
ODE-SWS: A Semantic Web Service
Development Environment

Óscar Corcho1, Asunción Gómez-Pérez1, and Mariano Fernández-López1

Manuel Lama2

1 Departamento de Inteligencia Artificial. Facultad de Informática.
Campus de Montegancedo, s/n. Universidad Politécnica de Madrid.

28660 Boadilla del Monte, Madrid, Spain.
{ocorcho,mfernandez,asun}@fi.upm.es

2 Departmento de Electrónica y Computación. Facultad de F́ısica.
Campus Sur, s/n. Universidad de Santiago de Compostela.

15782 Santiago de Compostela, A Coruna, Spain.
lama@dec.usc.es, davidal@usc.es

Abstract. Web Services (WS) are software modules that perform op-
erations that are network-accessible through XML messaging. Web Ser-
vices in the Semantic Web, that is, Semantic Web Services (SWS), should
describe semantically their structure and capabilities to enable its auto-
matic discovery, invocation and composition. In this work we present
a development environment to design SWS in a language-independent
manner. This environment is based on a framework that defines an ontol-
ogy set to characterize how a SWS should be specified. The core ontology
of this framework describes the SWS problem-solving behaviour and en-
ables the SWS design at a conceptual level. Considering this framework,
the SWS development environment is composed of (1) a graphical inter-
face, in which the conceptual design of SWSs is performed, and (2) a tool
set, which instantiates the framework ontologies according to the graph-
ical model created by the user, verifies the completeness and consistency
of the SWS through instance evaluation, and translates the SWS concep-
tual model description into SWS (and WS) languages, such as DAML-S,
WSDL or UDDI. This tool set is integrated in the WebODE ontology
engineering workbench in order to take advantage of its reasoning and
ontology translation capabilities.

1 Introduction

Web Services (WSs) are software modules that describe a collection of opera-
tions that can be network-accessible through standardized XML messaging [1].
WSs are distributed all over the Internet, and in order to enable this accessibility
and interactions between WSs, it becomes necessary an infrastructure offering
mechanisms to support the WS discovery and direct invocation from other ser-
vices or agents. Nowadays, there are a number of proposals (usually ecommerce-
oriented) that claim to enable partial or totally this required infrastructure, such



as ebXML [2], E-Speak [3], or BPEL4WS [4]. However, the approach that has
emerged as a de facto standard, due to its extended use and relative simplicity,
is the Web Service Conceptual Architecture [1]. This framework is composed
of a set of layers that, basically, enable: (1) WS publication, where the UDDI
specification [5] is used to define the WS capabilities and characterize its ser-
vice provider; (2) WS description, which use the WSDL language [6] to specify
how the service can be invoked (input-output messages), and SOAP [7] as the
communication protocol for accessing web services; and (3) WS composition,
which specifies how a complex service can be created combining simple ones.
The language used to describe this composition is WSFL [8].

In this context, the Semantic Web [9] has risen as a Web evolution where the
information is semantically expressed in a markup language (such as DAML+OIL
[10]) and, thus, both agents and services could access directly to it. This approach
considers that the Web Services in the Semantic Web, so called Semantic Web
Services (SWSs), should specify their capabilities and properties in a semantic
markup language [11], [10]. This markup would enable other services to reason
about the SWS, and, as a result, decide whether it matches their requirements.
Taking this into account, two frameworks, SWSA [13] and WSFM [14], have been
proposed to describe a semantic Web infrastructure for enabling the automatic
SWS discovery, invocation and composition. Both frameworks use the DAML-S
specification [15], which is a DAML+OIL ontology for SWS specification, and
emphasize the SWS integration with de facto standard WS, in order to take
advantage of its current infrastructure.

On the other hand, Problem-Solving Methods (PSMs) describe explicitly how
a task can be performed [16]. PSMs are intended to be reusable components
applicable to similar tasks but in different domains. A PSM description specifies
the tasks in which the PSM is decomposed (methods-tasks tree); the input-
output interactions between the tasks; the flow control that describes the task
execution; the conditions in which a PSM can be applied to a domain or task;
and, finally, the ontology used by the PSM (method ontology). The UPML
specification [17] provides containers in which these PSM views can be described,
and, also, it incorporates elements that enable the PSM reuse. UPML has been
developed in the context of the IBROW project [18] with the aim of enabling
the semi-automatic reuse of PSMs. This objective could be interpreted as a
composition of PSMs.

