returned results, we recognize the semantic of the current
input field.
If the number of the testing data contained in the returned results exceeds a
predefined threshold, we will consider the current input field similar to the objective,
by increasing its similarity by 1. Sometimes, a same testing data matches with
different input field. In this case, we will pick the one with the return results
containing the biggest number of the testing data.
The Trial- feedback is not implemented in our current demo system for some technical
reason.

After recognized by the above three methods subsequently, for each objective the
system may obtain a list of input field that are similar to the objective with different
similarity. Then the system sorts the results in the descending order of similarity and
returns them to the user for him/her to feedback.

• User feedback
After partitioning and recognizing input field from a HTML form, the results will be
shown to the user. The user will do feedback according to the relevance of the result
to the objective. The user may perform the following four different types of
feedbacks.
1) Relevant: When the user specifies a result is relevant to the objective, the IE
system will do a positive feedback, which includes the following five actions:

i. As to the plain text acting as the name property of the input field, add it into the
corresponding synset in the Meta-dictionary if this plain text doesn’t exist
previously in the synset. If it exists before, increase its weight. (Although so far,
we don’t associate a synonym with a weight for the reason of simplifying the
implementation.)

ii. As to the select tag acting as the name property of the input field, add its initial
value into the corresponding synset in the Meta-dictionary in the same way as
i).

iii. As to the input tag acting as the value property of the input field, add the value
of the name attribute of this input tag into the corresponding synset in the Meta-
dictionary in the same way as i).

iv. As to the select tag acting as the value property of the input field, add the value
of the name attribute of this select tag into the corresponding synset in the
Meta-dictionary, meanwhile try to generate a new Value-feature item for this
objective and add it into the Value-feature. For example, in Figure 13, the user
chooses the “Relevant” as to the input field that is similar to the objective
“date”. Then an item of Value-feature shown in the figure will be generated.

11

Figure 13 an example of the user’s feedback

2) Irrelevant: When the user specifies a result is irrelevant to the objective, the IE
system will do a negative feedback, which also includes five actions opposit e to those
in the above positive feedback.

3) Marking: If the system doesn’t extract any input field for an objective, the user
may be asked to mark the objective input field from the original page. The marked
input field will be positively feedback to the system just in the same way as the case
of “Relevant”. Figure 14 gives an example of marking an input field for the “title”
objective.

Figure 14 an example of marking an input field for the “title” objective.

4) No feedback: When the user is tired of the feedback process, he /she may do
nothing for the feedback. In this sense, the system has to feedback automatically by
itself. In this case, the current demo system will choose the extracted result with
biggest similarity to do positive feedback, which is the same as the situation of
“Relevant”. In the future, this should be refined.

12

6. Future work

1) Refine the Meta-dictionary and Value-feature by enriching their structure and

semantic such as associating a weight with each item in these two knowledge bases.
2) Refine the process of the user feedback. Currently, for the purpose of simplifying the

implementation, we just take the positive feedback into consideration.
3) Do experiments using the current form identifying system to find more missing

considerations.

