
2/5/2018

1

Extreme Programming

John T. Bell

Department of Computer Science

University of Illinois, Chicago

Prepared for CS 442, Spring 2017

2

Sources

1. Wikipedia:  Extreme Programming

2. Wikipedia:  Extreme Programming Practices

3. Wikipedia:  Kent Beck

4. Kent Beck and Cynthia Andres, “Extreme 
Programming Explained: Embrace Change”, 
2nd Edition

5. Kent Beck and Martin Fowler, “Planning 
Extreme Programming”



2/5/2018

2

3

An Early Definition of XP

“XP is a lightweight methodology for 
small-to-medium-sized teams 
developing software in the face of 
vague or rapidly changing 
requirements.”

Beck, Kent; Andres, Cynthia. Extreme Programming 
Explained: Embrace Change (Kindle Location 316). 
Pearson Education. Kindle Edition.  Quoted from the 
First Edition. 

4

History of XP

• Extreme programming was created by Kent Beck 
in the late 1990s during his work on the Chrysler 
C3 payroll project.

• OO movement takes hold; Dot-com boom speeds 
up expected time-to-market for software.

• XP takes "best practices" to extreme levels. For 
Example:
– Frequent inspections -> Pair Programming

– Test early -> Automated tests built before code.



2/5/2018

3

5

Kent Beck

• An original signatory to the Agile 
Manifesto.

• Leading proponent of test-driven 
development.

• Pioneered Design Patterns and 
application of Smalltalk.

• Wrote JUnit, with Erich Gamma.

• Popularized CRC cards.

• Works at Facebook.

6

XP is based upon 
Values, Principals, and Practices

Practices

Values

Principals



2/5/2018

4

7

XP Values

• Communication

• Simplicity

• Feedback

• Courage

• Respect

• Others

8

Communication Value

• “What matters most in team software 
development is communication. When 
problems arise in development, most often 
someone already knows the solution; but that 
knowledge doesn’t get through to someone 
with the power to make the change.”

• This value drives information sharing and 
transparency in the XP methodology.



2/5/2018

5

9

Simplicity Value

• “What is the simplest thing that could possibly 
work?”

• Start with the simplest possible solution;  Add 
complexity only if necessary.

• XP does not prepare for future possibilities 
that may or may not happen.  It concentrates 
on the simplest solution for today’s problems.

10

Feedback Value

• Feedback from the system:  Automated unit 
tests and continuous integration return 
feedback on code changes within minutes.

• Feedback from the customer:   Frequent close 
contact, including acceptance tests, planning 
meetings, and general project steering.

• Feedback from the team:  When requirements 
change, team gives new planning estimates.



2/5/2018

6

11

Courage Value

• “Courage is effective action in the face of fear.”

• “Sometimes courage manifests as a bias to action. 
Sometimes courage manifests as patience.”

• “Courage alone is dangerous; In concert with the 
other values it is powerful. The courage to speak 
truths, pleasant or unpleasant, fosters 
communication and trust. The courage to discard 
failing solutions and seek new ones encourages 
simplicity. The courage to seek real, concrete 
answers creates feedback.”

12

Respect Value

• Respect for team mates.

• Respect for the project.

• Respect for the customer.

• Respect for self.



2/5/2018

7

13

Other Values

• The values given above are those that come 
with XP.

• Any given organization, team, or project may 
and should add their own values.

• Some possibilities include safety, security, 
predictability, and quality-of-life.

14

Poll:  Which XP Value do you see as 
most important?

A. Communication

B. Simplicity

C. Feedback

D. Courage

E. Respect



2/5/2018

8

15

XP is based upon 
Values, Principals, and Practices

Practices

Values

Principals

16

XP Principals bridge the gap 
between values and practices

• Humanity

• Economics

• Mutual Benefit

• Self-Similarity

• Improvement

• Diversity

• Reflection

• Flow

• Opportunity

• Redundancy

• Failure

• Quality

• Baby Steps

• Accepted 
Responsibility



2/5/2018

9

17

Principals I

• Humanity – People develop software. 

• Economics – Add business value.

• Mutual Benefit – Strive for win-win always.

• Self-Similarity – If something works in one 
situation, try to apply it to others.

• Improvement – “Perfect” is a verb, not an 
adjective.  Always strive to improve processes. 

18

Principals II

• Diversity – It takes a variety of skills and 
perspectives to solve problems effectively.  
This can lead to conflicts when there are 
multiple possible solutions or approaches.

• Reflection – How and why does this work?

• Flow – Bias towards a continuous flow of 
development, as opposed to developing in 
phases or chunks.  Continuous integration.



2/5/2018

10

19

Principals III

• Opportunity – “Learn to see problems as 
opportunities for change.”

• Redundancy – “The critical, difficult problems in 
software development should be solved several 
different ways.” e.g. defect elimination.

• Failure – Trial and error.  Try things even if they 
don’t work, and learn from the failures.
( Edison learned 1000s of filaments that failed. )

20

Principals IV

• Quality – Quality is not a control variable.  
Always strive for high quality, and control the 
project by adjusting scope as needed.

• Baby Steps – Lots of little steps can be faster 
than a few large bounds, with more control.

• Accepted Responsibility – Responsibility for 
completing tasks must be taken, not given.



2/5/2018

11

21

Coming Soon

• Next we will look at the specific Practices of 
XP.

22

Exercise:  Reflection

Based on your past experience in SE, e.g. 440:

• What have you done that worked well, that 
you would do again on future projects?