In this work we provide a SWS development environment, called ODE-SWS,
which would allow the user to design SWSs on the basis of PSM modelling, en-
abling its description and composition at a conceptual level. This environment
also performs verification about the consistency and completeness of the design
created by the user. Once the design is verified, the user will select the spe-
cific languages in which the SWS will be specified. Thus, the SWS development
process supported by this environment does not depend on a specific SWS spec-
ification language. On the other hand, ODE-SWS is integrated in WebODE [19],
an ontology development workbench that offers an infrastructure in which on-
tology services (such as merging, evaluating and reasoning with ontologies) can



be reused by other services or applications. In this way, ODE-SWS development
has been facilitated with its integration in WebODE.

The structure of the paper is as follows. In section 2, a PSM-based framework
that enables the SWSs (and WSs) development is presented. In section 3, the
software architecture of the environment that supports this framework and how
it has been integrated in WebODE is described. In section 4, the current capa-
bilities of its graphical interface are explained. Finally, in section 5, the main
contributions of the work are summarized and other proposals to develop SWS
are discussed.

2 Framework for SWS Development

Relationships between SWSs and PSMs have been emphasized by several authors
[20], [14]. When both SWSs and PSMs are applied, they execute an operation
(or equivalently a method) to perform a task in a domain. As a result of this
execution, either new domain information is obtained or an effect is provoked
in the real world. Taking this similarity into account, it seems to be reasonable
to use the PSM paradigm to define the SWS features related to their internal
structure (SWS description and composition). Thus, we propose a framework in
which the SWS development is based on PSM descriptions, which could be ex-
tended with knowledge about ecommerce features (to facilitate SWS discovery)
and communication protocols (to provide network-accessibility).

On the other hand, the design of the framework has been guided by a set
of requirements that establish the conditions to define an open and extensible
framework to develop SWSs. These requirements are as follows:

1. SWS conceptual modeling. SWS development must be carried out at a con-
ceptual level and, therefore, characterization and description of the SWS
capabilities and internal structure (for composition and description) can-
not depend on specific languages that could limit the expressiveness of the
SWS model. Our aim is to allow the users to develop SWSs in a language-
independent manner; the environment that supports the framework will be
responsible to translate the SWS design into the required SWS languages.

2. Integration of SWS with Web Service standards. SWS specifications should
be integrated with Web service de facto standards (both frameworks and
languages) to be able to use the current infrastructure that supports these
standards [13], [20]. This requirement is compatible with the need of enabling
a SWS conceptual design, because this integration is carried out once the
SWS conceptual model has been created.

3. Modular design. The framework must be composed of a set of independent,
but related, modules, which contain knowledge about different views of the
SWS development process. This criterion guarantees the extensibility of the
framework, because we could introduce new modules without have to modify
the others.



2.1 Layered-Based Framework

To cover these requirements we propose a framework with a layered design,
whose layers are identified following a generality criterion, from the data types
(lower layer) to the specific languages in which SWSs will be expressed (higher
layer). Each layer is defined by an ontology that describes its elements on the
basis of well-known standards. These ontologies (or layers) are the following (see
figure 1):

– Data Types (DT) Ontology. It contains the data types associated to the
concept attributes of the domain ontology. The data types included in the
DT ontology are the same as the ones defined in the XML Schema Data
Types specification [21].

– Knowledge Representation (KR) Ontology. It describes the representation
primitives used to specify the domain ontology managed by SWSs in its
operations. That is, the components of the domain ontology will be KR
instances. KR ontology is needed because higher framework ontologies (PSM
and SWS) could need to reason about the domain ontology. For example,
preconditions of a method could impose that the input-output data should
be attributes. Usually, the KR ontology is associated to the knowledge model
of the tool used to develop the domain ontology.

