
The ICS-FORTH SWIM: A Powerful Semantic
Web Integration Middleware�

V. Christophides1, G. Karvounarakis1, I. Koffina1, G. Kokkinidis1, A.
Magkanaraki1, D. Plexousakis1, G. Serfiotis1, and V. Tannen2��

1 Institute of Computer Science - FORTH
Vassilika Vouton, PO Box 1385, 71110, Heraklion, Greece
{christop, gregkar, koffina, kokkinid, aimilia, dp,

serfioti}@ics.forth.gr
2 Department of Computer and Information Science, University of Pennsylvania

200 South 33rd Street, Philadelphia, PA 19104-6389, USA
val@cis.upenn.edu

Abstract. Semantic Web (SW) technology aims to facilitate the inte-
gration of legacy data sources spread worldwide. Despite the plethora of
SW languages (e.g., RDF/S, DAML+OIL, OWL) recently proposed for
supporting large scale information interoperation, the vast majority of
legacy sources still rely on relational databases (RDB) published on the
Web or corporate intranets as virtual XML. In this paper, we advocate a
Datalog framework for mediating high-level queries to relational and/or
XML sources using community ontologies expressed in a SW language
such as RDF/S. We describe the architecture and the reasoning services
of our SW integration middleware, called SWIM, and we present the
main design choices and techniques for supporting powerful mappings
between different data models, as well as, reformulation and optimiza-
tion of queries expressed against mediation schemas and views.

1 Introduction

A cornerstone issue in the realization of the Semantic Web (SW) vision is
the achievement of semantic interoperability among legacy data sources spread
worldwide. In order to capture information semantics in a machine process-
able way, various ontology-based formalisms have been recently proposed (e.g.,
RDF/S [21, 5], DAML+OIL [29], OWL [10]). However, the vast majority of ex-
isting legacy data is not yet in RDF/S or any other SW language [24, 26]. As a
matter of fact, most of the data is physically stored in relational database (RDB)
systems and are actually published on the Web or corporate intranets as virtual
XML.

SW applications, however, require to view data as virtual RDF, valid instance
of a domain or application specific RDF/S schema, and to be able to manipulate
them with high-level query languages, such as RQL [18] or RVL [25]. Therefore,
� This work was partially supported by the EU project SeLeNe (IST-2001-39045).

�� Work performed during the visit of the author at ICS-FORTH.

Fig. 1. SWIM Architecture

we need middleware systems that can either republish XML as RDF, or publish
RDB data directly as RDF, or - even better - be capable of doing both. Some-
times the practical solution will be to rely just on the virtual XML schema and
XML query interface of an existing XML publishing system. At other times, the
SW publishing middleware will be built as an alternative to the XML publishing
system, taking advantage of direct access to the underlying RDB management
system (RDBMS). It is also possible that the SW middleware will have to inte-
grate data in some RDBMS with data in native XML storage.

We need to deal flexibly with all these situations in a uniform framework.
A decade of experience with information integration architectures based on me-
diators [9, 30, 28, 22] suggests that it is highly beneficial to (semi)automatically
generate such systems from succinct formal specifications, rather than program-
ming their semantics into low-level code. This greatly enhances the maintainabil-
ity and reliability of the systems in an environment of often revised and shifting
requirements.

This paper presents the fundamental ideas for devising a comprehensive
framework that allows user communities to

1. specify XML → RDF and RDB → RDF mappings;
2. verify that these mappings conform to the semantics of the employed SW

ontologies;
3. compose RQL queries with these mappings and produce XML or RDB

queries (a.k.a query reformulation);
4. specify further levels of abstraction as RDF → RDF views;
5. compose RQL queries with such views;
6. perform query optimizations.

The last requirement is extremely important in such systems. Queries writ-
ten by humans will rarely have blatant redundancies but queries resulting from
automated manipulation/generation are often very ”dumb”. Minimization tech-
niques, sometimes taking advantage of data semantics provided by ontologies
expressed in a SW language, can transform such queries into more efficient ones.

