
1

RDF Core: A component for effective

management of RDF Models

FLORIANA ESPOSITO, LUIGI IANNONE, IGNAZIO PALMISANO AND

GIOVANNI SEMERARO

Dipartimento di Informatica

Università degli Studi di Bari

Via Orabona, 4

Bari, 70125, ITALY

+39 080 544 2299

{esposito,iannone,semeraro}@di.uniba.it, ignazio_io@yahoo.it

Abstract.

In order to make Semantic Web effective, the first step was the development of

languages that could support data portability, namely XML, metadata

descriptions, namely RDF, and ontology management and inference, such as

DAML+OIL, OWL etc. Those languages have to be manipulated by

applications and many Application Programming Interfaces (APIs) have been

developed in order to accomplish this task. Obviously, they differ in

implementation details. Moreover, developers often would like to exploit more

than an API at a time. Another issue is that a developer would be very

advantaged if he could have a uniform support for some services across these

frameworks (such as query languages), despite the lack of standards. In this

paper, we present a component, called RDFCore, developed in order to

overcome these problems. We will also illustrate the added value that our

framework provides to RDF in order to exploit the full potentiality of the

language and to employ it in research as well as in real world applications.

Consequently we will provide some test results on the performances of the

presented framework.

2

Introduction

World Wide Web Consortium (W3C), that is the main promoting committee involved

in the evolution towards the Semantic Web[1], has been recently working on the

development of technologies that could support this process. While some of these

technologies are still in early phases, part of them can already be exploited in real

world applications. This is the case of Resource Description Framework (RDF). It

represents the basic support to write metadata on Web resources and to grant

interoperability among heterogeneous applications when exchanging these metadata.

RDF describes resources in terms of primitives (classes, properties, resources, etc.)

without taking into account the description structure itself. In fact, the description can

be encoded in XML (but also in other different formats, see for instance [2]). This

ensures its portability across the Web.

Moreover, RDF represents a suitable solution to implement the Semantic Web vision

also because it presents three key features:

• Extensibility. Each user can add its own description extending pre-existing

ones without any limit.

• Interoperability. RDF descriptions can rely on XML serialization every

time they need to be exchanged among heterogeneous platforms

• Scalability. RDF descriptions can be viewed as sets of three field records

(triples) (Subject, Predicate and Object). This makes them easy to fetch and

manage even when a single description holds many triples in it.

Many Application Programming Interfaces (APIs) have been developed in order to

support RDF-based applications. They offer a lot of useful features, ranging from

efficient persistence and powerful query languages [8] to simple and well designed

object models [4]. That is why we felt the need for a uniform framework (RDFCore)

that will be presented in the following sections. The main aim of RDFCore is granting

the widest compatibility with existing RDF APIs, exploiting their advantages in a

transparent way for users and, where possible, enhancing traditional approaches to

RDF-based development.

3

RDF Core

Overview

In the following section we will describe a framework named RDFCore and, besides

its features, we will also point out how the problems related to RDF have been

tackled.

RDFCore main components: Managers

The architecture sketched below (Figure 1) shows the main components of the

RDFCore Framework.

Figure 1 RDFCore Architecture

RDF Descriptions can be seen as sets of statements (typically called Models). Each

statement is a triple compound by a subject, a predicate and an object. Therefore,

users access RDF resources at two different levels of granularity – Models and

Statements. That is why we developed two different entities, called Description

Manager and Triple Manager, that deal with all the possible operations on

4

Descriptions and on Triples, respectively. Therefore, as far as Descriptions are

concerned, users can:

• Add/Delete, Retrieve a Description to/from their own repository

• Update an entire Description with a new one

• Query a Description or a bunch of them.

while Triple Manager offers all the typical operations on single statements or on sets

of statements (as subsets of a Description) like:

• Add

• Delete

• Update

All these operations would seem quite obvious. Indeed, all the most famous APIs

currently available offer similar support to RDF users (see for instance Jena RDF

Toolkit [3] or Stanford RDF APIs [4]). However, all these operations within our

framework bring with themselves a slight advantage.

