
CS 385 –Operating Systems – Fall 2013 
Homework Assignment 2 Inter-Process Communications and 

Synchronization 

Due: Tuesday October15th at 3:00 P.M. via Blackboard.  Optional hard copy may be 
submitted to the TA. 

Overall Assignment 

For this assignment, you are to write a simulation in which a number of processes access a group of 
shared buffers for both reading and writing purposes.  Initially this will be done without the benefit of 
synchronization tools ( semaphores ) to illustrate the problems of race conditions, and then with the 
synchronization tools to solve the problems.  Interprocess communications ( messages ) will be used 
by child processes to notify the parent of the results of their work.  Optional enhancements allow for 
the use of threads and the investigation of deadlocks as well as race conditions. 

Man Pages 

The following man pages will likely be useful for this assignment: 

 ipc(5) 
 ipcs(8) 
 ipcrm(8) 

 msgget(2) 
 msgctl(2) 
 msgsnd(2) 
 msgrcv(2) 

 shmget(2) 
 shmctl(2) 
 shmat(2) 
 shmdt(2) 

 semget(2) 
 semctl(2) 
 semop(2) 

 

 fork(2) 
 exec(3) 
 pipe(2) 
 dup2(2) 
 wait(2) 
 rand(3) 
 srand(3) 
 RAND_MAX 

 sprintf 
 time(2) 
 gettimeofday(2) 
 clock_gettime(2) 
 sleep(3) 
 usleep(3) 
 nanosleep(2) 
 perror(3) 

Program Structure 

The parent program will fork off a number of children, which will exec other programs to work together as 
follows: 

 



Command Line Arguments 

For this assignment you will have to write TWO programs, named “master” and “worker”, having the 
following command line arguments: 

 master nBuffers nWorkers sleepMin sleepMax [ randSeed ] [ -lock | -nolock ] 

o nBuffers must be a positive PRIME integer less than 32 for this program to run right. 

o nWorkers is the number of child processes that will exec the worker program, and must be 
strictly less than nBuffers. 

o sleepMin and sleepMax are positive real numbers, max greater than min, that define a range 
of sleeping times for the worker processes.  The master process will begin by generating a 
series of nWorkers random numbers within this range. ( Try 1.0 to 5.0 as a starting point. ) 

o If provided, randSeed is the integer value to use to seed the random number generator.  If it is 
missing or zero, then seed the random number generator with time( NULL ). 

o –lock or –nolock indicates whether or not semaphores are to be used to restrict exclusive 
access to the shared memory area.  Default if this argument is not present is –nolock, i.e. 
without using semaphores. 

 worker workerID nBuffers sleepTime msgID shmID [ semID ] 

o nBuffers is the same parameter passed to master and explained above. 

o workerID is a unique identifier passed by the parent when forking and execing the children, 
starting with 1 for the first child and continuing to nWorkers for the last child. 

o sleepTime is the amount of time the workers will spend sleeping in each work cycle, 
generated by master as a series of random numbers in decreasing order. ( See below. )  Note 
that this is a floating point number, not an integer. 

o msgID, shmID, and semID are the integer ID numbers for the message queue, shared memory 
block, and semaphore block, as returned by msgget( ), shmget( ), and semget( ), described 
below. 

Evolutionary Development 

It is recommended to develop this program in the following steps, each of which will be described below in 
further detail.: 

1. For the first step, the parent creates two pipes named pipe1 and pipe2, and then forks off a child. 

 The child will close the pipe ends it doesn’t need, dup2 the others over stdin and stdout, ( close 
them after they are duped ), and then exec “sort –nr”. 

 The parent will generate nWorkers random numbers in the range ( sleepMin to sleepMax ) and 
write them to the writing end of pipe1, one per line as character strings, e.g. using sprintf.  ( Seed 
the random number generator first, with a single call to srand( ).  use randSeed if provided, or 
time( NULL ) otherwise. )  Close all unused pipe ends as soon as they are no longer needed, e.g. 
as soon as the writing is completed. 

 The parent will then read in as many random numbers from the reading end of pipe2 as it wrote to 
the writing end of pipe1, again as strings of chars.  For verification purposes, the random numbers 
should be printed before they are written to pipe1, and again as they are read from pipe2. 