Figure 1 sketches the architecture of a SW integration middleware system
that we are building, called SWIM. The lower part of the figure depicts data
sources, that could be XML repositories or RDBMS. On top of these sources, we
have a domain or application ontology for a particular community, expressed,
for instance, in RDF/S. Mapping rules can then be used for the integration, i.e.,
to translate back and forth from RDF/S to the source data models. As a result,
through a SWIM server we can view the underlying sources as virtual RDF
repositories and use RQL to query these sources as RDF data or even define
personalized views on top using RVL. In this context, the main challenge is to
choose an expressive, but still tractable logical framework in which the above
functionality (1-6) can be effectively supported by appropriate SW (reasoning)
services.

This paper only presents our preliminary design for the SWIM framework. We
expect to report on many of the technical challenges and engineering decisions
in future publications.

Related Work : Previous projects sharing similar motivations are described in [2,
3], [27] and [16]. Our approach is closest to that of [2, 3], while using a more ex-
pressive language for the specification of mappings and a different ontology query
language. The papers [23, 6] present formal specifications of mappings from less
structured schemas such as XML and relational to more structured schemas of
the same level of complexity as RDF. Languages similar to our Datalog with
XPath atoms are also used, for example, in [8, 20]. Finally, compared to the
Datalog framework for RDF/S-based query mediation of [27], SWIM ensures
the compositionality of queries with views and mappings, as well as, supports
advanced optimization and verification services.

The remainder of the paper is organized as follows. Section 2 presents a mo-
tivating example for cultural data available in RDB or XML sources which can
be integrated through an appropriate RDF/S schema. Section 3 presents the
internal logical framework of SWIM and its use in the translation and composi-
tion of RQL queries. Section 4 touches upon the issue of query optimization by
minimization using dependencies while Section 5 addresses the issue of view re-
formulation. Section 6 examines mapping consistency issues and finally, Section 7
presents our conclusions and an outlook for further research.

2 Motivating Example and SWIM Mapping Rules

Let us assume an XML repository with cultural data, a sample of which appears
in the left part of Figure 2. This data could be queried using an XML query

Fig. 2. Example of XML/RDF sources and Mediation RDF/S schema

language, such as XQuery [7]. But now, suppose we add a SWIM server on top
of this XML data. For this purpose we design - or import from some community
standardization body - an RDF/S cultural schema, as the one depicted in the top
part of Figure 2. Now we can formulate queries using an RDF query language by
employing only few abstract classes and properties from our mediation RDF/S
schema. For example, the following RQL query returns the names of the artists
(sculptors or painters) whose work is exhibited in the “Reina Sofia” museum:

SELECT Z
FROM {X}creates.exhibited.denom{Y}, {X}name{Z}
WHERE Y = "Reina Sofia"

We can observe that the RDF/S layer is completely virtual. The actual data
can only be queried using an XML language. Hence, the RQL query we saw needs
to be reformulated by the middleware into an XML query. This reformulation
should be guided by a formal description of the relationship between the XML
and the RDF data, for example a mapping from XML to RDF. The question
that normally arises is: how do we express formally such mappings?

The rich theory developed in the relational case has identified classes of
queries and mappings (views) that can be manipulated formally such that various
problems like query containment, composing queries with views and rewriting
queries with views are algorithmically solvable [1, 15]. These problems can also

be solved in the presence of certain classes of relational constraints [1, 11, 14]. We
shall try to rely as much as possible on a well-known and robust formalism: con-
junctive queries and views, and embedded implicational dependencies [1]. The
results about queries and views are easily extended with union, therefore deal-
ing with the positive existential first-order queries also known as non-recursive
Datalog. The dependencies can easily be extended with disjunction [12].

To define XML→RDF mappings we will use an analog to the relational
queries just mentioned. We use the same logical shape as that of Datalog rules,
but instead of relational atoms, we use XPath atoms in the bodies (this is sim-
ilar to the XBind queries of [14]). For example, the XPath atom .//Painting
(X,Y) is satisfied by any valuation that maps X and Y to element nodes in the
XML document, such that Y has tag Painting and is a descendant of X. The
heads of the rules define RDF instances in the style of the VIEW clause employed
by the RDF/S view definition language RVL [25]. So, as part of the mapping we
can use rules, such as:

Painter(X) :- (//Painter) (X) Sculptor(X) :- (//Sculptor) (X)

to define the (direct) extent (i.e., the set of direct instances) of the classes
Painter and Sculptor in the virtual RDF layer. Property extents can be also
defined in the same style:

paints(X,Y) :- (//Painter) (X), (.//Painting) (X,Y)

Note that this mapping is not always straightforward, since there usually
exist schematic and semantic discrepancies between the source and the middle-
ware schema. For example, class inheritance is not expressed in the XML doc-
ument. Moreover, properties (let alone property inheritance) creates, paints
and sculpts are not used explicitly in the XML document.

