
 1

An Adaptable Service Connector Model1

Gang Li1, Yanbo Han1, Zhuofeng Zhao1, Jianwu Wang1, and Roland M. Wagner2

1 Software Division, ICT, Chinese Academy of Science, PRC

{ligang, yhan}@ict.ac.cn {zhaozf, wjw}@software.ict.ac.cn
2 Fraunhofer ISST, Dortmund, Germany

roland.wagner@isst.fhg.de

Abstract. The volatility of network environments requires service connections to adapt to changes

of service resources and user requirements. In this paper, we treat service connections as individual

components called service connectors and present an adaptable service connector model that adopts

a role mechanism to adjust connections between services. A role is an abstraction of services with

common functionalities. It offers a changeable connector structure, enables reconfiguration of

service interaction and encapsulates changes in interacting participants, making service connections

more adaptable.

1 Introduction

Service oriented computing is gaining popularity. In a typical contemporary service-oriented
application, service connections are pragmatically implemented using protocols like SOAP. Through
this kind of connection, services can be composed into applications. Service composition is regarded as
a new approach for developing applications in network environments.

However, service composition still faces serious challenges due to the openness and dynamism of
network environment, such as grids [1][2]. Let us take service grids as an example. Firstly, services
freely join in or quit from a grid and most services in a grid continue evolving over time. Secondly, user
requirements are subject to dynamic changes in a virtual enterprise environment. All these require
service connections to be adaptable, so that service interactions can be easily reconfigured and involved
services can be changed dynamically, while changes of service resources and user requirements take
place. In this paper, we focus our research on how to make a service connection adapt to those changes.

Existing ways that are used to connect services includes control flow based connections [3], data flow
based connections [4][5] and hybrid forms of these two types, such as service connection mechanisms in
GSFL [6] and BPEL4WS [7]. After setting up an interaction channel between ports of different services
through protocols, the validity of control flow based service connection is determined by service states.
This type of connection is set up following interaction protocols inhering in services. For it is predefined
and fixed, changes of service interactions or requirements tend to invalidate the connection. A data flow
based connection links services through data dependencies. With shared data, this type of connection is
free from influences caused by service port changes to some extent. However, because of its implicit
definition, the structure of data flow based service connections is indistinct, which makes it difficult to
adjust the connection. Although in the hybrid from above the two types complement each other, it does

1 This paper is supported by the Young Scientist Fund of ICT Chinese Academy of Science under Grant No. 20026180-22 and the

National Natural Science Foundation of China under Grant No. 60173018.

 2

not contribute much to service connection adaptation. For example, BPLE4WS provides partner link
types to describe service connections as partner links, but it does not offer methods for dynamically
changing these links.

To make the connection adaptable, the connection structure ought to be changeable. As a semantic
concept, role [8][9] provides an organizing mechanism through which the abstraction of services with
common functions is derived and marked by role features. With this mechanism, a role offers flexible
connection structure, enabling service connection adaptation by reconfiguration. Based on the above
rationale, we implement a service connection as an explicit component named service connector and
present a role-based service connector model. In this model, a role is used to fulfill the adaptation of a
service connection with a stable interaction interface and a changeable connection structure.

The remainder of this paper is divided into 3 sections. Section 2 addresses the role-based service
connector model in detail, including its connection structure and interaction protocol. With a case study,
section 3 demonstrates the support of the model to making service connection adaptable. Finally, the
contribution of our research is concisely summarized in section 4.

2 Role-based Service Connector Model

Service A

Requestor Service

Role

Service Providers

Service B1

Service B2

Role Feature

Fig. 1. Sketch Map of Role-based Service Connector Model

Figure 1 illustrates the main idea of the role-based service connector model by an example that Service
A interacts with a role. Described by its features, the role is an abstraction of services such as Service B1
and Service B2. As a stable interface for service interaction, role features present functions provided by
service providers that interact with the requestor services through the role. Marked by features, functions
that a role provides are implemented by service providers that are invisible to requestors. When
unanticipated changes cause a modification of a service interaction, the connector can adapt to changes
of service interactions or requirements by reconfiguring its role features or service providers. When a
service provider involved in an interaction is unavailable, another one with the same role feature can
replace it, enhancing the adaptability and reliability of the service connection. A role is a virtual service,
and it offers not only a changeable connector structure, but also a unified service interaction interface,
providing essential support to connection adaptation in dynamic service composition [14].

Details about the role-based service connector model follow, namely aspects of the connection
structure and the interaction protocol.