2. Next the parent should create a message queue, and then fork off nWorkers children.   

 Each child will exec the worker program, passing command line arguments for the workerID, 
sleepTime, and messageID for now. ( Note all args are character strings. )  The workerID should 
be 1 for the first child, 2 for the second, etc.  The sleepTime is the next random number in the 
sequence read from pipe2, and messageID is the value that the parent received from msgget( ).  
( I.e. each of the random numbers generated in step 1 will now be passed to the children as 
command-line arguments, from largest for child 1 to smallest for child nWorker. ) 

 At this point the worker process should just write a startup message to the parent’s message 
queue, and then exit.  The startup message should include the workerID and sleepTime for this 
child. 

 After forking off all the children, the parent should read in nWorker messages from the message 
queue, report the results, and then wait for all of the children and remove the message queue 
before exiting. 

3. Create and test shared memory.   

 The parent will now allocate sufficient shared memory for an array of nBuffer integers, and 
zero it out before forking off the children.  Note:  nBuffers must be a PRIME number 
larger than nWorkers and less than 32 for this program to eventually work right.   

 Each worker process will now send a startup message, then write their ID to the buffer 
corresponding to their ID, ( i.e. child 1 stores a 1 in buffers[ 1 ] and so on ), and then send a 
cleanup message to the parent.   

 The parent will read messages and report results, waiting for each child when their cleanup 
message arrives.  After the parent has waited for all children, it reports the contents of the 
shared memory.   

4. Next the worker processes execute a round-robin cycle of reading from and writing to various places 
in shared memory, instead of the work described in step 3.  Without semaphores in place, there 
should be errors caused by race conditions, which are reported to the parent when the children detect 
them, and reported by the parent at the end. 

 Each worker will perform a sequence of read and write operations on the shared buffers, 
simulating the memory accesses performed by the simple statement “A = B + C;”, i.e. ( fetch B, 
fetch C, add, store A ), by accessing the buffers in the following order: 

o The first buffer accessed will be the worker's ID number, e.g. buffer[3] for worker 3. 

o Successive accesses will jump by steps of the worker's ID number, in a circular fashion.  
Worker number 3 will access every 3rd buffer, worker number 5 will access every 5th buffer, 
etc., wrapping back to zero on a mod basis when the numbers exceed nBuffers. 

o The first two accesses of every three will be for reading, and the third for writing. 

o The cycle continues until each worker has written into nBuffers of the buffers, which should 
involve writing into each buffer exactly once, ( 3 * nBuffers total accesses ), since nBuffers is 
prime and nWorkers must be strictly less than nBuffers. 

o See next page for an example: 



o So for example, if nBuffers = 7, then the order of access for worker number 3 would be as 
follows, where the underlined numbers are write access and the others are reads: 

3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0, 3, 6, 2, 5, 1, 4, 0 

 

 A read operation will consist of the following steps: 

o Read the initial value in the buffer. 

o Sleep for sleepTime seconds, where sleepTime was passed in as a command-line argument to 
the worker process.  ( Note:  use usleep( ) instead of sleep( ) for sub-second resolution.  See 
man 3 sleep, man 3 usleep and man 2 nanosleep  for details. ) 

o Read the value of the buffer again, and send a message to the master process if the value 
changed while the worker was sleeping.  The message should include ( at a minimum ) the ID 
of the worker sending the message, the buffer which changed, the initial value, and the final 
value.   

 A write operation will consist of the following steps: 

o Read the initial value of the buffer. 

o Sleep for sleepTime seconds. ( See above. ) 

o Add 1 << ( ID – 1 ) to the value read in step (a), and store the result back into the buffer. 
( E.g. worker number 3 adds binary 000001 shifted left 2 places = 000100 = 4 ).  Each worker 
will add a single binary bit in a different position, which will make it possible to later identify 
which worker(s) were involved in any error conditions that erased write operations. 

 After a worker has completed all write operations, it sends a final message indicating completion 
back to the master, and then exits.   

 The master should monitor the message queue for incoming messages, and report read errors as 
each worker process reports them, in a well-formatted fashion.  ( Note that due to race conditions, 
bits could either be added or removed while a worker is sleeping during the read cycle.  As each 
worker sends in their final completion messages, the master should wait( ) for that particular child 
to exit. 