We expect SWIM to be able to take the RQL query and the XML→RDF
mapping given above and produce an XML query (e.g., an XQuery). We will
discuss in Section 3 how this reformulation can be done.

In addition of being available in XML, the cultural data may be available
through an RDBMS, for instance in a table as illustrated in the right part of
Figure 2. As for XML, there is an RDB→RDF mapping which is also expressed
in a mixed language, where instead of XPath atoms we can use standard Datalog
atoms:

Painter(X) :- Artifacts(_, X, _, "Painting")
paints(X,Y):- Artifacts(Y, X, _, "Painting")
name(X,Y) :- Artifact(_, X, _, "Painting"), Y=X
name(X,Y) :- Artifact(_, X, _, "Sculpture"), Y=X

As in the case of XML, there may also be discrepancies in the RDB→RDF
mapping. For instance, in our example, the classification of an Artist to Painter
or Sculptor is determined by the value of the attribute kind, i.e., schema in-
formation is “encoded” inside data values.

Again, the SW middleware should be able to automatically reformulate the
RQL query, using this mapping, into a relational query, presumably SQL [17].

3 Query Mediation in SWIM

We need an internal logical framework that captures RDF/S semantics, as well
as queries, so that we can ”virtually populate” given RDF/S schemas. It should
also capture - to any needed extent - the XML and RDB semantics. As we
showed in the previous section, Datalog-like rules are very convenient for ex-
pressing mappings, even across data models, such as XML→ RDF. Based on the
experience of [13, 11] of performing XML query reformulation via translation in
a first-order, relational framework, we propose to follow the same approach for
RDF, in order to translate both queries and mappings into this framework.

3.1 SWIM Internal Logical Framework

The SWIM internal logic framework employs first-order relations together with
some first-order constraints to model RDF/S. It is convenient to use a signature
with three sorts: Resource,Property,Class3. The relations used have the following
meaning:

– C EXT(c, x) iff the resource x is in the proper extent (i.e., it is a direct
instance) of class c. In RDF class extents can overlap, due to multiple clas-
sification of resources.

– C SUB(c, d) iff c is a (not necessarily direct) subclass of d.
– PROP(c, p, d) iff class c is the domain and class d is the range of property p.
– P EXT(x, p, y) iff (x, y) is in the proper extent (i.e., it is a direct instance) of

property p. In our model instances of properties are represented as ordered
pairs of the resources they connect.

– P SUB(p, q) iff p is a (not necessarily direct) subproperty of q.

The relations must satisfy some built-in RDF/S constraints which are consid-
ered by RQL. In particular, the domain and range of a property must be unique,
while the subclass and subproperty relations must be reflexive, transitive and
satisfy the following subproperty/subclass compatibility constraint:

∀ a, p, b, c, q, d P SUB(q, p) ∧ PROP(a, p, b) ∧ PROP(c, q, d)
−→ C SUB(c, a) ∧ C SUB(d, b)

This means that if q is a subproperty of p, the domain and range of q are
subclasses of the domain and range of p, respectively.

Finally, we have the property-class extent compatibility constraint, i.e., any
instance of a property p connects a pair of instances of some subclasses of the
domain and range of p, respectively:

∀ a, p, b, x, y PROP(a, p, b) ∧ P EXT(x, p, y)
−→ ∃ c, d C SUB(c, a) ∧ C SUB(d, b) ∧ C EXT(c, x) ∧ C EXT(d, y)

Let ∆RDF be the set of dependencies (constraints) used to axiomatize the
internal RDF/S model.
3 For simplicity reasons, we ignore metaclasses and metaproperties in this discussion

but they can be handled easily in the same way.

Theorem 1. It is decidable whether ∆RDF |= d and whether ∆RDF |= Q1 � Q2,
where d is an embedded implicational dependency, Q1, Q2 are conjunctive queries
and � is query containment.