 3

2.1 Connection Structure

In this section, to present the role-based service connector model precisely and concisely, we give its
definition, related semantic and interaction protocol in a formal way. Based on this formalism, we prove
that a role-based service connector is adaptable.
Definition 1 Role-based Service Connector

Given a three-tuple <Namer, Featuresr, Servicer>, where Namer marks a role name; Featuresr is a set
of role features, Featuresr={fr|fr=<rn,fnr,var>}, where rn denotes the role that feature fr belongs to, fnr is
the name of fr, var is the argument vector of fr. Role features are an interface with which a role interacts
with the environment; Servicer is a set of service references, which are related to features.

The three-tuple defines a role-based service connector, if and only if it has the following properties:
• There is a function set, denoted as Map. Given ∀fr∈Featuresr then ∃m∈Map, Ssr⊆ Servicer, m(fr)=Ssr,

and services that belong to set Ssr have the same interaction interface marked by fr.
• There is another function set, denoted as Selectors, consider fr, ∃sel∈Selectors, Ser∈Ssr, sel(Ssr)= Ser.

The function m is named as feature mapping function, and the function sel is named as service
selection function.

Thus a service connector presents a configurable service called instead of a requested service. The
connector selects an appropriate provided service and maps its parameters to the request. Therefore it is
a configurable encapsulation of a service or a group of semantically similar services, abstracted as a role.

There are two interaction patterns involved in a role-based service connector model, namely the
service-role and role-role patterns. In the first pattern, service providers are packaged by the role, which
is depicted by figure 1. It fits the context where service providers are volatile. In the second pattern, both
providers and requestors are packaged by roles, which fits the context where both sides are volatile.
The main parts of the model are presented above. Now, we define its connection semantic using
category theory to deduce connector properties on adaptation. A category consists of object sets and sets
of morphisms between objects, which focuses on describing and analyzing relations among any type of
objects [10]. With category, relations among services and roles can be described formally, which offers
an approach for analyzing and deducing properties of a role-based service connector in a method
independent of implementation details. Hereby it presents the connection semantics in a role-based
service connector model with categories that takes structured sets as objects.

Let Service be the service involved in the interaction, Service=<Names,Featuress>, where Names is
the service name, Featuress={fs|fs=<sn,fns,vas>}, fs is the service feature that describes a service port.
Take Services as objects, and construct the category Serv.

Serv=<objCServ, MorCServ, doms, cods, ◦>, where The set objCServ is the class of objects in Serv;
Given morphism ϕ: objCServ→ objCServ. E,F∈objCServ, ϕ(E)=F, ϕ is specified by the following:

δ1: NameE → NameF

δ2: FeatureE → FeatureF

The set MorCServ is the class of morphisms in Serv, namely MorCServ is the set of connections between
Services. The morphisms in MorCServ is defined by ϕ.

The function doms is defined as doms: MorCServ→objCServ, where f∈MorCServ, then doms (f) denotes
the domain of f.

The function cods is defined as cods: MorCServ→objCServ, where f∈MorCServ, then cods (f) denotes the
codomain of f.

The symbol ◦ denotes an operation, which is defined as ◦: MorCServ×MorCServ→ MorCServ.

 4

Let Connector be the role-based service connector involved in the interaction,
Connector=<Namer,Featuresr,Servicer>. In a similar way, take Connectors as objects, and construct the
category Conn, Conn=<objRConn, MorRConn, domc, codc, ∗>, where morphism ψ is used to define
MorRConn and describes interactions between roles.

Let Ser∈objCServ, Con∈objRConn, constructs function FSR, FSR: objCServ→ objRConn, FSR(Ser)= Con, FSR

is specified by the following:
η1: NameSer → NameCon

η2: FeatureSer → FeatureCon

The connection fulfilled by a role-based service connector is marked as ConnectionR.
ConnectionR={<Ser, FSR (Ser)>} ∪{<Con, ψ(Con)>}.

After giving connection semantics, we can now prove the following results according to it:
Theorem 1

In interaction where roles are involved, a role-based service connector has the following properties:
• Changes in the service set that correspond to a role feature do not cause changes of the connection;
• When the service set that corresponds to a role feature do not satisfy some requirements of requestors,

the connection can adapt to these changes by reconfiguring the role feature and related services.
Proof:

(1) Let r1 be the role involved in an interaction. According to the definition of r1, we conclude:
∀fx∈Featurer1, ∃m∈Mapr1,m(fx)=ssx,ssx⊆Servicer1,and ∃sel∈Selectorsr1, sel(ssx)=Serx, Serx∈ssx .