 After all children have exited, the master should examine the contents of the shared buffers, and 
report any write errors detected.  Without errors each buffer should contain ( 2^nWorkers ) - 1, 
which can be calculated as ( 1 << nWorkers ) - 1.  ( I.e. if there were 3 workers, then each buffer 
should contain 7 if there are no errors. )  If you do a bitwise exclusive OR ( ^ ) between the 
expected and actual answers, whatever bits are turned on in the result will indicate which worker 
process had their write operation erased due to a race condition.  A bitwise AND ( & ) in a loop 
can test each bit one by one. 

5. Implement semaphores using the –lock / -nolock flags.  The errors should go away when semaphores 
are in use.  An optional enhancement is to detect the time penalty imposed by the use of exclusive 
access through semaphores. 

 System V semaphores are actually allocated in sets, which happens to work out perfectly for 
this assignment.  The master needs to allocate a set ( array ) of nBuffers semaphores, with one 
assigned to protect each of the shared memory buffers. 

 The master process should use semctl( ) to initialize all the semaphores to 1 before forking off 
any children.  The worker processes will then use semop( ) to implement wati( ) and signal( ) 
as appropriate. 

 See below for full details of semaphore operations. 

Interprocess Communications, IPC 

Shared memory, messages, and semaphores all use a similar set of commands and operations, following 
roughly the same sequence of operations shown below.  ( See the man page of ipc( 5 ) for more details on 
the common features of these commands.  Note carefully that the use of System V IPC is recommended 
for this assignment, which is not exactly the same as the POSIX versions.  ( Make sure to avoid the (P) 
sections of the man pages to avoid confusion. )  The basic steps for using IPC resources are as follows: 

1. Acquire a “key” value, which is just a numeric “name” identifying this particular resource.  
There are several means of acquiring a key value, but for this particular application 
IPC_PRIVATE, ( 0 ), is probably the best choice.  This is a bit of a misnomer, and really 
means that a number will be chosen by the system that is not already in use. 

2. Either create a new instance of the desired resource, or get access to one that has already been 
created, ( presumably by some other process ), using the unique key number acquired in 
step 1, ( e.g. IPC_PRIVATE. )  The specific commands for this step are msgget( 2 ), 
shmget( 2 ), and semget( 2 ) for messages, shared memory, and semaphores respectively. 

3. Control the resource, which basically means getting and setting parameters which control its 
operation.  The specific commands are msgctl( 2 ), shmctl( 2 ), and semctl( 2). 

4. Use the resource, which varies with the specific IPC resource being used.  Commands used 
include msgsnd( 2 ), msgrcv( 2 ), shmat( 2 ), and semop( 2 ). 

5. Clean up the resource when finished using it.  See shmdt( 2 ) and the separate section on 
orphaned resources below. 



Orphaned IPC Resources 

There is a problem that you should be aware of regarding IPC resources explained here in terms of 
message queues: 

o Programs that create message queues and do not remove them afterwards can leave 
"orphaned" message queues, which will quickly consume the system limit of all available 
queues.  Then no more can be created and your programs won't run.  ( And neither will 
anyone else's. ) 

o The command "ipcs -q -t" will show you what queues are currently allocated and who has 
them, along with an ID number for each one. 

o Then the command "ipcrm -q ID" can be used to delete any that are no longer needed, 
where "ID" is the number you got from ipcs. 

o You should check this periodically, and certainly before you log off.  You should also be 
sure to free up your allocated queues in your program before exiting, ( using msgctl with 
the cmd type of IPC_RMID.  You may also want to employ exception handling so that in 
the event of a program crash the queues get cleaned up on exit. ) 

o Read the man pages for ipcs and ipcrm for more information. 

o The lab computers can also be safely rebooted if you discover the problem there and the 
queues belong to someone else. 

