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Abstract. The current tendency in the life sciences to spawn ever grow-
ing amounts of high-throughput assays has led to the situation were the
interpretation of data and the formulation of hypotheses lag the pace
with which information is produced. Although the first generation of
statistical algorithms scrutinizing single, large-scale data sets found their
way into the biological community, the great challenge to connect their
results to the existing knowledge still remains. Despite the fairly large
number of biological databases that is currently available, we find a lot
of relevant information presented in free-text format (such as textual an-
notations, scientific abstracts, and full publications). Moreover, many of
the public interfaces do not allow queries with a broader scope than a
single biological entity (gene or protein). We implemented a methodology
that covers various public biological resources in a flexible text-mining
system designed towards the analysis of groups of genes. We discuss and
exemplify how structured term- and concept-centric views complement
each other in presenting gene summaries.

1 Introduction

The availability of the complete sequence of the human genome, along with
those of several other model organisms, sparked a novel research paradigm in
the life sciences. In ‘post-genome’ biology the focus is shifting from a single
gene to the behavior of groups of genes interacting in a complex, orchestrated
manner within the cellular environment. Recent advances in high-throughput
methods enable a more systematic testing of the function of multiple genes, their
interrelatedness, and the controlled circumstances in which these observations
hold. Microarrays, for example, measure the simultaneous activity of thousands
of genes in a particular condition at a given time. They enable researchers to
identify potential genes involved in a great variety of biological processes or
disease-related phenomena. As a result, scientific discoveries and hypotheses are
stacking up, all primarily reported in the form of free text. A recent query with
PUBMED! (the key bibliographic database in the life sciences) for the keyword
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microarray showed that almost a third (i.e., about 1000) of the publications
related to this technology is dated after January 2003. However, since the data
and information, and ultimately the extracted knowledge itself, lack usability
when offered in a raw state, various specialized database systems are designed to
provide a complementary resource in designing, performing, or analyzing large-
scale experiments. To date, we essentially distinguish two types of databases: the
first type holds essential information, such as genomic sequence data, expression
data, etc. without any extras (e.g., Genbank?, ArrayExpress®); the second type
offers curated annotations, cross-links to other repositories and multiple views
on the same problem (e.g., LocusLink?, SGD®). Although meticulous upkeep
of such databases is still struggling for due credit within the community, it is
indispensable for the advancement of the field [1].

The process of successfully gaining insight into complex genetic mechanisms
will increasingly depend on a complementary use of a variety of resources, in-
cluding the aforementioned biological databases and specialized literature on the
one hand, and the expert’s knowledge on the other. We therefore consider the
knowledge discovery process as cyclic, (i.e., requiring several iterations between
heterogeneous information sources to extract a reliable hypothesis). For exam-
ple, to date, linking up analyzed microarray data to the existing databases and
published literature still requires numerous queries and extensive user interven-
tion. This process of drilling down into the entries of hundreds of genes is notably
inefficient and requires higher-level views that can more easily be captured by
a (non-)expert’s mind. Figure 1 depicts how this cyclic nature applies to the
analysis of gene expression data.

Moreover, until now, it has been largely overlooked that there is little differ-
ence between retrieving an abstract from MEDLINE and downloading an entry
from a biological database [2]. Fading boundaries between text from a scien-
tific article and a curated annotation of a gene entry in a database is readily
illustrated by the GeneRIF feature in LocusLink, where snippets of a relevant
article pertaining to the gene’s function are manually extracted and directly
pasted as an attribute in the database. Conversely, we witness the emergence
of richly documented web supplements accompanying a scientific publication
that allow a virtual navigation through the results presented (see for example
http://www.esat.kuleuven.ac.be/neurdiff/ [3]). Additionally, through the use of
hypertext, electronic publications will be able to offer more structured views.
Hence, we should not expect the growing amount of free text to be halted by
the advent of specialized repositories.