First of all, RDFCore has been devised as a multi-user environment. In fact, each user

owns its own repository of RDF resources. Furthermore, users can be arranged in

groups, can share resources with other members and there is the possibility of

establishing policy rights on operations involving shared resources, such as

granting/removing read/write access for a particular user or group of users. Other

APIs do not offer a well-constructed persistence model like this one. The usefulness

of such user management is strictly related to resource authoring. As a matter of fact,

if the scenario is the WWW we could easily foresee communities of Web resource

authors that generate, along with the actual web-resource, its description in RDF (no

matter whether this generation will be automatic or not). Therefore, the need of

having such an organisation of the RDF resources would soon arise.

RDF Engine and RDF Persistence

Description Manager and Triple Manager make up the sole user interface of

RDFCore and they both rely on the RDF Engine module (see Figure 1).

In the RDFCore architecture, RDF Engine represents a specification rather than a

concrete piece of software. In fact, it enumerates all the necessary operations for the

5

upper modules to properly carry out their functionalities. Actually, each call to the

business functions of the proper Manager is translated into a combination of RDF

Engine operations.

In the previous sections, we mentioned that there are many existing APIs to manage

RDF and we also pointed out that it is strongly desirable that users can have the

possibility to exploit features of any of them without switching architecture. That is

why RDF Engine specifies which operations are required and nothing else. The

responsibility of actual implementation of the services specified by RDF Engine is

delegated to RDF Persistence level components.

In this way, a well-known best practice in Object-Oriented design, that is the

implementation of abstract interfaces, can be exploited. In practice, RDF Engine is an

interface whose implementation can vary depending on the requirements developers

want to meet.

Therefore, many RDF Engine implementations can co-exist in a single instance of

RDFCore. A typical scenario would be one in which different kinds of users have

different implementations of the underlying RDF Engine. The advantage is that some

users could need some requirements that are provided (for instance) within some

specific persistence. The only effort in order to meet those requirements is to build up

an implementation of the RDF Engine that acts as a bridge between that persistence

and the upper level components (Managers). A more concrete example will be

provided below in the description of the applications of our framework.

Actually, two implementations of RDF Engine have been produced, based on two

different solutions for RDF Description storage/retrieval:

• An implementation based on RDF/XML serialization

• An implementation based on triple storage, built on Jena Toolkit API [3]

Both of them, as well as the upper components, comply to the well-known Stanford

RDF API [4] as a standard for RDF object model, since it is the most widespread

basic API for RDF Description management. This is accomplished by means of

establishing that the input/output parameters in the modules interface have types taken

from the RDF API object model (such as Model, Statement, Resource etc.)

6

Exploitation of RDFCore: COLLATE

One of the most complete exploitation case studies for our framework takes place in

the EU research project COLLATE (IST-1999-20882) [5]. It belongs to the Fifth

Framework Programme in scientific European Community research programme,

under the Information Society Technology category, Key Action III: “Multimedia

Content and Tools”. The focus of this project is the development of a collaborative

system for scientists involved in the study of the film production in Austria, Germany

and Czech republics in the 30s. Three film archives have to be made electronically

available (in order, above all, to preserve very fragile and intangible material) and

scientists have to be allowed to index, catalogue and annotate such assets in order to

build scientific discourses on their work among the scientific community endorsed

with COLLATE [6], [7]).

This could be easily assimilated to the wider scenario foreseen by Semantic Web: a

huge quantity of resources (documents, assets) with many relationships among them.

COLLATE requirements are:

• A uniform way of identifying resources (films, film related documents,

cataloguing and indexing information, scientist annotations, scientific

discourses)

• Distribution of information; in fact, archives still keep their resources in a

decentralized architecture in order to avoid the moving of huge amount of

data, both physically and electronically (for obvious reasons)

• Intelligent navigation through data and metadata, including navigation across

scientific discourses on resources

For all these reasons RDF is a straightforward solution since it holds in itself the

features we underlined in the introductory sections.

We go on examining which added value our framework provides to COLLATE. It is

quite obvious that a huge collection of documents and metadata such as COLLATE

heritage needs a careful devising of a scalable component in order to manage storage

and retrieval of both resources and relationships among them. While the solution for

the former problem is delegated to efficient RDBMS, as far as the latter we developed

a suitable RDF Persistence for granting scalability to RDFCore framework. This

module relies on Jena Toolkit storage model for RDF. It consists in exploiting a

7

relational representation of the RDF triples (subject, predicate, object) stored in a

database. This approach takes advantage of the outstanding performance rates of the

most famous RDBMS (such as Oracle, MySQL and PostgreSQL). One of the most

immediate benefits is the fact that applications need not to load in-memory RDF

Models (Descriptions) in order to deal with small portions of them (typically small

sets of Statements), saving lots of memory and time for each operation.