Translation of RDF/S schemas: It is straightforward to translate the informa-
tion of an RDF/S schema to the SWIM internal framework as a set of relational
facts (in Datalog parlance—an extensional database), involving the relations
C SUB,PROP,P SUB as well as the names of classes and properties in the schema
as constants. Some of the facts obtained from the schema in Figure 2:

C SUB(Painting, Artifact) PROP(Artist, name, String) P SUB(sculpts, creates)

Note that this set of facts will include all C SUB and P SUB reflexivity instances
and will be “closed” under transitivity and under subproperty/subclass compat-
ibility.

3.2 Translation of RQL Queries

RQL is a powerful language for querying smoothly both RDF/S schemas and
their instances. An RQL conjunctive query has the form ans(X̄) : − C1, . . . , Cn

where Ci’s are either RQL class or property patterns (as they appear in the RQL
FROM clause) or equalities involving variables and/or constants and X̄ is a tuple
of variables or constants (range restrictions [1] are also required). Many RQL
queries are in fact conjunctive queries, e.g., the query given in Section 2 can be
written:

ans(Z):- {X}creates{V}, {V}exhibited{W}, {W}denom{Y},
{X}name{Z}, Y="Reina Sofia"

Conjunctive RQL queries can then be translated into relational conjunctive
queries in the SWIM internal logical framework. Indeed, according to the declar-
ative semantics in [18], RQL patterns have the same meaning as conjunctions of
relational atoms. For example:

RQL Pattern Internal SWIM Translation

{X; $C}@P{Y ; $D} PROP(a, p, b), P SUB(q, p), P EXT(x, q, y),
C SUB(c, a), C SUB(d, b), C EXT(c, x), C EXT(d, y)

{X}@P{Y } P SUB(q, p), P EXT(x, q, y)

In the above RQL patterns, X,Y are resource variables, $C, $D are class
variables (and can be replaced with constant class names), and @P is a property
variable (that also can be replaced by a constant property name). Using these

patterns, the RQL conjunctive query above translates internally to the following
Datalog rule:

ans(z) : − P SUB(q1, creates), P EXT(x, q1, v),
P SUB(q2, exhibited), P EXT(v, q2, w),
P SUB(q3, denom), P EXT(w, q3, ”Reina Sofia”),
P SUB(q4, name), P EXT(x, q4, z)

3.3 Composing Queries with Mappings

Starting with the internal translation of the query, we perform an interesting
partial evaluation using the RDF schema information, i.e., we evaluate first the
schema-part of the query, namely the P SUB expressions. This is related to par-
tial evaluation of Datalog programs [4]. Because some atoms (e.g., P SUB(q1, creates))
match more than one fact in the schema, what was a single conjunctive query
now becomes a (non-recursive) Datalog program. Here is one of the rules in our
example (the other two feature sculpts and creates):

ans(z) : − P EXT(x, paints, v), P EXT(v, exhibited, w),
P EXT(w, denom, ”Reina Sofia”), P EXT(x, name, z)

The next step is to translate into the SWIM internal framework the heads
of the rules that define the mappings. For example, a rule defining the ex-
tent of the class Painter has the head Painter(X). We translate this into
C EXT(Painter, x). In the same style we can translate the rule defining the
extent of the property paints(X,Y) into P EXT(x, paints, y). Thus, the map-
ping becomes a (non-recursive) Datalog-like program with XPath atoms for the
XML→RDF case and a plain non-recursive Datalog program for the RDB→RDF
case. The composition of the query and the mapping is now simply the compo-
sition of two Datalog programs.

To finish the reformulation, we must still eliminate the intermediate predi-
cates C EXT,P EXT because they are not part of the data sources. This is done
with standard matching/substitution but it may increase (square, in fact) the
number of rules. In the examples we have looked at so far, however, the resulting
union of conjunctive queries can be minimized significantly because many of the
rules are unsatisfiable and hence can be discarded (see next section).

