Integrating Classification and Association Rule Mining
— the Secret Behind CBA

Written by Bing Liu, etc.

CBA Advantages

- One algorithm performs 3 tasks
- It can find some valuable rules that existing classification systems cannot.
- It can handle both table form data and transaction form data
- It doesn’t require the whole database to be fetched into the main memory.
Problem Statement

Classification (predetermined target) +

Association (no fix targets) →

CBA (Classification Based on Associations)

Input and Output

- **Input**
 - Table form dataset (transformed needed) or transaction form dataset.

- **Output**
 - A complete set of CARs, (class association rule) – done by CBA-RG (rule generator)
 - A classifier. – done by CBA-CB (classifier builder)
CBA-RG: Basic concepts (1)

- The key operation of CBA-RG is to find all ruleitems that have support above minsup.
- **ruleitem**: \(<\text{condset}, y>\), representing the rule: condset \(\rightarrow y\)
- **condsupCount**: # of cases in D that contain the condset.
- **rulesupCount**: # of cases in D that contain the condset and are labeled with class y.

CBA-RG: Basic concepts (2)

- **support**: \((\text{rulesupCount} / |D|) * 100\%\).
- **confidence**: \((\text{rulesupCount} / \text{condsupCount}) * 100\%\)

Example:
- Ruleitem: \(<\{(A, e), (B, p)\}, (C, y)\>
- condsupCount: 3
- rulesupCount: 2
- support: \((2 / 10) * 100\% = 20\%\)
- confidence: \((2 / 3) * 100\% = 66.7\%\)
CBA-RG: Basic concepts (3)

- **k-ruleitem**: A ruleitem whose condset has k items.
- **frequent ruleitems**: Ruleitems that satisfy minsup. Denoted as F_k in the algorithm.
- **candidate ruleitems**:
 - Possibly frequent ruleitems generated somehow from the frequent ruleitems found in the last pass. Denoted as C_k.
- A ruleitem is represented in the algorithm in the form:
 - $<(\text{condset}, \text{condsupCount}), (y, \text{rulesupCount})>$

The CBA-RG algorithm

```java
1 $F_1 = \{ \text{large 1-ruleitems} \}$;
2 $CAR_1 = \text{genRules}(F_1)$;
3 $prCAR_1 = \text{pruneRules}(CAR_1)$;
4 for ($k = 2; F_i \neq \emptyset; k++$) do
5   $C_k = \text{candidateGen}(F_{i-1})$;
6   for each data case $d \in D$ do
7     $C_d = \text{ruleSubset}(C_k, d)$;
8     for each candidate $c \in C_d$ do
9       $c.\text{condsupCount}++$;
10      if $d.\text{class} = c.\text{class}$ then $c.\text{rulesupCount}++$
11    end
12 end
13 $F_i = \{ c \in C_i | c.\text{rulesupCount} \geq \text{minsup} \}$;
14 $CAR_i = \text{genRules}(F_i)$;
15 $prCAR_i = \text{pruneRules}(CAR_i)$;
16 end
17 $CAR_S = \bigcup_i CAR_i$;
18 $prCAR_S = \bigcup_i prCAR_i$;
```
A case study

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>p</td>
<td>y</td>
</tr>
<tr>
<td>e</td>
<td>p</td>
<td>y</td>
</tr>
<tr>
<td>e</td>
<td>q</td>
<td>y</td>
</tr>
<tr>
<td>g</td>
<td>q</td>
<td>y</td>
</tr>
<tr>
<td>g</td>
<td>q</td>
<td>n</td>
</tr>
<tr>
<td>g</td>
<td>w</td>
<td>n</td>
</tr>
<tr>
<td>g</td>
<td>w</td>
<td>n</td>
</tr>
<tr>
<td>e</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>f</td>
<td>q</td>
<td>n</td>
</tr>
</tbody>
</table>