The broadening of the biologist’s scope, along with the swelling amount of
information, results in a growing need to move from single gene or keyword-
based queries to more refined schemes that allow a deeper interaction between
the user- and context-specific views of text-oriented databases.

2 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide
3 http://www.ebi.ac.uk/arrayexpress,/

4 http://www.ncbi.nlm.nih.gov/LocusLink/
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Fig. 1. Cyclic nature of the knowledge discovery process. It shows a high-level view of
how it is embodied in microarray cluster analysis: starting from a cluster of genes re-
sulting from a gene expression analysis (the ‘Data World’), the corresponding literature
profiles are queried and analyzed (the ‘Text World’), resulting in either the addition
of extra genes of interest or the omission of irrelevant genes. This updated cluster can
subsequently be reanalyzed in expression space, which concludes a first cycle.

To facilitate such integrated views, controlled vocabularies that describe all
properties of the underlying concepts are of great value when constructing inter-
operable and computer-parsable systems. A number of structured vocabularies
have already arisen (most notably the Gene Ontology®) and, slowly but surely,
certain standards are being adopted to store and represent biological data.

We can conclude that there is a certain urge towards a semantic biology web
and although far from mature, some semantic web ideas have found their way
into the bioinformatics community as means to knowledge representation and
extraction.

Our general goal is to develop a methodology that can exploit and summa-
rize vast amounts of textual information available in scientific publications and
curated biological databases to support the analysis of groups of genes (e.g.,
resulting from gene expression analysis). As discussed above, the complexity of
the domain at hand requires such a system to provide flexible views on the prob-
lem, as well as to extensively cross-link to other systems. As a result, we created
a pilot text mining system, named TextGate, on top of a prevalent biological
resource (LocusLink [4]) that aims, in the end, at implementing the interactive
(or cyclic) nature of the knowledge discovery process.

A conceptual overview of the system is shown in Figure 2. We essentially
indexed two sources of textual information. Firstly, we downloaded the entire

5 http://www.geneontology.org



LocusLink database” and identified those fields that contain useful free-text in-
formation. Secondly, we collected all MEDLINE abstracts that were linked to
by LocusLink. We indexed both information sources with two different domain
vocabularies (one based upon Gene Ontology and one based upon the unique
gene names found in the HUGO nomenclature database®). The resulting indices
are used as basis for literature profiling and further query building on the set of
genes of interest.
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Fig. 2. Conceptual overview of the methodology behind the TextGate application.
Indexing of textual gene information from the LocusLink database and abstracts from
MEDLINE resulted in indices for respectively genes and documents. Starting from a
gene or group of genes, the most relevant documents can be retrieved by comparing
indices. Afterwards, statistical analysis and further queries can be performed.

Our work is related to several other reported and available systems. Pub-
Gene? [5] is a database containing cooccurrence and cocitation networks of hu-
man genes derived from the full MEDLINE database. For a given set of genes
it reports the literature network they reside in together with their high scor-

" as of April 8 2003
8 http://www.gene.ucl.ac.uk/hugo/
9 htpp://www.pubgene.org



ing MESH headings!'®. MedMiner [6] retrieves relevant abstracts by formulating
expanded queries to PUBMED. They use entries from the GeneCard database
[7] to fish up additional relevant keywords to compose their query. The result-
ing filtered abstracts are comprehensively summarized and feedback loops are
provided. GEISHA is a tool to profile gene clusters, again using the PUBMED
engine, with an emphasis put on comprehensive summarization within a statis-
tical framework [8]. This list of systems is not exhaustive and certainly does not
encompass the spectrum of text-mining methods in genomics. Nevertheless, we
believe that they well represent the first-generation systems oriented towards the
considerations presented above.

The rest of this paper is organized as follows. In Section 2, we describe Lo-
cusLink and MEDLINE as our information sources and how the indexed informa-
tion is used to query the information space we work in. In Section 3, we discuss
the construction of our two domain vocabularies and their rationale. Section 4
describes the web-based application built upon the described methodology. In
Section 5 the possibilities for query expansion and cross-linking to external data
sources are explored. Finally, in Section 6, we provide two illustrative biological
examples of a term-based summarization and a co-linkage analysis.