• What have you done that has not worked well, 
and what could you change to ( try to ) make it 
work better in the future?



2/5/2018

12

23

XP is based upon 
Values, Principals, and Practices

Practices

Values

Principals

24

XP Practices –
Primary and Corollary

Beck, Kent; Andres, Cynthia. Extreme 
Programming Explained: Embrace Change (Kindle 
Location 788). Pearson Education. Kindle Edition.

• Primary practices 
safely give 
immediate 
benefits.

• Corollary practices 
should only be 
attempted after 
mastering primary 
practices.

• Combining 
practices amplifies 
their effectiveness.



2/5/2018

13

25

The List of Primary Practices

• Sit Together

• Whole Team

• Informative 
Workspace

• Energized Work

• Pair Programming

• Stories

• Weekly Cycle

• Quarterly Cycle

• Slack

• Ten-Minute Build

• Continuous 
Integration

• Test-First 
Programming

• Incremental Design

26

Primary Practices I

• Sit Together – Find a large room where everyone 
can sit together, at least part of the day.

• Whole Team – Bring together all skills and 
perspectives necessary. Foster sense of team.

• Informative Workspace – The space should be a 
visible display of the project and its current 
status.  The space should also have resources for 
positive social interactions, e.g. coffee & snacks.



2/5/2018

14

27

Informative Workspace Images

Beck, Kent; Andres, Cynthia. Extreme Programming Explained: Embrace 
Change (Kindle Location 845). Pearson Education. Kindle Edition. 

28

Primary Practices II

• Energized Work – Work only as many hours as 
you are productive and efficient.

• Pair Programming – Two people, One computer.
– Keep each other on task.

– Brainstorm refinements.

– Clarify ideas.

– Alternate initiative when one is stuck.

– Hold each other accountable to team standards.

– Rotate pairs after 1 to 3 hours.  No more than 5 or 6 hours a day.

– Beware of inter-personal, hygiene, and other social issues.



2/5/2018

15

29

Primary Practices III

• Stories – A more natural alternative to 
“requirements”.  Functionality described by 
the client and quickly estimated by the 
development team.

Beck, Kent; Andres, Cynthia. Extreme Programming Explained: Embrace 
Change (Kindle Location 845). Pearson Education. Kindle Edition. 

30

Primary Practices IV

• Weekly Cycle – Plan each week at a Monday meeting:
1. Review progress to date, including how actual progress 

for the previous week matched expected progress.

2. Have the customers pick a week’s worth of stories to 
implement this week.

3. Break the stories into tasks. Team members sign up for 
tasks and estimate them. (Alt: Draw tasks from hat/pile.)

• Start the week by writing automated tests that will run 
when the stories are completed. Then spend the rest of 
the week completing the stories and getting the tests 
to pass.  Deliver functionality & celebrate every Friday.



2/5/2018

16

31

Primary Practices V

• Quarterly Cycle – Another good time frame for 
planning longer-term goals. During quarterly 
planning: 
– Identify bottlenecks, especially those controlled 

outside the team. 
– Initiate repairs. 
– Plan the theme or themes for the quarter. 
– Pick a quarter’s worth of stories to address those 

themes. 
– Focus on the big picture, where the project fits within 

the organization.

32

Primary Practices VI

• Slack – Always include some minor tasks that 
can be dropped if needed to meet overall 
commitments. Don’t over-commit and under-
deliver, but set realistic attainable goals.

• Ten-Minute Build - Automatically build the 
whole system and run all of the tests in ten 
minutes.



2/5/2018

17

33

Primary Practices VII

• Continuous Integration - Integrate and test 
changes after no more than a couple of hours.

• Test-First Programming - Write a failing 
automated test before changing any code.

– Avoid scope creep by keeping focused goals.

– Build trust by writing code that passes tests.

– Develop a rhythm: test, code, refactor, repeat.

– Difficulty writing tests indicates a design problem.

34

Test-First Development Cycle

Start
Select a new 

feature to 
work on.

Write ( and automate ) 
tests to determine if 
the new feature is 

working.

Develop new code, 
until all tests pass.

Refactor code, to 
improve quality 

without changing 
functionality.



2/5/2018

18

35

Primary Practices VIII

• Incremental Design – Make small safe design 
improvements every day.  ( Software is easier 
and cheaper to redesign than bricks and 
mortar, if done properly. )

36

Think-Pair-Share
Which one(s) do you want to try out?

• Sit Together

• Whole Team

• Informative 
Workspace

• Energized Work

• Pair Programming

• Stories

• Weekly Cycle

• Quarterly Cycle

• Slack

• Ten-Minute Build

• Continuous 
Integration

• Test-First 
Programming

• Incremental Design



2/5/2018

19

37

FYI – The Corollary Practices

• Real Customer 
Involvement

• Incremental 
Deployment

• Team Continuity

• Shrinking Teams

• Root-Cause Analysis

• Shared Code

• Code andTests

• Single Code Base

• Daily Deployment

• Negotiated Scope 
Contract 

• Pay-Per-Use

38

Planning Extreme Programming

• This material is presented 
based on an excerpt from 
“Planning Extreme 
Programming” by Kent 
Beck and Martin Fowler, 
handed out in class.  See 
“Resources”.

• Image source:  
https://commons.wikimedi
a.org/wiki/File:XP-
feedback.gif , originally 
authored by Don Wells.

https://commons.wikimedia.org/wiki/File:XP-feedback.gif