Attributes: A, B

Class: C

minsup: 15%

minconf: 60%

1st pass

F1

\(<((A, e), 4), ((C, y), 3)>, <((A, g), 5), ((C, y), 2)>, <((A, g), 5), ((C, n), 3)>, <((B, p), 3), ((C, y), 2)>, <((B, q), 5), ((C, y), 3)>, <((B, q), 5), ((C, n), 2)>, <((B, w), 2), ((C, n), 2)>

2nd pass

C2

\(<((A, e), (B, p)), (C, y)>, <((A, e), (B, q)), (C, y)>, <((A, g), (B, p)), (C, y)>, <((A, g), (B, q)), (C, y)>, <((A, g), (B, q)), (C, n)>, <((A, g), (B, w)), (C, n)>

F2

\(<((A, e), (B, p)), 3), ((C, y), 2)>, <((A, g), (B, q)), 3), ((C, y), 2)>, <((A, g), (B, q)), 3), ((C, n), 1)>, <((A, g), (B, w)), 2), ((C, n), 2)>

CAR1

\((A, e) \rightarrow (C, y), (A, g) \rightarrow (C, n), (B, p) \rightarrow (C, y), (B, q) \rightarrow (C, y), (B, w) \rightarrow (C, n)\)

CAR2

\(((A, e), (B, p)) \rightarrow (C, y), ((A, g), (B, q)) \rightarrow (C, y), ((A, g), (B, w)) \rightarrow (C, n)\)

CARs

CAR1 ∪ CAR2
genRules(Fk):
• **possible rule** (PR): For all the ruleitem that have the same condset, the ruleitem with the highest confidence is chosen as a PR.
• If there are more than one ruleitem with the same highest confidence, we randomly pick one.
• **accurate rule**: confidence >= minconf

pruneRules(CARk):

<table>
<thead>
<tr>
<th>prCAR1</th>
<th>(A, e)→(C, y), (A, g)→(C, n), (B, p)→(C, y), (B, q)→(C, y), (B, w)→(C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>prCAR2</td>
<td>{(A, g), (B, q)} → (C, y)</td>
</tr>
<tr>
<td>prCARs</td>
<td>prCAR1 ∪ prCAR2</td>
</tr>
</tbody>
</table>

Classifier Builder

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>p</td>
<td>y</td>
</tr>
<tr>
<td>e</td>
<td>p</td>
<td>y</td>
</tr>
<tr>
<td>e</td>
<td>q</td>
<td>y</td>
</tr>
<tr>
<td>g</td>
<td>q</td>
<td>y</td>
</tr>
<tr>
<td>g</td>
<td>q</td>
<td>n</td>
</tr>
<tr>
<td>g</td>
<td>w</td>
<td>n</td>
</tr>
<tr>
<td>g</td>
<td>w</td>
<td>n</td>
</tr>
<tr>
<td>c</td>
<td>p</td>
<td>n</td>
</tr>
<tr>
<td>f</td>
<td>q</td>
<td>n</td>
</tr>
</tbody>
</table>

CARs after pruning:
(1) A = e → y sup=3/10 conf=3/4
(2) A = g → n sup=3/10 conf=3/5
(3) B = p → y sup=2/10 conf=2/3
(4) B = q → y sup=3/10 conf=3/5
(5) B = w → n sup=2/10 conf=2/2
(6) A = g, B = q → y sup=2/10 conf=2/3
CBA-classifier builder

- **Goal**: select a small set of rules from the complete CARs as the classifier

\[<r_1, r_2, \ldots, r_n, \text{default_class}>\]

where \(r_i \in R \), \(r_a \succ r_b \) if \(b \succ a \). default_class is the default class.