Moreover, Jena Toolkit offers RDF Description Query Language (RDQL [8]) as

language for querying RDF Descriptions. This support has been extended for

querying multiple Models, that together with multi-user environment and scalability,

proved to be a suitable solution for COLLATE requirement.

The query language, however, remains a weakness point of all RDF APIs available,

including Jena. At the time of writing, still no standard query language specifications

are available. This hampers the interoperability between components and, therefore,

between different systems; in other words, two systems using different APIs to

manage RDF can exchange data, but cannot easily exchange queries on these data.

To address this issue, RDFCore embeds a subcomponent, called Enhanced Query

Engine, able to deal with different query languages. The design of this component

exploits the Strategy pattern [10] (like other components in RDFCore architecture),

enabling the use of a dynamic set of query languages. In order to add the support for a

new query language, only the classes implementing the interfaces to wrap the parser

of the language and the query engine are needed, allowing for easy update. This

update, obviously, can be the standard query language the W3C (together with other

organizations) is working on, as soon as it is available 1.

Empirical evaluation of performances

In this section we present some results from a preliminary empirical evaluation we

carried out on the RDFCore software components. We mainly tried to investigate one

of the key features that a framework devoted to Web (and Semantic Web)

development should have: scalability. The notion of scalability is very well known in

IT environment and it can be measured with respect to many variables. Being

1 http://www.daml.org/dql/

8

basically a knowledge storage system, RDFCore needs to be scalable, firstly with

respect to the amount of data that it has to manage. Therefore, tests that have been

carried out had the purpose of investigating how smoothly RDFCore performances

decreased as the data size increased. Particularly, our aim was to have a component

showing linear scalability with data size, i.e. time doubles as data size doubles.

In the previous sections, while describing the design of RDF persistence architecture,

we pointed out that our framework could provide simultaneously different strategies

for the actual data storage thanks to the persistence architectural layer of abstraction.

Indeed, as we mentioned in the previous section, we developed two different

persistence mechanisms, respectively:

• Based on file system binary storage of RDF/XML resources, relying on a

compressed XML storage format (namely PDOM 2)

• Based on RDBMS storage of RDF resources, relying on Jena API for RDF.

We prepared two different test sets, both devised in order to progressively scale up in

data size but with slightly different strategies. The first one increases data in size but

not in content, by simply repeating the basic RDF description n times in the same

document. The second one has been created by adding new statements to the starting

description without repeating any object, subject or properties. In this way all triples

in the descriptions from the second test set are different from each other, while there

is a lot of redundancy in the first test set. The reason for doing that is that in both RDF

persistence implementations some mechanism to take advantage from redundancy has

been devised (e.g.: indexing of URI). Therefore an RDF description with many

repetitions should be processed in lesser time than a variegated description.

In all our tests, the descriptions named NNNx_rdf are redundant descriptions, where

NNN is the number of times a particular triple is replicated in the description; on the

other hand, the descriptions named OutputNNNNN_rdf are descriptions with no

redundancy, and NNNNN is the number of triples in the particular model.

2 http://www.infonyte.com/en/prod_pdom.html

9

Obtained results

In Table 1 and Table 2, divided for the sake of readability, we show the results of

processing the first test set (highly redundant) with an RDFCore exploiting the file

system-based persistence that we mentioned before, and with the JENA-based

persistence, relying on the MySQL RDBMS. In Figure 2 and Figure 3 (for PDOM),

and subsequently Figure 4 and Figure 5 (for JENA), we show the growth of required

time to store descriptions compared with a theoretical linear function on data size

(used as baseline). In these figures, as well as in the subsequently ones, the scale on

the Y axis is logarithmic. Where not specified, the measuring unit for time is the

millisecond. Table 3 reports the results obtained on the redundancy-free test set, while

Figure 6 and Figure 7 provide a graphical representation of them. Notice that missing

values (- in tables) were omitted because they have been considered irrelevant.