When changes take place in ssx, a new function sel′ can be constructed, sel′∈ Selectorsr1, such that
sel′(ssx)= Serx′.
Q Serx′ and Serx have the same features, and the requestor service interacts with the service that

belongs to ssx through the role feature.
∴There are no changes in the connection.
Proposition (1) follows.

(2) When the service set that corresponds to a role feature does not satisfy some requirements of the
requestor services, the interaction interface or the service set has to be changed. If only the service
set is to be adjusted, the connection can adapt to those changes according to proposition (1). If the
interaction interface is to be changed, it results in a change of the role feature according to
Definition 1. Then proposition (2) can be proved as follows:
i) when changes take place in a service–role pattern,

let s, r1 be the service and role involved in the interaction, and fs∈Features. According to FSR,
we conclude:

∃ <fs, fr1>, fr1 ∈ Featurer1. When <fs, fr1> changes into <fs, f ′r1>, according to the definition of
r1, ∃m′∈Mapr1, such that ssx1′⊆Servicer1, m′(f ′r1)=ssx1′. m′and ssx1′ keep the connection available.
ii) when changes take place in role-role pattern,

let r1, r2 be the roles involved in the interaction, and fr1∈Featurer1. According to ψ, we
conclude:

∃ <fr1, fr2>, fr2 ∈ Featurer2. When <fr1, fr2> changes into <fr1, f ′r2>, according to the definition of
r2, ∃m′′∈Mapr2, such that ssx2′⊆Servicer2, m′′(f ′r2)=ssx2′. m′′ and ssx2′ keep the connection available.

According to i) and ii), proposition (2) follows.
The proof is now complete.
Theorem 1 says that a role-based service connector is adaptable. In ConnectionR, there is a loose

coupling between interacting participants, which can be changed by adjusting the service selection

 5

function such as sel(). Through role features, services expose a unified interaction interface to requestor
services, reducing the influences between services. When unanticipated changes occur, the connection
can be reconfigured through changing the involved role features and services. In addition, a role feature
can be implemented by several candidates of service providers like services in ssx, which makes the
connection adaptable.

2.2 Interaction Protocol

When a role is introduced, changes occur in service interaction patterns to support connection
adaptation. As mentioned above, service-role and role-role patterns are the main interaction manners in
service compositions where roles are involved. In order to describe them clearly, the interaction
protocols are presented in a formal way.

While analyzing security protocols, I. Cervesato etc. used a multiset rewriting formalism, based on
linear logic. The existential quantification in it provides a succinct way of choosing new values. Besides
that, it has a bounded initialization phase, but allows unboundedly many instances of each protocol
participant, making it especially qualified to analyzing finite-length protocols [11]. In this section, we
present the interaction protocol of a role-based connector model with this method.

(1) Interaction in a service-role pattern
Ser0(), R0()
Ser0()→∃x.Ser1(x), Con1(x)
R0(), Con1(x)→ ∃y.R1(x, y), ∃Ser′0(), Con2(x, y)
Ser′0(), Con2(x, y)→ ∃z. Ser′1(y, z), Con3(x, y, z)
R1(x, y), Con3(x, y, z) → R2(x, y, z), Con4(x, z)
Ser1(x), Con4(x, z)→ Ser2(x, z)

In service-role pattern, service Ser is the requestor service, and Ser0() denotes that service Ser is in
initial state 0. Then it produces message x in state 0, sends x to role R transforming into state 1 that
keeps message x; Con1(x) denotes that the connection is in state 1 that keeps message x. After role R
receives x at state 0, it produces message y, then with the service selection function, role R chooses a
service Ser′ as server according to interaction state, and sends y to Ser′ transforming into state 1. After
processing message y, service Ser′ produces massage z that contains the results the client required and
sends z to role R. After role R receives z at state 1, it delivers message z to service Ser transforming into
state 2; service Ser receives z at state 1 transforming into state 2.

(2) Interaction in a role-role pattern
Ser0(), R0(), R′ 0()
Ser0() →∃x.Ser1(x), Con1(x)
R0(), Con1(x) → ∃y.R1(x, y), Con2(x, y)
R′ 0 (), Con2(x, y) → ∃z.R′ 1 (x, y, z), ∃Ser′0(), Con3(x, y, z)
Ser′0(), Con3(x, y, z) → ∃w. Ser′1(x, y, z, w), Con4(x, y, z, w)
R′ 1 (x, y, z), Con4(x, y, z, w) → R′ 2(x, y, w), Con5(x, y, w)
R1(x, y), Con5(x, y, w) → R2(x, w), Con6(x, w)
Ser1(x), Con6(x, w) → Ser2(x, w)

A role-role pattern is a combination of two service-role patterns. In this pattern, request and return
values pass through two roles.