CBA-CB specification

- \(\succ \) (Precedence) definition
 Given two rules, \(r_i \) and \(r_j \), \(r_i \succ r_j \) (also called \(r_i \) precedes \(r_j \) or \(r_i \) has a higher precedence than \(r_j \)) if
 1. the confidence of \(r_i \) is greater than that of \(r_j \), or
 2. their confidences are the same, but the support of \(r_i \) is greater than that of \(r_j \) or
 3. both the confidences and supports of \(r_i \) and \(r_j \) are the same, but \(r_i \) is generated earlier than \(r_j \).
CBA-CB two algorithms

- Two algorithms
 - **M1** (the database can be fetched into and processed in main memory). Suitable for **small datasets**
 - **M2** (the database can be resident in hard disk.) suitable for **huge datasets**

CBA-CB satisfaction conditions

- **Two conditions**
 - **Condition 1.** Each training case is covered by the rule with the highest precedence among the rules that can cover the case.
 - **Condition 2.** Every rule in C correctly classifies at least one remaining training case when it is chosen.
CARs after pruning:

(1) A = e → y sup=3/10 conf=3/4
(2) A = g → n sup=3/10 conf=3/5
(3) B = p → y sup=2/10 conf=2/3
(4) B = q → y sup=3/10 conf=3/5
(5) B = w → n sup=2/10 conf=2/2
(6) A = g, B = q → y sup=2/10 conf=2/3

<table>
<thead>
<tr>
<th>rule</th>
<th>#covCases</th>
<th>#eCovered</th>
<th>#wCovered</th>
<th>defClass</th>
<th>#errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 \(R = \text{sort}(R); \)
2 for each rule \(r \in R \) in sequence do
3 \(\text{temp} = \emptyset; \)
4 for each case \(d \in D \) do
5 if \(d \) satisfies the conditions of \(r \) then
6 store \(d \) id in \(\text{temp} \) and mark \(r \) if it correctly classifies \(d \);
7 if \(r \) is marked then
8 insert \(r \) at the end of \(C \);
9 delete all the cases with the ids in \(\text{temp} \) from \(D \);
10 selecting a default class for the current \(C \);
11 compute the total number of errors of \(C \);
12 end
13 end
14 Find the first rule \(p \) in \(C \) with the lowest total number of errors and drop all the rules after \(p \) in \(C \);
15 Add the default class associated with \(p \) to end of \(C \), and return \(C \) (our classifier).
CBA-CB M2

- M2 (more efficient algorithm for large datasets)

Key point: instead of making one pass over the remaining data for each rule (in M1), we find the best rule in R to cover each case.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>covRules</th>
<th>cRule</th>
<th>wRule</th>
<th>U</th>
<th>Q</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>p</td>
<td>y</td>
<td>1,3</td>
<td>null</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>p</td>
<td>y</td>
<td>1,3</td>
<td>null</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>q</td>
<td>y</td>
<td>1,3</td>
<td>null</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>q</td>
<td>y</td>
<td>2,4,6</td>
<td>6</td>
<td>2</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>q</td>
<td>n</td>
<td>2,4,6</td>
<td>6</td>
<td>2</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>w</td>
<td>n</td>
<td>2,4,6</td>
<td>6</td>
<td>2</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>p</td>
<td>n</td>
<td>1,3</td>
<td>null</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>q</td>
<td>n</td>
<td>4</td>
<td>null</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

CARs after pruning:

1. A = e → y sup=3/10 conf=3/4
2. A = g → y sup=2/10 conf=2/3
3. B = p → n sup=3/10 conf=3/5
4. B = q → y sup=3/10 conf=3/5
5. B = w → n sup=2/10 conf=2/2
6. A = g, B = q → y sup=2/10 conf=2/3
Empirical Evaluation

- 26 datasets from UIC ML Repository
- The results show that CBA produces more accurate classifiers.
- On average, the error rate decreases from 16.7% for C4.5rules to 15.6%-15.8% for CBA.
- Without or with rule pruning the accuracy of the resultant classifier is almost the same. So, the prCARs are sufficient for building accurate classifiers.
- Experiments show that both CBA-RG and CBA-CB(M2) have linear scaleup.

Conclusion

- Proposing a framework to integrate classification and association rule mining.
- An algorithm that generate all class association rules (CARs) and to build an accurate classifier.
- Contributions:
 - A new way to construct accurate classifiers;
 - It makes association rule mining techniques applicable to classification tasks;
 - It helps to solve a number of questions existing in current classification systems.