Integrating Classification and Association Rule Mining — **the Secret Behind CBA**

Written by Bing Liu, etc.

CBA-RG: Basic concepts (1)

- The key operation of CBA-RG is to find all ruleitems that have support above minsup.
- ruleitem: <condset, y>, representing the rule: condset → y
- condsupCount: # of cases in D that contain the condset.
- rulesupCount: # of cases in D that contain the condset and are labeled with class y.

CBA-RG: Basic concepts (3)

- **k-ruleitem**: A ruleitem whose condset has k items.
- **frequent ruleitems**: Ruleitems that satisfy minsup. Denoted as **F**_k in the algorithm.
- candidate ruleitems:
 - Possibly frequent ruleitems generated somehow from the frequent ruleitems found in the last pass. Denoted as Ck.
- A ruleitem is represented in the algorithm in the form:
 - (condset, condsupCount), (y, rulesupCount)>

The CBA-RG algorithm $F_1 = \{ \text{large 1-ruleitems} \};$ 1 $CAR_1 = \text{genRules}(F_1);$ 2 $prCAR_1 = pruneRules(CAR_1);$ 3 4 for $(k = 2; F_{k-1} \neq \emptyset; k++)$ do 5 $C_{k} = \text{candidateGen}(F_{k-1});$ for each data case $d \in D$ do 6 7 $C_d = \text{ruleSubset}(C_k, d);$ 8 for each candidate $c \in C_d$ do 9 c.condsupCount++; 10 if d.class = c.class then c.rulesupCount++ 11 end 12 end $F_k = \{c \in C_k \mid c.rulesupCount \ge minsup\};$ 13 14 $CAR_{k} = \text{genRules}(F_{k});$ $prCAR_{i} = pruneRules(CAR_{i});$ 15 16 **end** 17 $CARs = \bigcup_{i} CAR_{i};$ 18 $prCARs = \bigcup_{i} prCAR_{i};$

A case	e study	y	
Α	В	С	Attributes: A, B
е	р	у	
е	р	у	Class: C
е	q	у	minsup : 15%
g	q	у	minconf [.] 60%
g	q	у	
g	q	n	
g	w	n	
g	w	n	
е	р	n	
f	q	n	

1 st pass	F1	<({(A, e)}, 4), ((C, y), 3)>, <({(A, g)}, 5), ((C, y), 2)>, <({(A, g)}, 5), ((C, n), 3)>, <({(B, p)}, 3), ((C, y), 2)>, <({(B, q)}, 5), ((C, y), 3)>, <({(B, q)}, 5), ((C, n), 2)>, <({(B, w)}, 2), ((C, n), 2)>
2 nd pass	C2	<{(A, e), (B, p)}, (C, y)>, <{(A, e), (B, q)}, (C, y)>, <{(A, g), (B, p)}, (C, y)>, <{(A, g), (B, q)}, (C, y)>, <{(A, g), (B, q)}, (C, n)>, <{(A, g), (B, w)}, (C, n)>
	F2	<({(A, e), (B, p)}, 3), ((C, y), 2)>, <({(A, g), (B, q)}, 3), ((C, y), 2)>, <({(A, g), (B, q)}, 3), ((C, n), 1)>, <({(A, g), (B, w)}, 2), ((C, n), 2)>
CAR1	(A, e)→(C,y), (A, g)→(C,n), (B, p)→(C,y), (B, q)→(C,y), B, w)→(C,n)
CAR2	{	$(A, e), (B, p) \} \rightarrow (C, y), \{(A, g), (B, q)\} \rightarrow (C, y)$ $(A, g), (B, w) \} \rightarrow (C, n)$
CARs	0	CAR1 È CAR2

genRules(Fk):

- **possible rule** (**PR**): For all the ruleitem that have the same condset, the ruleitem with the highest confidence is chosen as a **PR**.
- If there are more than one ruleitem with the same highest confidence, we randomly pick one.
- accurate rule: confidence >= minconf

pruneRules(CARk):