Message Queue Operations 

 The command to acquire message queues is msgget( 2 ), which takes two arguments – the key 
described above, ( IPC_PRIVATE ),  and an integer of ORed bit flags. The low order 9 bits of 
this flag are read/write permission bits, so include 0600 as part of the flag for read/write 
permission by this user, or 0400 or 0200 for read-only or write-only permissions respectively.  
( Execute bits are ignored. )  You should also OR in IPC_CREAT when creating a new instance 
of this resource ( as opposed to getting your hands on a resource that has already been created. ) 

 msgget returns a queue ID, which can then be used for later operations. 

 The msgctl(2) command takes three arguments – the message queue ID, a command constant, and 
a pointer to a struct of type msqid_ds.  The man page for msgctl(2) describes the legal commands, 
and ipc(5) describes the msqid_ds structure.  Among other information, msqid_ds holds the 
number of bytes currently in the queue and the process IDs of the last sending and receiving 
process, as well as the last sending, receiving, or changing times. 

 Messages are written to and read from queues using msgsnd( 2 ) and msgrcv( 2 ) respectively.  

o msgsnd takes four arguments:  The queue ID, a pointer to a "msgbuf" struct ( see below), 
the size of the message, and a flags word. 

o msgrcv takes five arguments: The queue ID, a pointer to a "msgbuf" struct, the maximum 
size of message accepted, the type of message desired ( see below ), and a flags word. 

o The "msgbuf" struct can actually be any struct at all that you create, with any name, so 
long as its first field is a long int named "type".  The rest of the struct can be anything at 
all, however it should be totally contained within the struct.  ( I.e. the struct should NOT 
contain any pointers to data outside the struct, though it can contain arrays. )  The type 
field is used with msgrcv to request specific types of messages out of the queue, or else to 
request whatever message is available.   



o The size parameter for both msgsnd and msgrcv refers to the size of the "msgbuf" struct, 
not counting the long int for the type.  I.e. size refers to the size of the "payload" after 
the type field, and can usually be calculated as sizeof( struct msgbug ) - sizeof( long int ).  
For the sending call this should be the actual size of the message being sent, and on the 
receiving side it indicates the largest size message that can be accepted. 

o The IPC_NOWAIT flag is used to specify whether sends or receives should be blocking 
or non-blocking. 

 Message Types: When receiving messages, a process may grab the next available message of any 
kind, or search the queue only for messages of a given “type”.  The type field could be used for a 
variety of purposes, including the following: 

o For this application, it could be used to distinguish "hello" messages from "error 
reporting" messages from "goodbye" messages, from general text string messages, etc., 
even if every message contains all the same fields. This is the recommended use. 

o The type could be used as a kind of "address", to indicate which process sent the message, 
or whether the message was destined for a particular recipient.  ( For this application the 
type could be used as a code to implement two-way communication between the master 
and workers with some sort of sender / recipient information encoded in the type field. ) 

o In a different application, the message queue could conceivably contain a mix of different 
kinds of structs, each having different fields and more than likely different sizes.  In this 
case the type field could be used to indicate what type of struct is in the message, and to 
use the appropriate size for each type of message. 

See the man pages for msgsnd(2) and msgrcv(2) for more information on message types, as well 
as the other parameters to msgsnd and msgrcv.. 

Shared Memory Operations 

 Shmget operates similarly to new or malloc, by allocating or getting shared memory.  The three 
arguments are the key ID ( IPC_PRIVATE ), the number of bytes of memory desired, and an 
integer of ORed bit flags as described above, eg. 0x600 | IPC_CREAT.     

 Note that shmget does not return a memory address the way new and malloc do – Rather it 
returns an integer ID for this block of shared memory, which is then used in further operations. 

 Shmat returns a memory address given a shared memory ID number, much like new or malloc.  
At this point the memory address can be used for accessing the shared memory just as any other 
address is used for accessing “normal” memory.  Essentially shmat binds the shared memory to 
the user’s local address space. 

 Shmdt detaches shared memory from the local address space, and is a companion to shmat in the 
same way that delete or free are companions to new or malloc. 

 Shmctl is used to examine and modify information regarding the shared memory.  It must be 
used with the command IPC_RMID to free up the shared memory segment before the 
program ends.  ( See orphaned resources above. ) 

 



Semaphore Operations 

 The relevant commands for semaphores are semget(2), semctl(2), and semop( 2 ), analogous to 
msgget, msgctl, and msgsnd/msgrcv as described above. 