PDOM Persistence JENA Persistence

File

File size

(Kbytes)

Elapsed time

(milliseconds)

Theoretical

elapsed time

PDOM

file size

Reading

time

Storing

time

Theoretical

storing time

2x.rdf 173 3886 4000 - 203 9777 10000

3x.rdf 259 4016 6000 - 250 14772 15000

4x.rdf 342 4226 8000 - 313 19779 20000

5x.rdf 432 4446 10000 - 453 24767 25000

6x.rdf 518 4827 12000 - 485 29787 30000

7x.rdf 605 4547 14000 - 563 34787 35000

8x.rdf 691 5178 16000 - 640 39766 40000

9x.rdf 777 4757 18000 - 734 44822 45000

10x.rdf 864 5417 20000 - 875 49822 50000

11x.rdf 950 5117 22000 - 953 54762 55000

12x.rdf 1036 5168 24000 - 1125 59783 60000

13x.rdf 1122 5007 26000 - 1062 64747 65000

14x.rdf 1209 5488 28000 - 1250 69827 70000

15x.rdf 1295 5427 30000 - 1234 74727 75000

16x.rdf 1381 5948 32000 - 1312 79837 80000

17x.rdf 1468 5728 34000 - 1422 84737 85000

18x.rdf 1554 5808 36000 - 1547 89737 90000

19x.rdf 1640 5879 38000 - 1547 94687 95000

20x.rdf 1727 5929 40000 - 1656 99682 100000

Table 1 High redundancy test (a)

10

PDOM Persistence JENA Persistence

File

File size

(Kbytes)

Elapsed time

(milliseconds)

Theoretical

elapsed time

PDOM

file size

Reading

time

Storing

time

Theoretical

storing time

20x.rdf 1727 5929 40000 - 1656 99682 100000

30x.rdf 2590 7411 60000 261 2390 149573 150000

40x.rdf 3453 9043 80000 314 3250 199394 200000

50x.rdf 4316 10104 100000 370 4015 249230 250000

60x.rdf 5179 10905 120000 427 4781 299171 300000

70x.rdf 6042 11636 140000 482 5578 348987 350000

80x.rdf 6905 13930 160000 532 6453 398823 400000

90x.rdf 7768 13450 180000 584 7203 448658 450000

100x.rdf 8631 14130 200000 638 9437 498494 500000

110x.rdf 9494 15292 220000 691 9406 548403 550000

120x.rdf 10357 15793 240000 744 10343 598239 600000

130x.rdf 11220 18807 260000 797 11032 648011 650000

140x.rdf 12083 13450 280000 848 11688 697917 700000

150x.rdf 12946 22272 300000 900 12594 747847 750000

160x.rdf 13809 21802 320000 952 13469 797643 800000

170x.rdf 14672 23384 340000 1003 14469 847636 850000

180x.rdf 15535 24105 360000 1055 15469 897452 900000

190x.rdf 16398 25317 380000 1106 17438 947425 950000

200x.rdf 17261 26201 400000 1157 16891 997201 1000000

Table 2 High redundancy test (b)

2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

100

1000

10000

100000

File size Elapsed time Theoretical elapsed time

Figure 2 High redundancy test (PDOM) (a)

11

20x 30x 40x 50x 60x 70x 80x 90x 100x 110x 120x 130x 140x 150x 160x 170x 180x 190x 200x

100

1000

10000

100000

1000000

File size Elapsed time Theoretical elapsed time PDOM file size

Figure 3 High redundancy test (PDOM) (b)

2x 3x 4x 5x 6x 7x 8x 9x 10x 11x 12x 13x 14x 15x 16x 17x 18x 19x 20x

100

1000

10000

100000

File size Reading time Storing time Theoretical storing time

Figure 4 High redundancy test (JENA) (a)

20x 30x 40x 50x 60x 70x 80x 90x 100x 110x 120x 130x 140x 150x 160x 170x 180x 190x 200x

1000

10000

100000

1000000

File size Reading time Storing time Theoretical storing time

Figure 5 High redundancy test (JENA) (b)