2 Information Selection

2.1 LocusLink as Gene Information Source

LocusLink [4] was used as the source of textual information about genes. Lo-
cusLink is a database that organizes information from collaborating public data-
bases and from other groups within the National Center for Biotechnology Infor-
mation'! to provide a locus-centric'? view of genomic information from human,
mouse, rat, zebrafish, Drosophila melanogaster, and HIV-1.

Each LocusLink entry (one for each locus and 225,614 in total) has a unique
LocusID and consists of a number of fields with information about a gene. Exam-
ples of fields include the originating organism, summary information about the
gene, official and preferred gene symbols and names, OMIM '3 [9] and PUBMED
identifiers, and Gene Ontology annotations.

Although indexing these LocusLink entries can be done on all fields at once,
we identified the subset that was most informative in a text-mining context.
From this subset of fields we identified (possibly overlapping) groups of fields
that constitute either a more specific or a more general view on the database.
The basic aim of this design choice is that, although we wish to create a free-text
index of each entry, we still want to preserve some of LocusLink’s logical field
structure.

10 MESH headings are a set of keywords attached by a manual indexer to each MED-
LINE abstract.

1 http://www.ncbi.nlm.nih.gov/

12° A locus is a specific position on the chromosome.

13 OMIM is a catalog of human genes and genetic disorders.



2.2 MEDLINE as Document Information Source

As introduced before, MEDLINE is the largest bibliographic database containing
over 12,000,000 citations in the biomedical literature from 1960 to present. Its
great value arises from the fact that most citations have an abstract in English
included.

We downscaled the MEDLINE collection to the subset of 73,172 documents
found in the LocusLink entries. We assume this set to be reasonably trusted
and gene-specific, and therefore it constitutes a good resource for conducting
our experiments.

2.3 Textual Information in the Vector Space Model

In the vector space model [10], a text body is represented by a vector (or text
profile) of which each component corresponds to a single (multi-word) term from
the entire set of terms taken into account (i.e., the vocabulary, see Section 3).
For every component a value denotes the presence or importance of a given term,
represented by a weight. Indexing is the calculation of these weights:

d; = (wi1,Wi2,...,W;N). (1)

Each w; ; in the vector of document 7 is a weight for term j from the vocab-
ulary of size N. This representation is often referred to as bag-of-words. In this
paper we confine the discussion to the IDF weighting scheme, as it turned out to
be a reasonable choice for modeling pieces of text comprising about 500 terms.
The underlying assumption is that term importance is inversely proportional to
frequency of occurrence. Let D be the number of documents in the collection
and D; be the number of documents containing term ¢, IDF is defined as:

D
idf = 1 1+— ). 2
at=1tog (14 ) )

Since, in principle, we can index the textual information from both LocusLink
and MEDLINE abstracts with the same vocabulary, we can represent both genes
and documents as vectors of term weights [11]. We distinguish two cases:

Combining multiple documents into a single gene profile
Since each gene can have one or more curated MEDLINE references asso-
ciated to it in LocusLink, we combine these abstracts by taking the mean
profile. This is illustrated in Figure 3.

Combining multiple gene profiles into a group profile
To summarize a cluster of genes and explore the most interesting terms
they share, we compute the mean and variance of the terms over the group.
Although simple, these statistics already reveal information on interesting
terms characterizing the gene group.
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Fig. 3. Generating profiles for LocusID’s via MEDLINE abstract text profiles. As de-
scribed in Section 2, some indices are generated using the linked abstracts as sole source
of information.