 6

Above protocols describe how to configure the connector automatically. Besides that, they emphasize
especially on states of connections and interaction participants. On the one hand, a role supports the
dynamic selection of qualified services according to connection states and service states; on the other
hand, when the connection is to be reconfigured, these states determine whether the reconfiguration is
feasible. During connection reconfiguration, states of interacting participants are saved. After
reconfiguring, they are restored to enable service composition to be resumed. It shows that the
interaction protocol of a role-based service connector supports dynamic connection and adaptation.

After presenting the model and demonstrating its adaptability in a formal way, we now present a case
study in the following section.

3 Exploring the Model with a Case Study

A role-based service connector is more adaptable than others, when changes take place in service
resources and/or requirements. In order to strengthen this conclusion and illustrate how to use role-based
service connectors, we briefly present a case study of representing the model in XML and applying it in
project FLAME20082. Note that the case study focuses on the aspect of connection adaptabilities, other
details about the case are beyond this scope.

3.1 A Real Case from FLAME2008

The Olympic Travel Planning application, which is a part of FLAME2008, is to provide pertinent
information to those who watch match and tour in Beijing during Olympic Games 2008. Figure 2
presents a requirement segment of the application, which involves the following services.

User: Mr. John

Match Query
Service

Match Ticket
Query Service

Match Ticket
Service

Gym Query
Service

Match Query Request

Ticket Order Request

Ticket Query
Result

Gym Query
Result

Compositive Match- info
Module

Ticket Query
Request

Match &Ticket
Information

Gym Query
Request

Order &Gym
Information

Fig. 2. A Requirement Description Segment of Olympic Travel Planning Application

− Match Query Service: retrieving a match schedule, getting information about the match that one
wants to watch, and invoking Match Ticket Query Service.

− Match Ticket Query Service: retrieving match ticket information.

2 FLAME2008 (Project Flexible Semantic Service Management Environment) is to develop grid service based applications that provide

integrated, personalized information services to the public during the Olympic Games 2008. The project is supported by MOST PRC

and CAS under Grand No.20012019.

 7

− Match Ticket Service: ordering match tickets after making sure that there are remains, and invoking
the Gym Query Service.

− Gym Query Service: retrieving information about traffic, gym location and so on.
− Compositive Match-info Module: coordinating above services to get information about match

schedules, match tickets, gym and ordering tickets.
In the initial stage of the project, we constructed a prototype by composing services. However, those

services and their connections were changing with service resources changing and requirements
evolving.
• Change I: In the prototype, the response time of Match Ticket Query Service was too long to endure,

so that the service had to be replaced by a new one.
• Change II: Previously, after ordering tickets, audiences wanted to know something about the gym

where the match was to be held. So, Match Ticket Service interacted with Gym Query Service. Now,
audiences want to retrieve order results after ordering. To meet the changed requirement, Match
Ticket Service is to interact with Order Result Query Service (This service is a service to be added when

requirements change, and it is not shown in figure 2). In this situation, both the interaction interface and
services are changed.

3.2 Representations and Applications of the Model

In the initial prototype of FLAME2008, services were connected by control flow based on SOAP
messages. To adapt to changes in service providers, the adaptors were modified. However, when the
above-mentioned changes occurred, it was very difficult to adjust the application, for the service
connections were almost unchangeable. In order to change them, we had to read through the source
codes, and modify the processing logic or rebuild the module. It involved many efforts of understanding
source code, coding and so on. The modified application was prone to throw exceptions yet.

Hence, we partially adopted and realized role-based service connector in the second prototype, and
constructed a supporting tool named CAFISE Framework. Compared with service connections in the
first prototype, role-based service connector can be adjusted smoothly with the framework that is
depicted in figure 3.

3.2.1 CAFISE Framework
The CAFISE Framework includes a set of essential components and tools assisting to construct and
adjust applications. From a business viewpoint, the Convergent Modeling Tool helps designers to
present their requirements, and then the requirements are transformed into an executable application
specification using XML, which is presented in figure 3 as Specification A. Those specifications
describe the coordination among all involved services. While the CAFISE Virtual Machine interprets the
specification, the required services of the Service Community are dynamically bound and invoked.