 Note that System V semaphores come as an array of semaphores, which is actually convenient for 
our purposes.  The semget command returns an ID for the entire set of semaphores generated.  
The three arguments to semget are a key number ( as described for messages above ), the number 
of semaphores desired in the set, and a flags word. 

 Semctl uses a union of an integer value, an array of shorts, and an array of structs.  A union is 
similar to a struct, except that only enough memory for the largest data item is allocated, and that 
memory is shared by all elements of the union.  ( A struct containing a double, an int, and a char 
would be given enough space to store all three independently; A union with the same variables 
would only allocate enough room for the double ( the largest element ), and all three variables 
would be assigned the same storage space.  Obviously in practice one ( normally ) only uses one 
of the elements of a union. ) 

 For compatibility purposes, you may need the following code at the top of your program ( right 
after the #includes ) when using semphores: 

 
#if defined(__GNU_LIBRARY__) && !defined(_SEM_SEMUN_UNDEFINED) 
/* union semun is defined by including <sys/sem.h> */ 
#else 
/* according to X/OPEN we have to define it ourselves */ 
union semun { 
      int val;                  /* value for SETVAL */ 
      struct semid_ds *buf;     /* buffer for IPC_STAT, IPC_SET */ 
      unsigned short *array;    /* array for GETALL, SETALL */ 
                                /* Linux specific part: */ 
      struct seminfo *__buf;    /* buffer for IPC_INFO */ 
}; 
#endif 

 Semctl is used to get / set the initial values of semaphores, query how many processes are waiting 
for semaphore operations, and to get specific process IDs of such processes.  Semctl is used for 
initialization and maintenance of semaphores, but should NOT be used for the wait and signal 
operations discussed in class.  ( See semop, next bullet point. ) 

 The semop system call is used to perform normal semaphore operations.  The command takes 
three arguments:  a semaphore set ID, an array of sembuf structs, and an integer indicating the 
size of the array of structs, i.e. the number of semaphores being acted on at one time. 

 The sembuf struct contains three fields:  the semaphore number to operate on, a short int 
indicating the semaphore operation desired, and another short int of flags ( e.g. IPC_NOWAIT ).  
Negative semaphore operations decrement the semaphore, blocking if appropriate ( e.g. wait ), a 
zero value blocks until the semaphore is exactly zero, and positive numbers increment ( e.g. 
signal ).  If you are not familiar with bit twiddling in C/C++, you may want to find a good book 
and review the bitwise operators ~, &, |, ^, <<, and >>. 



Required Output 

 All programs should print your name and CS account ID as a minimum when they first start. 

 Each message received by the master process from a worker should be printed to the screen. 

 The master should keep track of how many read errors occur ( reported by workers ), as well as 
how many write errors occur ( buffers which do not hold the correct value at the end, which 
should be 2^nWorkers - 1 for all buffers. )  Note the following: 

 In the case of read errors, the process(es) that wrote to the buffer while the reading worker 
was sleeping can be determined by examining the bits of the difference between the initial 
and final values of the buffer.  ( Bits can also be lost, if two race conditions occur at once.) 

 In the case of write errors, the bits turned on in the difference between the correct value 
and the actual value indicates which owrkers did not contribute to the total because their 
results were lost in a race condition situation.  ( The correct answer should be all 1s in  the 
rightmost nWorkers bit positions.  Any 0 in any of these positions indicates a particular 
worker whose write operation was over-written by another process. ) 

Sample Output 
 
Running simulation for 6 children accessing 13 buffers, without locking  
 
Child number 3 reported change from 0 to 8 in buffer 12.  Bad bits = 3  
Child number 3 reported change from 0 to 16 in buffer 2.  Bad bits = 4  
Child number 3 reported change from 0 to 8 in buffer 11.  Bad bits = 3  
Child number 3 reported change from 0 to 16 in buffer 4.  Bad bits = 4  
Child number 1 reported change from 32 to 8 in buffer 10.  Bad bits = 3 -5  
Child number 5 reported change from 1 to 3 in buffer 3.  Bad bits = 1  
Child number 2 reported change from 0 to 1 in buffer 7.  Bad bits = 0  
Child number 2 reported change from 0 to 1 in buffer 0.  Bad bits = 0  
Child number 5 reported change from 3 to 7 in buffer 0.  Bad bits = 2  
 