The vector representation of a gene or gene group can be used as a query to
retrieve documents and vice versa. The similarity of one document to another,
or of a document d; to a query ¢, can be calculated using the cosine distance:

Z Wi, jWq,j

oo (3)

3 A Domain Vocabulary as Canvas to the Literature
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Depending on the vocabulary chosen, the derived vector space model will be
useful only within a given scope. Both the scale and diversity of the information
contained in the MEDLINE database form a barrier to a fast, functional inter-
pretation of groups of genes. A well-selected corpus, together with a domain- or
problem-oriented vocabulary, already alleviates this problem in a first approxi-
mation. As explained above, the MEDLINE abstracts referred to in LocusLink
constitute an acceptable, noise-free, and domain-specific collection. However, the
information covered in this subset is still immensely vast. Although a corpus-
derived vocabulary might be the first logical choice in a vector-based text mining

approach, we constructed a tailored vocabulary in the light of the following is-
sues:

Phrases

Are additional (statistical or Natural Language Processing) algorithms nee-
ded to extract multi-word terms or are external lists available?



Synonyms
Do we need synonym detection algorithms or can we resort to external lists?

Concept nomenclature
Genes, proteins, diseases, chemical substances, and so on are all possible con-
cepts of interest to the user. Hence, concept-centric views or representations
might be required instead of term-centric ones. Again the question comes up
whether such lists are available or need to be generated.

Database integration
Can the choice of the vocabulary enhance interoperability with other data-
bases or systems?

Structured representation
In which way can we ultimately model dependencies between the vector
components?

These issues gave rise to the construction of two vocabulary types. The first
type is term-centric. It was derived from Gene Ontology (GO) [12] and com-
prises 17,965 terms. GO is a dynamic controlled hierarchy of (multi-word) terms
with a wide coverage in life science literature, and in genetics in particular.
We considered it as an ideal source to extract a highly relevant and relatively
noise-free domain vocabulary. Moreover, since GO is increasingly used to an-
notate databases, we envision an improved interoperability with other systems.
We note that, at this time, we chose to neglect the structure defining the rela-
tions between the objects, as well as the limited amount of synonym information.
Genes, however, are not only referred to by their symbols (e.g., TP53), but often
also by their full name, typically constituting a phrase (e.g., tumor protein p53,
Li-Fraumeni syndrome) that can bear an indication of its function. We extracted
this information and merged it with the terms from GO.

A second vocabulary type is rather concept-centric (here, gene-centric) and
was constructed with the screening of cooccurrence and colinkage in mind. In
our setup cooccurrence denotes simultaneous presence of gene names within a
single abstract, as in [5]. Colinkage is a weaker form of cooccurrence and screens
for simultaneous presence in the pool of abstracts that are linked to a given
group of genes. To this end, we derived from the HUGO database [9] (although
LocusLink could equally have served as a resource) a vocabulary of all uniquely
defined human gene symbols and their synonyms. Since these official gene sym-
bols are frequently requested and used by scientists, journals and databases, we
assume they will occur in scientific literature with high specificity. In total this
vocabulary consists of 26,511 gene symbols.

4 The TextGate Application

As many combinations of restricted views and weighting schemes (Section 2), as
well as representations (Section 3) are possible, we created a database of various
literature indices. Within the scope of this paper this serves the goal of offering



a comprehensive interface to various views on the LocusLink database and the
textual information captured inside. In a broader sense, this literature index
database is part of an experimental platform to test and evaluate (combinations
of) settings on a variety of biological annotation databases.

Different combinations of indexing schemes (by taking different fields of the
LocusLink entries into consideration) and vocabularies show interesting possi-
bilities towards analysis of genes and gene groups (as shown in Section 6 where
three biological analysis cases are discussed).

Figure 4 shows the server architecture of the TextGate application. The dif-
ferent functionalities can be accessed via a browser or more directly by invoking
the appropriate SOAP web service.
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Fig. 4. Architectural overview of the TextGate knowledge discovery tool.