4 RQL Query Reformulation and Optimization

Continuing the example from Section 3.3, we compose the query with the map-
ping for the RDB→RDF case. After eliminating the intermediate predicates
C EXT and P EXT we obtain a Datalog program with eight rules. Six of these
rules, however, are unsatisfiable because their bodies equate distinct constants.
Moreover, standard conjunctive query minimization [1] applies to the remaining

two rules. The final reformulated query, after optimizations, for the RDB→RDF
case is the following union of conjunctive query (a non-recursive Datalog pro-
gram with two rules):

ans(z) :- Artifacts(x, z, "Reina Sofia", "Painting")
ans(z) :- Artifacts(x, z, "Reina Sofia", "Sculpture")

Similar transformations are performed in the case of the XML→RDF map-
ping. We also encounter six unsatisfiable rules: for example in a rule contain-
ing both (//Sculpture) (y) and (.//Painting) (x, y) there is no valuation for
y since an XML element cannot have two different tags (i.e., Sculpture and
Painting). The reformulated query for the XML→RDF case is given below:

ans(z) :- (//Painter)(x), (./@name)(x, z),
(//Painter)(x), (./Painting)(x, y),
(//Painting)(y), (./@exhibited)(y, "Reina Sofia")

ans(z) :- (//Sculptor)(x), (./@name)(x, z),
(//Sculptor)(x), (./Sculpture)(x, y),
(//Sculpture)(y), (./@exhibited)(y, "Reina Sofia")

However, the problem of deciding satisfiability of rules with XPath atoms
seems more complicated to cope with. We expect that the techniques developed
in [14] will help with this problem and more generally with the minimization of
such queries.

The optimizations we have seen so far do not take into account the specifics of
the RDF/S semantics considered by RQL. However, once we have encoded this
semantics into the relational dependencies ∆RDF (see Section 3.1) we can use
∆RDF in minimizing queries. For example, by translating into the internal model
and by using minimization under dependencies done with the Chase&Backchase
algorithm [11] it is possible to show that the conjunctive RQL queries of the
form

ans(X,@P,Y) :- {X;$C}@P{Y;$D}, rest(X,@P,Y)

minimize to (the internal translation of):

ans(X,@P,Y) :- {X}@P{Y}, rest(X,@P,Y)

thus eliminating several redundant scans over the class variables $C and $D
(rest(X,@P,Y) stands for a boolean predicate whose variables are X, @P and
Y only). It should be stressed that if we just translate these queries into SWIM
internal conjunctive queries, the results are not equivalent in the absence of
∆RDF. The examples we saw in this section serve as a guide for design deci-
sions regarding what kind of optimization facilities need to be incorporated into
SWIM.

Fig. 3. A Virtual RDF/S Schema on cultural data

5 Composing RQL Queries with RVL views

In order to favor personalization, virtual RDF/S schemas can be also specified on
top of the mediator schema, as for instance the RVL schema shown in Figure 3.
If we restrict our attention to ”conjunctive” RVL definitions, virtual classes’ and
properties’ extents can also be written as rules of the following form:

painting_exhibited(X,Y) :- {X;Painting}exhibited{Y}
name(Y,W) :- {X;Painting}exhibited{Y}, {Y}denom{W}
name(Y,W) :- {X;Sculpture}exhibited{Y}, {Y}denom{W}

Then, these rules can be employed by SWIM in order to translate RQL
queries expressed in terms of a virtual RDF/S schema into the mediator RDF/S
schema and back to the source schemas as well. Consider for example the fol-
lowing query, which retrieves the exhibits of the Reina Sofia museum:

ans(x) : − {X}painting exhibited{Y }, {Y }name{Z}, Z = ”Reina Sofia”

which translates to:

ans(x) : − P SUB V(q′, painting exhibited),P EXT V(x, q′, y),
P SUB V(q′′, name),P EXT V(y, q′′, ”Reina Sofia”)

The SWIM internal framework is equipped in this case with similar rela-
tions as those presented in Section 3.1 in order to capture virtual classes and
properties, as well as their virtual subsumption relationships as defined in RVL,
namely C EXT V,P EXT V,C SUB V,P SUB V, respectively. Since P SUB V(q′,
painting exhibited) matches only the reflexivity instance P SUB V(painting
exhibited, painting exhibited) (similarly for P SUB V(q′′, name)), we obtain

the following queries (called in order Q1 and Q2) against the mediator schema:

ans(x) : − PROP(a, exhibited, b),P SUB(q, exhibited),P EXT(x, q, y),
C SUB(Painting, a),C EXT(Painting, x),
P SUB(q2, denom),P EXT(y, q2, ”Reina Sofia”)

ans(x) : − PROP(a, exhibited, b),P SUB(q, exhibited),P EXT(x, q, y),
C SUB(Painting, a),C EXT(Painting, x),
C SUB(Sculpture, a),C EXT(Sculpture, x),
P SUB(q2, denom),P EXT(y, q2, ”Reina Sofia”)