– PSM Description Ontology. This ontology describes the elements that com-
pose a PSM, which, as we have previously discussed, can be used to generate
SWS descriptions. The PSM ontology is constructed following the UPML
specification [17], that has been extended with (1) a programming structure

Fig. 1. Framework for SWS development. This framework is composed of a set of design
layers, each one defined by an ontology that is based on well-known specifications of
the components that it describes



ontology, which describes the primitives used to specify the PSM flow con-
trol (such as conditional and parallel loops, conditional statements, etc.); (2)
inferences, which are new PSM elements defined as in the CommonKADS
knowledge model [22], that is, as building blocks for reasoning processes; and
(3) relations between PSM elements to explicitly declare whether an element
may be executed independently of the others or not and whether they can
be invoked by an external agent (or service). In figure 2 an excerpt of the
PSM ontology is showed. On the other hand, the PSM ontology contains a
number of axioms that constrain how PSM element instances are created.
This guarantees the consistency of the PSM model. For example, there exists
an axiom establishing that the input method must be covered by the inputs
associated to the tasks that compose the method.

– SWS Ontology. This ontology is constructed on the basis of the PSM descrip-
tion ontology, which is extended with both knowledge related to ecommerce
interactions, which enable the publication and advertisement of services, and
communication protocols. These extensions are performed using the DAML-
S specification as reference [15], because it describes containers to include
these types of knowledge.

– Standard language ontologies for Web Services. They describe the elements
associated to the de facto Web standard languages for service publication
(UDDI), description (WSDL/SOAP), and composition (WSFL). These on-

Fig. 2. Excerpt of the PSM ontology and how it is related with the SWS ontology



tologies complete the SWS specification, because they facilitate its integra-
tion in the current infrastructure of the Web.

This framework verifies the design requirements: conceptual modeling of
SWSs is performed in the PSM layer, which is not constructed following a spe-
cific language, but modelled at knowledge level [23]; integration with Web service
standards is explicitly enabled in the higher framework layer, which, if required,
could be easily extended to include new standards; and, finally, modular design
is achieved through the layered approach itself.

3 SWS Development Environment

To provide support for the framework, we have designed a SWS development
environment, in which users can design the conceptual model of SWS through
a graphical interface. Once finished, the model must be checked to guarantee
its consistency and correctness. Then the SWS model can be converted into a
DAML+OIL specification (such as DAML+OIL), which will be complemented
with Web service standard languages. The software architecture of this envi-
ronment, which is called ODE-SWS, has been designed following the framework
requirements, that is, to develop an open and extensible environment, which, if
required, could be easily modified to support new SWS (and WS) specification
languages or frameworks.

3.1 Software Architecture

According to the proposed framework, the SWS development could be viewed
as the process of instancing an ontology set that contains the knowledge needed
to generate the SWS specifications. ODE-SWS software architecture is based on
this consideration and it is composed of: a graphical interface, which allows the
users to develop SWSs at a conceptual level (section 4); and a set of services (or
tools), called ODE-SWS services, which process the SWS graphical descriptions
(previously created by the users) to generate the instances of the framework
ontology at which each service is connected. That is, each framework layer is
associated to a ODE-SWS service which operates with the knowledge contained
into the ontology that describes that layer.

Figure 3 shows the general structure of a ODE-SWS service. Usually, a service
is activated by the ODE-SWS graphical interface to (1) verify the consistency
and completeness of the SWS conceptual model; or (2) translate this model from
its graphical description into a specific language. In both cases, however, it is
necessary to generate an instance set of the ontology connected to the service. In
the first case, the SWS conceptual model is verified applying the ontology axioms
to the instance set; the ODE-SWS service contains a module that will activate
the reasoning with the ontology axioms. In the second case, it is also necessary
to check the consistency and completeness of the SWS model to avoid errors
in the specification of the SWS. Once this verification has been carried out, an



Fig. 3. General structure of a ODE-SWS service, where the ontology with which the
service operates must be one of the ontologies identified in the SWS development
framework

ODE-SWS service module will export the ontology to the language selected by
the user.

On the other hand, ODE-SWS is completely integrated in WebODE [19],
which is a workbench for ontology development that provides additional services
for exporting ontologies to different languages (such as DAML+OIL, RDF, etc.),
merging and evaluating ontologies, and reasoning with ontologies using their
axioms. The WebODE software architecture is scalable and easily extensible, and
it is divided in three layers (figure 4). In the first layer, the ontology development
services are included. They verify the ontology consistency, enable the access to
the ontologies stored in a relational database, reason with ontology axioms, and
export/import the ontologies to/from different languages.