The user can perform a lookup of a single gene or a set of genes. In the
case of profiling multiple genes, mean and variance statistics over the terms
are displayed. Also, the application offers the possibility to output a distance
matrix for a cluster of genes, which visualizes the distances (as calculated with
Formula 3) between the text vectors of all genes in a cluster.

As said before, the functionalities of the application are also available via
calls to a SOAP web service. The web service can be invoked by sending
the appropriate SOAP request to the TextGate web service router. The SOAP
message is interpreted by an Apache Tomcat server and specific requests are sent
to a number cruncher that executes the necessary calculations (as can be seen
in Figure 4).

This web service architecture allows for an easy integration of the function-
alities of our tool with third-party applications. SOAP clients that invoke the
service can be written in the programming language of choice. Currently, in our
group, we already established an integrated web environment and web service

14 SOAP (Simple Object Access Protocol) is an XML-based W3C Proposed Recom-
mendation for exchanging structured information in a decentralized, distributed en-
vironment.



architecture for microarray analysis, called INCLUSive [13], in which TextGate
fits naturally.

5 Query Expansion and Hyperlinking

Essentially, TextGate adopts a ‘small world’ view by scrutinizing only a restricted
set of textual information extracted by specific canvases on the literature (deter-
mined by the choice of the various representations discussed in Sections 2 and 3).
In practice, relevant keywords, phrases, or gene names are only useful to a re-
searcher if they can be linked (back) to existing biological resources.

In a first attempt to strengthen this desired connection, we implemented
a query composer for a variety of other databases, among which PUBMED,
GeneCards, and the Gene Ontology database are the most prominent, but also
OMIM, UniGene, and 15 other sources belong to the list of possible destinations.
Figure 5 visualizes this functionality.
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Fig. 5. The cyclic approach to knowledge mining by composing refined queries to a set
of public databases.



6 Example Biological Cases

In this section, we wish to provide two illustrative examples of a term-based
summarization and a colinkage analysis.

6.1 Gene Ontology and Transcriptional Up- and Downregulation

In this experiment, we generated two gene clusters based upon Gene Ontology
(GO) annotations of human genes. To construct the first cluster, we retrieved
all human genes that are annotated with the concept transcription activation.
The second cluster are all human genes annotated with the concept transcription
repression. Both concepts apply to the process of transcriptional regulation in the
cell (see Figure 6). Whether a protein complex promotes or inhibits transcription
of a gene, depends upon its constitution and environmental conditions. This
makes the distinction between both concepts not a trivial task, since a protein
can be active in a complex as inhibitor and as activator. The genes in both
groups are enlisted in Table 1.

Fig. 6. The activation (a) and repression (b) of the transcription of a gene by DNA-
binding protein complexes. The squares represent genes on the DNA. The circles rep-
resent protein complexes. In case (a), binding of an activator protein (produced by
its corresponding gene) to the complex initiates, and subsequently activates transcrip-
tion of a given gene while in case (b), binding of a repressor protein (produced by its
corresponding gene) inhibits expression of that gene.

In the first place this indicates that our text-mining approach is reasonably
trustable. As our confidence in these kind of methods will grow, one could invert
the reasoning and consider this case to give an indication of whether or not the
GO curators have made a good choice of splitting the concept of transcriptional



Table 1. Gene symbols and LocusLink identifiers for the two clusters of human genes
that are annotated with respectively the Gene Ontology terms transcription activation
and transcription repression.