As we can observe, Q1 is a subquery of Q2. Hence, the result of Q2 is sub-
sumed by the result of Q1 (Q2 � Q1) and the original query against the view is
reformulated to Q1.

6 Consistency of Mappings

When a mapping RDB→ RDF, XML→ RDF, or even RDF→ RDF (that is
an RVL view) is specified by a user, its output (if materialized) may not be a
valid RDF instance, that is, it may not satisfy the built-in constraints ∆RDF of
Section 3.1. For example, suppose, in the context of our example from Section 2,
that we define the extent of the property name in an RDB→RDF mapping by

name(X,V) :- Artifacts(Y,X,Z,U), V=X

(instead of the correct rules given in Section 2). With this, the mapped data will
not satisfy the property-class extent compatibility constraint (unless the relation
"Artifacts" contains only "Painting" or "Sculpture" as kinds.

Can such an error be detected automatically? That is, given an RDB→ RDF,
XML→RDF, or even RDF→RDF mapping, is it decidable if its virtual output
satisfies ∆RDF? Given the translations we gave earlier, in at least two cases
(RDB→ RDF and RDF→RDF) this question comes down to testing if a re-
lational dependency holds in a relational conjunctive (or union of conjunctive)
view. In [19] this was shown decidable for full dependencies (see [1]). Our de-
pendencies in ∆RDF are a little more general but we were able to show that the
result extends and we believe that we can extend it also for XML→RDF views
given suitable XPath restrictions.

7 Conclusions and Future Work

In this paper we presented the principles underlying the design of SWIM (Se-
mantic Web Integration Middleware) and described the components that achieve
semantic integration by mapping XML and relational data to RDF. The unify-
ing framework proposed relies on the use of Datalog-like rules for expressing the
mappings and reformulating RQL queries. Furthermore, this framework permits
the optimization of RQL queries as well as their composition with the specified
mappings in order to produce XML or relational database queries. Last, but
not least, we showed how these ideas carry over to querying across mediated or
personalized RDF schemas by expressing a class of RVL view definitions into
SWIM’s internal model.

Several issues require further investigation. Specifically, we have dealt so far
with the case of conjunctive RQL queries and conjunctive RVL view definitions.
In both these cases we obtain a translation into non-recursive Datalog programs
to which we can apply well-known optimization techniques and for which the
problem of determining the consistency of the mappings is decidable. We intend

to study the conditions under which similar results can be obtained for a broader
class of RQL queries and RVL view definitions. Another issue is the exploitation
of knowledge about the source schemas and data in order to perform further
optimizations during the reformulation process. SWIM’s internal model can also
accommodate constraints such as the ones expressible in OWL [10]. It will be
interesting to study the optimization potential that stems from the use of such
constraints (e.g., uniqueness or disjointness constraints) in query reformulation
/ minimization.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Integration
of XML Web Resources. In Proc. of the International Semantic Web Conference
(ISWC), Sardinia, Italy, June 2002.

3. B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Querying XML Sources Using an
Ontology-Based Mediator. In Proceedings of International Conf. on Cooperative
Information Systems (CoopIS), pages 429–448, Irvine, California, USA, November
2002.

4. K. Benkerimi and J. Lloyd. A Partial Evaluation Procedure for Logic Programs.
In Proceedings of the North American Conference on Logic Programs, Austin, TX,
USA, 1990. MIT Press.

5. D. Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation, March 27, 2000.

6. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Accessing data in-
tegration systems through conceptual schemas. In Proc. of the 20th Int. Conf.
on Conceptual Modeling (ER 2001), pages 270–284, Yokohama, Japan, November
2001.

7. D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu.
XQuery: An XML Query Language. W3C Working Draft, May 2003. See
http://www.w3.org/TR/xquery/.