12

PDOM Persistence JENA Persistence

File

File

size

PDOM

file size

Reading

time

Storing

time

Theoretical

storing time

Reading

time

Storing

time

Theoretical

storing time

Output10000 1480 1210 6990 15382 15000 2219 83612 80000

Output20000 2990 2470 10404 26689 30000 3140 167201 160000

Output30000 4490 3700 15682 36823 45000 4797 250750 240000

Output40000 6000 4970 19999 48139 60000 6125 334200 320000

Output50000 7510 6210 26178 59776 75000 7828 418035 400000

Output60000 9000 7450 29893 76700 90000 9422 501715 480000

Output70000 10500 8700 34089 99152 105000 13281 585204 560000

Output80000 12000 9920 38305 145219 120000 15328 667835 640000

Output90000 13500 11100 45174 208650 135000 16531 752483 720000

Output100000 15000 12400 49812 308293 150000 18438 836212 800000

Table 3 No redundancy test

The X axis in Figure 6 and Figure 7 reports the number of triples in the files used for

the test.

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

1000

10000

100000

1000000

File size PDOM file size Reading time Storing time Theoretical storing time

Figure 6 No redundancy test (PDOM)

13

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

1000

10000

100000

1000000

File size Reading time Storing time Theoretical storing time

Figure 7 No redundancy test (JENA)

Table 4 reports RDFCore performances in adding a statement to very huge

descriptions that have been already stored in the repository. Figure 8 and Figure 9

show the graphic trend of required time.

PDOM Persistence JENA Persistence

File

Elapsed

time Theoretical elapsed time

File File size Elapsed time

160x.rdf 9333 9333 Output10000 1480 358

170x.rdf 9564 9916 Output20000 2990 12

180x.rdf 10826 10500 Output30000 4490 25

190x.rdf 10756 11082 Output40000 6000 70

- - - Output50000 7510 36

- - - Output60000 9000 10

- - - Output70000 10500 17

- - - Output80000 12000 21

- - - Output90000 13500 20

- - - Output100000 15000 20

Table 4 Add triple test

14

160x 170x 180x 190x

1000

10000

100000

Elapsed time Theoretical elapsed time

Figure 8 Add triple test (PDOM)

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

10

100

1000

10000

100000

File size Elapsed time

Figure 9 Add triple test (JENA)

Furthermore, we measured the time spent by RDFCore to retrieve a description from

the repository and make it ready for manipulation by user (Table 5 and Figure 10 and

Figure 11) and in querying a model for every triple it contains (Table 6 and Figure 12

and Figure 13).

15

PDOM Persistence JENA Persistence

Resource Elapsed time Theoretical elapsed time Elapsed time

Output10000 13570 13000 484

Output20000 23804 26000 5

Output30000 34420 39000 15

Output40000 43573 52000 63

Output50000 59285 65000 31

Output60000 - - 5

Output70000 - - 7

Output80000 - - 15

Output90000 - - 16

Output100000 - - 16

Table 5 Retrieve description test

As for Figure 6 and Figure 7, in Figure 8 and Figure 9 the X axis reports the number of

triples in the files used for the test.

10000 20000 30000 40000 50000

10000

100000

Elapsed time Theoretical elapsed time

Figure 10 Retrieve description test (PDOM)

16

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

1

10

100

1000

10000

100000

File size Elapsed time

Figure 11 Retrieve Description(JENA)

PDOM Persistence JENA Persistence

Resource Triple number Elapsed time Elapsed time

Output10000_rdf 10000 10505 453

Output20000_rdf 20000 15502 31

Output30000_rdf 30000 24075 16

Output40000_rdf 40000 32497 15

Output50000_rdf 50000 49361 16

Table 6 Querying persistence

output10000_rdf output20000_rdf output30000_rdf output40000_rdf output50000_rdf

1

10

100

1000

10000

100000

Triple number Elapsed time

Figure 12 Querying persistence (PDOM)

17

output10000_rdf output20000_rdf output30000_rdf output40000_rdf output50000_rdf

10

100

1000

10000

100000

Triple number Querying time

Figure 13 Query test (JENA)

Queries

The query test involves the use of the Enhanced Query Engine component of our

architecture; specifically, the query used to stress the system (taking into account the

size of the dataset and the size of results) was a very simple one: we asked the system

to return every statement, describing a matching statement as a statement with a

variable value for subject, predicate and object. This is done, in our system, creating a

Pattern (a list of conditions on statements) and translating it into a query expressed in

one of the query languages that are supported by the Enhanced Query Engine. In our

test, we used RDQL as a query language; the translated query is

SELECT ?s, ?p, ?o WHERE (?s,?p,?o)
that returns every statement in the given model.