Activation cluster Repression cluster

Gene Symbol LocusID ||Gene Symbol LocusID
BRCA1 672 BTF 9774
BRCA2 675 DMAP1 55929
CGBP 30827 || DNMT3L 29947
COPEB 1316 EED 8726
EDF1 8721 EPC1 80314
ELF1 1997 HDACH4 9759
ELF2 1998 HDACG6 10013
EPC1 80314 ||IFTI16 3428
ETV4 2118 LRRFIP1 9208
FOXC1 2296 MBD1 4152
FOXD3 27022 ||MBD2 8932
HNRPD 3184 NAB1 4664
HOXA9 3205 NRF 55922
HOXC9 3225 NSEP1 4904
HOXD9 3235 PIASY 51588
KLF2 51713 ||[RBAK 57786
MADHI1 4086 REST 5978
MADH5 4090 RING1 6015
MITF 4286 THG-1 81628
MYB 4602 UBP1 7342
NSBP1 79366 ||ZFHX1B 9839
ONECUT1 3175 ZNF24 7572
RREB1 6239 ZNF253 56242
SEC14L.2 23541 ZNF33A 7581
SUPT3H 8464 ZNFN1A4 64375
TITF1 7080

TP53BP1 7158

TRIP4 9325

UBE2V1 7335

ZNF38 7589

ZNF148 7707

ZNF398 57541




requlation in transcription activation and transcription repression: if for those
two different clusters TextGate shows that in essence the same terms occur
this would mean that there is not really a significant difference between the
genes GO associated to transcription activation and transcription repression. If,
however, specific terms linked to activation and repression respectively occur for
the activation cluster and the repression cluster, then making two taxons under
transcriptional regulation was a good choice.

In Table 2, the term ranking and variance are shown for the activation cluster
(top of the table) and the repression cluster (bottom). We see an obvious dif-
ference in term occurrence. For the activation cluster, transcript_activ ranks
third place, and for the repression cluster, repressor and repress rank first and
second, respectively. Note that dna_bind scores high for both clusters because
DNA-binding is a general aspect of transcriptional regulation.

6.2 Colinkage of Colon Cancer Genes

In Section 3 we discussed how changing the way domain vocabularies and index
tables are constructed provides us with a different view on the information. Using
only the gene names from the HUGO database [9] as domain vocabulary, we can
take a specific stance towards investigating colinkage of genes.

For this test case, we constructed a set of genes by consulting a textbook
on molecular biology [14] and choosing genes that are related to colon cancer
manually. This set was then provided to TextGate using the colinkage index.
The set of genes is shown in Table 3. The results are shown in Table 4.

To validate this result, we verified that these gene names indeed turn up in
the literature in relation to colon cancer.

The highest scoring gene is the CD44 antigen. This gene is indeed related to
colon cancer, as shown in a paper by Barshishat et al. [15].

The second ranking gene name is UBE3A (ubiquitin protein ligase E3A). At
first sight, it is not directly related to colon cancer, but after closer investigation
of the available literature, we found that this gene is involved in degradation of
TP53, which plays a crucial role in the regulation of cell division (mitosis) [16].
This explains the detection of frequent co-citation.

7 Conclusion and Future Work

As contemporary biology is evolving towards an information science, integrative
views on biological problems will be of increasing importance. Integration is a
broad term and is understood differently in the database community than for
instance in the field of machine learning. Our perspective on integration was
adopted with both the (presumed) cyclic nature of the knowledge discovery pro-
cess and of a text-mining application in mind. We created various indices on
two text-oriented databases (the annotation database LocusLink and the litera-
ture repository MEDLINE) that enabled text summarization of multiple genes
at once. Supported by grateful realizations in the development of annotation



Table 2. For the transcription activation and transcription repression clusters we show
the ranking of the 20 terms with the highest mean (left side) and the ranking of the 20
with the highest variance (right side). We note the presence of some noise due to the
nature of the term extraction process.

Activation cluster

Term Mean || Term Variance
transcript_factor 0.205 ||ovarian 0.011
dna_bind 0.188 ||thyroid 0.007
transcript_activ 0.139 ||site_select 0.005
nuclear 0.129 [|h3 0.005
transcript 0.125 ||zinc 0.005
promot 0.117 ||p53 0.004
bind 0.113 |ley 0.004
tumor 0.113 ||hepatocyt 0.004
domain 0.112 ||melanocyt 0.004
famili 0.11 ||cluster 0.004
chromosom 0.106 ||prime 0.004
site 0.098 ||bridg 0.004
pair 0.096 |[transcript_factor 0.003
involv 0.095 ||transform_growth factor_beta|0.003
region 0.093 ||retino_acid_metabol 0.003
yeast 0.092 ||tumor_suppressor 0.003
two 0.09 ||ubiquitin_conjug_enzym 0.003
zinc 0.088 |{leukemia 0.003
contain 0.088 |7 0.003
map 0.087 ||pigment 0.003
Repression cluster

