
PROJECT 1: Part 1
 

Section 1:

Design a 4-to-1 multiplexer that uses 8-bit buses on the inputs (instead of single bits). 
The output will be a single 8-bit bus.
Documentation:

A multiplexer is used in many applications as a way to do quick computations and placing 
the focus on a single computation one at a time. The use of the Multiplexer I had designed (see 
Fig 1.1) involves a large number of variables and an even larger of inputs. The 8-bit buses along 
with the expander and bit mergers do help in the organization of this project. The 8 boxes at the 
bottom represent a different 4-to-1 in which I have designed myself, which has been sub-
designed for simplicity of the larger 4-to-1 mux involving 8 bit buses. The 4-to-1 multiplexer 
(Fig 1.2) that I had designed was selector focused for best efficiency by segmenting. By adding 
inverters near the start of the selector, it cleaned up the end of inputs into the AND gates as well 
as changing the inverters earlier do computations a lot quicker then putting them randomly by the 
AND gates, or even worse, putting them between the AND gates and 4-input OR gate. 

 

Fig 1.1: 4 to 1 Mux with 8 bit buses and single 8 bit output. Selectors 
at the bottom, and 8 4to1 muxes run by 8 bit Buses

 



 

Fig 1.2: 4 to 1 Mux. Notice the inverter at the bottom by the 
selectors

 

Testing:
The testing phase was fairly simple, monitoring the behavior of selectors and the output 

given by the Output Pin Vector. The wiring for the 4 to 1 multiplexer followed the following 
formula: F = (A*S1*S0) + (B*S1*~S0) + (C*~S1*S0). The was demonstrated in Figure 1.2 

For the test shown below a small output should be given due to the equally small inputs 
added to the various boxes. For this test (Fig 1.3), I did 2 types. The first involved the 8bit buses 
turned to the inputs as follows: A = 1, B = 4, C = 3, D = 4. The results by selector are as follows: 
S0 = 4, S0 and S1 = 4, and S1 = 3. Afterwards the 8bit bus inputs were: A = 2, B = 6, C = 6, D 
= 8. Its outputs were: 6, 8, and 6 (follows same format as previous). Also the wave forms (1.4) 
preformed perfectly to the selectors involved. 

 

Fig 1.3: The output of the first test with both selectors chosen

 

 

 



 

Fig 1.4: Wave forms, Selector 0 on top and selector 1 at the 
bottom, at the very top are the outputs for each

 

 
Section 2:

Build an 8-bit adder. There should be two 8-bit values as input, and a single 8-bit value 
produced as a result. If you feel there should be additional outputs, please discuss in the report 
what they are and their intended use. 
Documentation:

The 8-bit adder seemed fairly easy at the start but several problems did arose for me. 
Namely the single 2 bit adder (Fig 2.1). I had used my original adder that I had created simply 
could not connect with wires, thus I was not able to create a full adder. I did eventually find out 
my problem, the reason is that Hades simply did not allow for “Y” to be a variable, as a result I 
changed my variables with in my 2 bit adder to say “Yadder” and for consistency changed “X” 
to “Xadder”. My wiring also caused problems within organization, while some wires do cross 
over, my 8 but adder (Fig 2.2) does fully work to my understanding.

 

Fig 2.1: 2 bit adder, it is hard to tell but my input names are now longer

 



 

Fig 2.2: the finished 8 bit adder, the boxes 
represent the 2-bit ones already made

 

Testing:
Testing involved, the testing of 2 8 bit binary numbers and receiving an output of the 

correct 8 bit answer. I found this out by looking at the formula for the 2 bit full adder: S = A ⊗ B 

⊗ C. The more important part of this formula is the A and B parts as shown in this truth table 
(source: Wikipedia): 

 
The testing went as follows I had added two binary numbers. For my adder, due to my 

 



personal placement of inputs, follows the binary from the bottom up when they are entered. My 
two binary numbers are as follows: 00100100 (36) + 10001001 (137) which should equal 
10101101 (173). Sure enough, my answer was proven by the Adder (Fig 2.3). And my wave 
forms were completed as well.

As a whole I found my project to be a complete success as each test was done efficiently 
and correctly as per the guidelines were given.

 

Fig 2.3: The answered adder, the inputs must be 
followed from the bottom up, while the answer is 
from top to bottom

 

Fig 2.4 The completed wave form, this is only half, the switches (top rows) and the results (bottom rows) are shown

 



 

 