In the second layer the middleware services are located. They use the ontol-
ogy development services in their operations and provide additional capabilities
to WebODE, such as merging or evaluation. The ODE-SWS services are inte-
grated in this layer. Thus, they directly use: (1) the WebODE inference service
to evaluate the ontologies by means of their axioms; (2) the WebODE ontology
access service to manage the framework ontologies (which are stored in We-



Fig. 4. Integration of ODE-SWS services in the WebODE architecture

bODE); and (3) the export services to translate the SWS model into a specific
SWS language. In this layer the ODE-SWS graphical interface is also included
and uses the ODE-SWS services and the WebODE ontology access service.

Finally, in the third layer the applications that mainly use the middleware
services in their operations are constructed. For example, a theatre server ap-
plication that offers SWSs to allow the users to book tickets for a particular
film projected in the theatre, will probably use ODE-SWS because it provides
capabilities needed in the application definition. Therefore, WebODE platform
could be considered as an application development environment, in which new
services can be easily integrated and reused by other applications by means of
the infrastructure provided by the platform.

3.2 ODE-SWS services

ODE-SWS services are directly invoked from the ODE-SWS graphical interface
when the users, once they create the SWS conceptual model in a graphical
manner, require to export that model to well-known SWS languages or when
the graphical interface itself needs to verify whether an operation carried out
by the user has generated a SWS inconsistent model or not. Taking this into
account, we identify the following ODE-SWS services (figure 5):



– KR service. This service gets as input the ontology used in SWS operation
(usually the domain ontology) and establishes the instances associated to
the KR and Data Types ontologies. The domain ontology can be available in
WebODE or could be imported from an ontology language into the WebODE
specification. In both cases, this service will invoke the ODE service to access
the domain ontology components stored in a database.

– PSM service. It uses the graphical descriptions of the SWS model to generate
an instance set that describes completely the PSM model (internal structure
and flow control). Once the instance set is created, this service must invoke
the WebODE inference service [24] to verify the consistency and complete-
ness of the PSM model. In this verification, the axioms that constrain how
the PSM elements can be combined with each other are used. For example,
if we would define a general service that is decomposed in two sub-services,

Fig. 5. Input-output relations between ODE-SWS services in order to generate the
SWS model and its specification in a SWS language



it would be necessary to verify that the inputs of these sub-services would
be of the same (or subsumed) type as the general service inputs. In order
to perform this verification, the PSM service must operate with an explicit
description of the representation primitives in which the domain ontology
will be instanced.

– SWS service. Instances created by this service will enhance the knowledge
included in the PSM model by adding the information related to ecommerce
interactions. This information will be directly obtained from the ODE-SWS
graphical interface.

These three services constitute the ODE-SWS core, because they support the
generation of the SWS conceptual model (from the SWS graphical descriptions)
and their operation does not depend on the specific languages in which the
SWS will be described. Therefore, these services will be modified only if their
associated framework layers are also changed.

– WSLang service. It gets as inputs the SWS ontology instances and gen-
erates an instance set from which the SWS model is specified in UDDI,
WSDL/SOAP and WSFL de facto standard languages.

– DAML-S service. It provides the DAML-S specification of the SWS having
as inputs the instances of the SWS ontology. Nevertheless, this operation is
not straightforward because in the DAML-S ontology a service is modeled
as a process, whereas in our framework a service is considered to be a spe-
cialization of a PSM (or method). Once this operation is performed, this
service must invoke the WebODE service, which exports an ontology into
the DAML+OIL language.

– Java service. Using the PSM ontology instances as inputs, this service will
generate the skeleton of the programming code (Java beans) needed to exe-
cute the SWS and to perform its operations. Once this code has been gener-
ated by the service, the user must fill in the methods responsible of carrying
out the operations modelled in the PSM.

These three services represent ODE-SWS additional services, because they
have been specifically included in the environment to support the translation
from the SWS model into the languages in which the SWS will be expressed. This
means that these services would be changed (or substituted) if it was required
to use other languages or if the core services were also modified.

4 Graphical Interface

ODE-SWS graphical interface is based on the assumption that the design and
development of a service should be performed from different, but complementary,
points of view (such as in PSM modelling). These different views help the user
to understand the internal structure of a service and the interactions between
its components (sub-services); that is, these views facilitate the SWS description
and composition. Taking this into account, the graphical interface contains the
following views (see figure 6):



(a)

(b)

Fig. 6. ODE-SWS graphical interface



– Definition view. In this view the user defines a service by specifying its
name (mandatory) and, optionally, by introducing the information needed
to enable service discovery and advertisement, such as a description of the
provider that offers the service, the types of business for which the service
is oriented (industry classifications), etc.