Term Mean || Term Variance
repressor 0.238 |imethyl_cpg_bind 0.019
repress 0.205 ||deacetylas 0.013
dna_bind 0.172 ||cytosin_5 0.009
zinc 0.164 ||repressor 0.009
transcript_repressor |0.158 ||histon 0.008
deacetylas 0.157 ||polycomb_group 0.008
transcript_factor 0.151 ||dna_methyl 0.006
domain 0.147 ||ring 0.006
histon 0.127 ||zinc 0.006
transcript 0.123 ||transcript_repressor 0.005
yeast 0.116 |methyltransferas 0.005
famili 0.109 |[silenc 0.005
gene_express 0.109 ||hi 0.005
methyl_cpg_bind 0.105 ||interferon_gamma 0.005
region 0.104 ||stat2 0.004
nucleu 0.104 ||cell_structur 0.004
interact 0.103 |{leucin_metabol 0.004
protein_metabol 0.1 polycomb 0.004
bind 0.1 Irr 0.004
line 0.095 ||methyl 0.004




Table 3. A set of seven genes involved in colon cancer.

HUGO Name|LocusID

k-RAS2 3845
NEU1 4758
MYC 4609
APC 324

DCC 1630

P53 7157

MSH2 4436

Table 4. For the colon cancer cluster we show the ranking of the 20 colinkage concepts
with the highest mean (left side) and the ranking of the 20 colinkage concepts with the
highest variance (right side). We note the presence of some noise due to the nature of
the concept extraction process.

Gene |Mean ||Gene|Variance
cd44 0.446 |jmyc |0.013
ube3a [0.429 |(|[pten [0.012
i 0.344 |{lapc ]0.01
wwox |0.28 tpb3 ]0.01
sparc |0.27 dcc  |0.009
pax6 |0.234 |jmsh2 [0.005
wa 0.232 ||pax6 |0.004
rieg2 |0.223 ||ra 0.003
at 0.162 ||[wwox [0.003
nrd4a2 |0.156 |jmap |0.003
ha 0.136 ||pms2 |0.003
gstzl (0.125 ||rieg2 [0.003
msh2 [0.081 [{mlh1 |0.003

1 0.081 |12 0.003
3 0.078 ||ha 0.002
all 0.077 |lwa  |0.002
5 0.075 |/hla  ]0.002

kptn |0.066 |all 0.002
tpb3  |0.065 ||nr4a2 |0.002
nup214|0.064 ||gstzl |0.001




standards, nomenclature conventions, and ontologies, TextGate is able to for-
mulate sensible queries to a variety of other resources (including back the GO).
However, the system is far from complete, and represents only a first step in
the construction of a knowledge discovery platform. Our mid-term challenges
include:

Extension to an IR engine
At this point TextGate uses the index tables in a gene-centric way to sum-
marize and link information. As biological experiments are always carried
out in a particular context, allowing term-centric queries (see e.g., the re-
cently established TREC!® track) would further enhance the usability of the
system. This would fully close the cycle between terms, genes, documents,
and database annotations.

Extension of the conceptual representations
Up to now we neglected the structure of GO. Embedding its structure as well
as adding additional ontologies for functional genomics'®, or biomedicine!'”
would provide more structured views on information. A second improvement
involves the incorporation of improved semantics (e.g., negations) in our
system.

Finally, since the core functionality of the TextGate system is also provided
as a SOAP service, it can seamlessly be integrated with other systems, primarily
the expression analysis pipeline currently present in our lab'8.
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