Error in buffer 5.  Bad bits = 2  
Error in buffer 8.  Bad bits = 4  
Error in buffer 10.  Bad bits = 3  
Error in buffer 11.  Bad bits = 5  
Error in buffer 12.  Bad bits = 3 5  
 
9 Read errors and 5 write errors encountered. 

Other Details: 

 A makefile is required, that will allow the TA to easily build your programs.  As always, you are 
free to develop wherever you wish, but the TA will be grading the programs based on their 
performance on the CS department machines.  A sample makefile will be provided. 

What to Hand In: 

1. Your code, including a readme file, and a makefile, should be handed in electronically using 
Blackboard. 

2. The purpose of the readme file is to make it as easy as possible for the grader to understand your 
program.  If the readme file is too terse, then (s)he can't understand your code; If it is overly verbose, 



then it is extra work to read the readme file.  It is up to you to provide the most effective level of 
documentation. 

3. The readme file must specifically provide direction on how to run the program, i.e. what command 
line arguments are required and whether or not input needs to be redirected.  It must also specifically 
document any optional information or command line arguments your program takes. 

4. If there are problems that you know your program cannot handle, it is best to document them in the 
readme file, rather than have the TA wonder what is wrong with your program. 

5. A printed copy of your program, along with any supporting documents you wish to provide, may 
optionally be provided to the TA. 

6. Make sure that your name and your CS account name appear at the beginning of each of your files.  
Your program should also print this information when it runs. 

Optional Enhancements: 

It is course policy that students may go above and beyond what is called for in the base assignment if 
they wish.  These optional enhancements will not raise any student’s score above 100 for any given 
assignment, but they may make up for points lost due to other reasons.  Note that all optional 
enhancements need to be clearly documented in your readme files.  The following are some ideas, or 
you may come up with some of your own: 

 Measure and report the times required for each process to complete their task, as well as the 
amount of time spent waiting for locks to clear.  ( These numbers should be reported for each 
child, in the form of a table.  The time spent waiting for locks should probably be determined by 
each child, and reported to the parent in their final message. )  See time(2), gettimeofday(2), 
clock_gettime(2).  ( Time spent sleeping should be easily calculated.  Can you check this? )  The 
overall goal of this enhancement is to show the time penalty incurred by the use of locks, as 
compared to running the program without locks. 

 Instead of using simple locks ( semaphores ) on the data buffers, try implementing reader-writer 
locks, and see if you can detect a difference in the performance. 

 As written above, each child will only need access to one buffer at a time, ( either for reading or 
writing ), so there cannot be any deadlocks.  A modification is to require that each child gain 
access to two buffers for reading and one for writing at the same time, and then to implement 
code to ensure that deadlocks cannot occur.  Note that it will be necessary to show that deadlock 
can and does occur if deadlock avoidance is not implemented, just as the base assignment shows 
that race conditions occur when synchronization is not implemented.  It may be necessary to 
increase the number of child processes or the number of buffers simultaneously held in order to 
ensure deadlock occurs. ) 

 Provide a command-line option for implementing the assignment using pthreads instead of 
forking, and compare the performance of the two implementation methods.  Since threads already 
share data space, the threaded implementation could avoid the use of shared memory, and could 
possibly also avoid the use of message passing, though semaphores would still be required.  Note 
that this enhancement calls for implementing pThreads IN ADDITION TO forking, not instead of 
forking.  ( Two separate programs instead of a command-line option is acceptable. ) 

 Can you identify any appreciable difference running the program on a multicore computer as 
opposed to one with a single CPU?  What if anything changes if you change the contention scope 
between threads ( assuming you did the above optional enhancement also? )  

 There are several adjustable parameters given in this assignment that may have an impact on the 
overall performance. ( E.g. the ratio of children to buffers and the sleep times. )  You could play 
with these parameters to try and find a correlation between the number of simultaneous 
contenders and the number of errors that occur without locking or the amount of delay introduced 
with locking, etc.  Note that nWorkers must be at least 2 and strictly less than nBuffers. 