Result analysis

The obtained results show that the whole system does scale in a linear way with both

persistence layers. It is noteworthy that JENA persistence absolute times, when

adding a new model, are higher than those of the PDOM implementation. This

depends on a JENA weakness due to the complexity of the internal database structure.

The next version of JENA (JENA 2.0) promises substantial performance

improvements, and this should tackle the resulting weakness of our system. On the

18

other hand, when doing retrieving and querying tests, where PDOM is still linear,

JENA is very close to constant complexity, independently from the size of managed

data. This result was expected because of the different approaches used by the two

distinct layers: PDOM loads its data into in-memory representations, while Jena relies

on its RDBMS persistence, obviously faster in these operations.

Conclusions

In this paper, we briefly described motivations and requirements for the brand new

vision emerging on the Web: the Semantic Web. We pointed out, among others, the

need of exploiting suitable technology for dealing with metadata, such as RDF. This

technology has many benefits and, as we stated in the first sections of this paper, has

to be integrated in frameworks that offer both scalability and standard support. Then,

we presented our solution to tackle RDF related issues and we mentioned one specific

application of RDFCore in a current ongoing EU research project (COLLATE).

Finally, we presented an empirical evaluation from which we noticed that our

designed architecture resulted in a scalable system (as shown by early tests on the

prototype presented in this paper). Forthcoming research will have three main

directions:

• Integration with RDF Schema Technology

• Moving to a standard RDF Query Language (when issued by responsible

committee)

• Embedding Semantic Web upper level languages, such as DAML+OIL[9], in

order to deal with ontologies and reasoning.

References

[1] T. Berners-Lee, J. Hendlers and O. Lassilla, The Semantic Web Scientific American,

May 2001 http://www.scientificamerican.com/article.cfm?articleID=00048144-

10D2-1C70-84A9809EC588EF21&catID=2

[2] D. Beckett N-Triples EBNF Grammar definition

http://mail.ilrt.bris.ac.uk/~cmdjb/2001/06/ntriples/

19

[3] B. McBride, Jena: A Semantic Web Toolkit, IEEE Internet Computing, Vol. 6, N. 6,

55-59, Nov/Dec 2002.

[4] S. Melnik: "RDF API Draft", working document, Stanford University, 1999

[5] COLLATE – COLLATE - Collaboratory for Annotation, Indexing and Retrieval of

Digitized Historical Archive Material http://www.collate.de/

[6] S. Ferilli, Management of Cultural Heritage Material: The COLLATE project. In: L.

Bordoni, G. Semeraro (Eds.), Proceedings of the Workshop on Artificial Intelligence

for Cultural Heritage and Digital Libraries, 7th Congress of the Italian Association

for Artificial Intelligence (AI*IA '01), Bari, 25 September 2001, pp. 29-33.

[7] H. Brocks, U. Thiel, A. Stein & A. Dirsch-Weigand, Customizable Retrieval

Functions Based on User Tasks in the Cultural Heritage Domain. In:

Constantopoulos, P. & Sølvberg, I.T. (Eds.). Research and Advanced Technology for

Digital Libraries. Proceedings of the 5th European Conference, ECDL 2001. Berlin:

Springer, 2001, pp. 37-48.

[8] Jena RDF Query Language http://www.hpl.hp.com/semweb/rdql-grammar.html

[9] Horrocks, DAML+OIL: a Reason-able Web Ontology Language, in Jensen, C. S.;

Jeffery, K. G.; Pokorny, J.; Saltenis, S.; Bertino, E.; Böhm, K.; Jarke, M. (Eds.),

(2002) Advances in Database Technology - EDBT 2002, Lecture Notes in Computer

Science 2287, 2-13, Springer:Berlin, 2002.

[10] E.Gamma, R.Helm, R.Johnson, J.Vlissides, Design Patterns Addison-Wesley Pub

Co; 1st edition (1995) ISBN 0201633612, pp. 315-324