8. S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML Repository.
In Proc. of International Conf. on Very Large Databases (VLDB), pages 271–280,
Roma, Italy, September 2001.

9. Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna Smaga. Your Me-
diators Need Data Conversion! In Proc. of ACM SIGMOD Conf. on Management
of Data, pages 177–188, Seattle, WA, USA, June 1998.

10. M. Dean, D. Connolly, F. Van Harmelen, J. Hendler, I. Horrocks, D. McGuin-
ness, P. Patel-Schneider, and L.A. Stein. OWL Web Ontology Language Reference
Version 1.0, W3C Working Draft. Technical report, W3C, December 12, 2002.

11. A. Deutsch, L. Popa, and V. Tannen. Physical Data Independence, Constraints,
and Optimization with Universal Plans. In Proc. of International Conf. on Very
Large Databases (VLDB), pages 459–470, Edinburgh, Scotland, UK, September
1999.

12. A. Deutsch and V. Tannen. Optimization Properties for Classes of Conjunctive
Regular Path Queries. In Proc. of International Workshop on Database Program-
ming Languages, pages 21–39, Frascati, Italy, 2001.

13. A. Deutsch and V. Tannen. MARS: A System for Publishing XML from Mixed
and Redundant Storage. In Proc. of International Conf. on Very Large Databases
(VLDB), Berlin, Germany, September 2003. To appear.

14. A. Deutsch and V. Tannen. Reformulation of XML Queries and Constraints. In
Proc. of International Conf. on Database Theory (ICDT), pages 255–241, Siena,
Italy, January 2003.

15. A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

16. A.Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: data management
infrastructure for semantic web applications. In Proc. of International World Wide
Web Conf., pages 556–567, Budapest, Hungary, 2003.

17. ISO/IEC 9075: Information technology – Database Languages – SQL, 1999.
18. G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D. Plexousakis,

M. Scholl, and K. Tolle. Querying the Semantic Web with RQL. Computer Net-
works, 42(5):617–640, August 2003.

19. A.C. Klug and R. Price. Determining View Dependencies Using Tableaux. ACM
Transactions on Database Systems, 7(3):361–380, 1982.

20. L.V.S. Lakshmanan and F. Sadri. XML Interoperability. In Proc. of the Inter-
national Workshop on the Web and Databases (WebDB), San Diego, California,
USA, June 2003.

21. O. Lassila and R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. W3C Recommendation, February 1999. Available at
http://www.w3.org/TR/REC-rdf-syntax.

22. A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Heterogeneous Information
Sources Using Source Descriptions. In Proc. of International Conf. on Very Large
Databases (VLDB), pages 251–262, Bombay, India, September 1996.

23. B. Ludäscher, A. Gupta, and M. Martone. Model-Based Mediation with Domain
Maps. In Proc. of IEEE International Conf. on Data Engineering (ICDE), Hei-
delberg, Germany, April 2001.

24. A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking
RDF Schemas for the Semantic Web. In Proc. of the International Semantic Web
Conference (ISWC), Sardinia, Italy, June 2002.

25. A. Magkanaraki, V. Tannen, V. Christophides, and D. Plexousakis. Viewing the
Semantic Web Through RVL Lenses. In Proc. of the International Semantic Web
Conference (ISWC), 2003. To appear.

26. L. Mignet, D. Barbosa, and P. Veltri. The XML web: a first study. In Proc. of
International World Wide Web Conf., pages 500–510, Budapest, Hungary, May
2003.

27. EDUTELLA: A P2P Networking Infrastructure Based on RDF. W. Nejdl and B.
Wolf and C. Qu and S. Decker and M. Sintek and A. Naeve and M. Nilsson and M.
Palmér and T. Risch. In Proc. of International World Wide Web Conf., Honolulu,
Hawaii, USA, May 2002.

28. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across
Heterogeneous Information Sources. In Proc. of IEEE International Conf. on Data
Engineering (ICDE), pages 251–260, Taipei, Taiwan, March 1995.

29. F. van Harmelen, P. Patel-Schneider, and I. Horrocks. Reference description
of the DAML+OIL ontology markup language. http://www.daml.org/2001/03/-
reference.html, March 2001.

30. G. Wiederhold. Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3):38–49, 1992.