– Decomposition view. This view allows the user to define (and also create) the
services (sub-services) that would be executed when a (composite) service is
activated. That is, a service hierarchy can be specified. This view, therefore,
enables service composition by creating a hierarchy in which the sub-services
of a composite service are activated if it verifies their execution conditions.
Figure 6.(a) shows how the service BuyMovieTicket is decomposed in its
sub-services. On the other hand, this view can be used to detect possible
inconsistencies between different views. For example, in the flow control of
a service cannot appear services that do not belong to its hierarchy.

– Interaction view. In this view the input-output interactions between the sub-
services of a composite service are specified. This operation requires that
the domain ontology would be previously loaded from WebODE database
to the graphical interface. Figure 6 shows the main window of the ODE-
SWS, where the specification of the interactions between the sub-services of
buyMovieTicket composite service can be seen. All these services have been
created in the decomposition view (or in the definition view), which will
generate the service tree shown in the right side of figure 6.(b).

– Flow control view. In this view the user specifies the flow control of a service,
where its sub-services are combined with programming structures to obtain a
description of the service execution. This view, which is not implemented yet,
will be used to model the service composition by means of several diagrams
that describe the different compositions of services. On the other hand, this
view and the decomposition view could be used to export to languages (as
WSFL) that specify the service composition.

The graphical interface guarantees the consistency and completeness of the
models that have been created in each one of its views. For example, if the user
specifies that a service is composed of three sub-services (decomposition view),
the graphical interface will invoke the PSM service to assure that the interaction
view contains exactly those three services (as in the example shown in figure 6).

5 Conclusions

ODE-SWS enables the users to develop SWSs following a PSM-oriented design,
which is based on a language-independent framework for SWS development.
Furthermore, ODE-SWS will assure the consistency and completeness of the
SWS designs. Once the SWS design correctness is verified, the user can select
the languages in which the SWS will be described. Thus, in ODE-SWS the user
does not need to know specific details about the languages used to specify the
SWSs.



On the other hand, the ODE-SWS integration in WebODE has simplified
its software architecture and implementation, because (1) it uses directly the
WebODE services, which offer support for ODE-SWS operations; and (2) it uses
the infrastructure itself that WebODE provides for including software modules
as services, which could be easily accessed form the graphical interface. Thus,
the integration in WebODE favors the ODE SWS modularity, which is a key
requirement to adapt the environment to new standard languages or frameworks.

Finally, there exists some development environments which offer capabilities
for SWS composition and consistency verification [26], [25]. Both environments
are based on the DAML-S ontology and they use the reasoning capabilities as-
sociated to the DAML+OIL language to verify the SWS model consistency.
These environments are language-dependent and the SWS conceptual modelling
depends on the DAML+OIL mark-up, which, therefore, highly difficult its trans-
lation to others languages or frameworks. On the other hand, none of these two
environments are supported by an infrastructure that could offer other useful
capabilities such as evaluation or reasoning about ontologies.

References

1. H. Kreger: Web Services Conceptual Architecture (WSCA 1.0).
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, May
2001.

2. D Webber and A. Dutton: Understanding ebXML, UDDI and XML/edi.
http://www.xmlglobal.com/downloads/ebXML understanding.pdf, October 2000.

3. S. Graupner, W. Kim, D. Lenkov, and A. Sahai: E-Speak – An Enabling Infras-
tructure for Web-based E-Services. Proceedings of the International Conference on
Advances in Infrastructure for Electronic Business, Science, and Education on the
Internet, L’Aquila, Italy, July August 2000.

4. F. Curbera, Y. Golan, J. Klein, F. Leymann, D. Roller, S. Thatte, and S.
Weerawarana: Business Process Execution Language for Web Services. Version
1. http://www.ibm.com/developerworks/library/ws-bpel, July 2002.

5. T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen: UDDI
Version 3.0. Published Specification. http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm, July 2002.

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana: Web Services
Description Language (WSDL) 1.1. http://www.w3c.org/TR/2001/ NOTE-wsdl-
20010315, March 2001.

7. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H.F.
Nielsen, S. Thatte, and D. Winer: Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508, May 2000.

8. F. Leymann: Web Service Flow Language (WSFL 1.0).
http://www.ibm.com/software/solutions/webservices/pdf/WSDL.pdf, May
2001.

9. T. Berners-Lee, J. Hendler, and O. Lassila: The Semantic Web. Scientific American,
284(5):34-43, 2001.

10. J. Hendler and D. McGuinness: The DARPA Agent Markup Language. IEEE In-
telligent Systems, 15(6):72-73, 2000.



11. S.A. McIlraith, T.C. Son, and H. Zeng: Semantic Web Services. IEEE Intelligent
Systems, 16(2):46-53, 2001.

12. J. Hendler: Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30-37,
2001.

13. T. Sollazzo, S. Handshuch, S. Staab, and M. Frank: Semantic Web Service Archi-
tecture – Evolving Web Service Standards toward the Semantic Web. Proceedings
of the Fifteenth International FLAIRS Conference, Pensacola, Florida, May 2002.

14. D. Fensel and C. Bussler: The Web Service Modeling Framework WSMF. Proceed-
ings of the NSF-EU Workshop on Database and Information Systems Research for
Semantic Web and Enterprises, pages 15-20, Georgia, USA, April 2002.

15. A. Ankolenkar, M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin, S.A. McIlraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng: DAML-S: Seman-
tic Markup for Web Services. Proceedings ot the First Semantic Web Working
Symposium, pages 411-430, July August 2001.

16. V.R. Benjamins and D. Fensel: Special Issue on Problem-Solving Methods. Inter-
national Journal of Human-Computer Studies (IJHCS), 49(4):305-313, 1998.

17. D. Fensel, E. Motta, F. van Harmelen, V.R. Benjamins, M. Crubezy, S. Decker,
M. Gaspari, R. Groenboom, W. Grosso, M. Musen, E. Plaza, G. Schreiber, R.
Studer, and B. Wielinga: The Unified Problem-Solving Method Development Lan-
guage UPML. Knowledge and Information Systems (KAIS): An International Jour-
nal, 2003. To appear.

18. V.R. Benjamins, B. Wielinga, J. Wielemaker, and D. Fensel: Brokering Problem-
Solving Knowledge at the Internet. Proceedings of the European Knowledge Acqui-
sition Workshop (EKAW-99), Lecture Notes in Artificial Intelligence, LNAI 1621,
May 1999.

19. J.C. Arpirez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez: WebODE – A
Scalable Ontological Engineering Workbench. Proceedings of the First International
Conference on Knowledge Capture, Victoria, Canada, October 2001.

20. V.R. Benjamins: Web Service Solve Problems, and Problem-Solving Methods Pro-
vide Services. IEEE Intelligent Systems, 18(1):76-77, January/February 2003.

21. P.V. Biron and A. Malhotra: XML Schema Part 2: Datatypes.
http://www.w3c.org/TR/2001/REC-schema-2-20010502, May 2001.

22. G. Schreiber, H. Akkermans, A. Anjevierden, R. de Hoog, H. Shadbolt, W. van
de Welde, and B. Wielinga: Knowledge engineering and management. The Com-
monKADS Methodology. MIT Press, Cambridge, Massachusets.

23. A. Newell: The Knowledge Level. Artificial Intelligence, 18(1):87-127, 1982.
24. O. Corcho, M. Fernández-López, A. Gómez-Pérez, and O. Vicente: WebODE –

An Integrated Workbench for Ontology Representation, Reasoning and Exchange.
Proceedings of the Thirteenth International Conference on Knowledge Engineering
and Knowledge Management (EKAW’02), LNAI 2473, pages 138-153, Sigenza,
Spain, October 2002.

25. E. Sirin, J. Hendler, and B. Parsia: Semi-automatic Composition of Web Services
using Semantic Descriptions. Proceedings of the Workshop on Web Services: Mod-
eling, Architecture and Infrastructure in conjunction with ICEIS2003. 2003. Ac-
cepted.

26. S. Narayanan and S.A. McIlraith: Simulation, Verification and Automated Com-
position of Web Services. Proceedings of the Eleventh International World Wide
Web Conference (WWW-2002), pages 77-88, Hawaii, USA, May 2002.