• Uses pessimistic error rate based pruning method in C4.5. (Quinlan, J.R. 1992. C4.5: program for machine learning. Morgan Kaufmann)

prCAR1	$(A, e) \rightarrow (C,y), (A, g) \rightarrow (C,n), (B, p) \rightarrow (C,y), (B, q) \rightarrow (C,y), (B, w) \rightarrow (C,n)$
prCAR2	$\{(A, g), (B, q)\} \rightarrow (C, \gamma)$
prCARs	prCAR1 È prCAR2

A	B	C	CARs after	prunina:		
e p e q		y V	$(1) \Lambda = \rho$	$\rightarrow v$	sun=3/10	conf = 3/4
		у	(1) A = C	/ y	Sup=5/10	COIII = 5/1
g	q	у	(2) A = g	\rightarrow n	sup=3/10 conf=3/5	
g q g q		У	(3) B = p ·	\rightarrow y	sup=2/10 conf=2/3	
		n	(4) B = a	$\rightarrow v$	sun=3/10	conf=3/5
g w		n	(1)D = q	<i>y</i>	50p=5/10	
g w		n	(5) B = W	\rightarrow n	sup=2/10	cont=2/2
f a		n	(6) A = g,	$B = q \rightarrow y$	sup=2/10	conf=2/3

1	$R = \operatorname{sort}(R);$
2	for each rule $r \in R$ in sequence do
3	$temp = \emptyset;$
4	for each case $d \in D$ do
5	if d satisfies the conditions of r then
6	store d .id in <i>temp</i> and mark r if it correctly classifies d ;
7	if r is marked then
8	insert r at the end of C ;
9	delete all the cases with the ids in <i>temp</i> from D;
10	selecting a default class for the current <i>C</i> ;
11	compute the total number of errors of C ;
12	end
13	end
14	Find the first rule p in C with the lowest total number of errors and drop all the rules after p in C ;
15	Add the default class associated with p to end of C , and return C (our classifier).

CBA-CB M2

 M2 (more efficient algorithm for large datasets)

Key point: instead of making one pass over the remaining data for each rule (in M1), we find the best rule in R to cover each case.

A B		С	CARs after pruning:						
e p		р	У		CARS ditter pruning:				
e p		У	(1)	A = e	\rightarrow y	sup=3/10 conf=3/4			
-	e q		q	У	(2)	A = a ·	\rightarrow n	sup=3/10 conf=3/5	
g		q	У	(3)	B - n	$\rightarrow v$	sup = 2/10 conf = 2/2		
			q	У	(3)	<u>р</u> – р	-	Sup=2/10 Com=2/3	
-	g		q	n	(4)	B = q ·	\rightarrow y	sup=3/10 conf=3/5	
g			w	n	(5)	B = w	\rightarrow n	sup=2/10 conf=2/2	
e f			р	n	(6)	A – a	P - 0	$\frac{1}{2}$	
			q	n	(0)	A = g,	$q \rightarrow y \ sup=2/10 \ com=2/3$		
A	В	С	covRule	s cRule	wRule	U	Q	A	
e	р	у	1, 3	1	null	1	1		
e	р	у	1, 3	1	null	1	1		
	q	у	1, 3	1	null	1	1		
e	a	у	2, 4, 6	6	2	1,6	1,6		
e g			2, 4, 6	6	2	1,6	1,6		
e g g	q	У			Í.			1/2	
e g g g	q q	y n	2, 4, 6	2	6	1,6,2	1,6	(6,n,2,6)	
00 00 00 00	q q w	y n n	2, 4, 6 2, 5	2 5	6 null	1,6,2 1,6,2,5	1,6 1,6,5	(6,n,2,6) (6,n,2,6)	
00 00 00 00 00	q q w w	y n n	2, 4, 6 2, 5 2, 5	2 5 5	6 null null	1,6,2 1,6,2,5 1,6,2,5	1,6 1,6,5 1,6,5	(6,n,2,6) (6,n,2,6) (6,n,2,6)	
e a a a a a e	q q w w	y n n n	2, 4, 6 2, 5 2, 5 1, 3	2 5 5 null	6 null null 1	1,6,2 1,6,2,5 1,6,2,5 1,6,2,5	1,6 1,6,5 1,6,5 1,6,5	(6,n,2,6) (6,n,2,6) (6,n,2,6) (6,n,2,6),(9,n,null,1)	