 8

Framework

Application

User Designer

Convergent
Modeling Tool

Configuration Tool

CAFISE Virtual Machine Service
Community

Specification A Specification A’

binding

interpreting interpreting

modeling

invoking

Application A Application A’

monitoring and
adjusting

Adjusting

CS1 S2 C’ S1 S2
Service

Connector

Fig. 3. CAFISE Framework

3.2.2 Reconfiguration of Connectors
The service coordination in an executable specification adopts role-based service connectors. When the
aforementioned changes take place, users can reconfigure the role-based connector with the
Configuration Tool. More details about the framework are presented in [12]. The following presents an
example of a connecter implementation and describe how to use this framework to adjust the connector.
Figure 4 illustrates a role named Ticket_querist in XML, which is used to connect match query service
with match ticket query services according to the interaction protocol listed in section 2.2. Its feature
“searcher” describes the ports of the Match Ticket Query Service01 and Match Ticket Query Service 02
that are listed as feature implementations by <Services>. <Selector> specifies the algorithm for
selecting the right feature implementation. In figure 4, it uses another service “MTQSel01” as service
selection function to select the right service involved in the interaction.

<Role Name="Ticket_querist " >
<Feature Name="searcher">

<Argument Name="Match"
 Type="NameString"
 PassMode="IN"/>
<Argument Name="Time"
 Type="Timetype"
 PassMode="IN"/>
<Argument Name="MatchTicket"
 Type="TicketVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Match Ticket Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Match Ticket Query Service 02

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select/
MTQSel01

</SelectFunction>
</Selector>

</Role>

Fig. 4. The Role Specification of Ticket_querist

<Role Name="Ticket_querist " >
<Feature Name="searcher">

<Argument Name="Match"
 Type="NameString"
 PassMode="IN"/>
<Argument Name="Time"
 Type="Timetype"
 PassMode="IN"/>
<Argument Name="MatchTicket"
 Type="TicketVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Match Ticket Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Match Ticket Query Service 02

</URL>
<URL>
www.FLAME08app.com/search/
Match Ticket Query Service New

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select
/MTQSel02

</SelectFunction>
</Selector>

</Role>

Fig. 5. The Modified Specification of Ticket_querist

To adapt to Change I, a new service Match Ticket Query Service New was designed and registered in

the Service Community. The connection was to be changed. The CAFISE Virtual Machine, its

 9

Configuration Tool and role Ticket_querist made it easier to reconfigure the service connection. The
CAFISE Virtual Machine interpreted the specification of role Ticket_querist and collected meta-data of
interaction states and the connection structure, supporting the Configuration Tool to modify the
connection. The Configuration Tool monitored all interaction states through meta-data collected by the
virtual machine. While the number of service requests was reduced to zero, users applied the tool to
change the connection meta-data. By modifying meta-data, a new service
“www.FLAME08app.com/search/ Match Ticket Query Service New” was added, and <SelectFuction>
was set as a new one “www.FLAME08app.com/select/MTQSel02”. Thus, the new service co-existed
with the old ones, and the connection was changed without effects to the Match Query Service in a
simple reconfiguration way. The modified specification of Ticket_querist is shown in figure 5.

Figure 6 presents the role connected match ticket service and gym query services that are the service
providers in interaction. With Change II, Match Ticket Service changed to connect with Order Result
Query Service. Adaptation of this connection required adjusting the role’s <Feature>, <Services> and
<Selector> parts. Using CAFISE Framework, users smoothly changed the specification of Gym_querist
to a new one that is presented in figure 7.

<Role Name="Gym_querist" >
<Feature Name="searcher">

<Argument Name="Match"
 Type="NameString"
 PassMode="IN"/>
<Argument Name="Time"
 Type="Timetype"
 PassMode="IN"/>
<Argument Name="Gym_info"
 Type="GymVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Gym Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Gym Query Service 02

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select
/Gym_selector01

</SelectFunction>
</Selector>

</Role>

 Fig. 6. The Role Specification of Gym_querist

<Role Name="Gym_querist" >
<Feature Name="result searcher">
<Argument Name="Order Number"
 Type="String"
 PassMode="IN"/>
<Argument Name="Result_info"
 Type="ResultVector"
 PassMode="OUT"/>

</Feature>
<Services>

<DefaultURL>
www.FLAME08app.com/search/
Order Result Query Service 01

</DefaultURL>
<URL>
www.FLAME08app.com/search/
Order Result Query Service 02

</URL>
</Services>
<Selector>

<SelectFunction>
www.FLAME08app.com/select
/Order_resultSel

</SelectFunction>
</Selector>

</Role>

 Fig. 7. The Modified Specification of Gym_querist

The above case study demonstrates that a role-based service connector enables service connection

adaptation smoothly. Moreover it shows that <Feature> and <Services> separates services from features
and makes it feasible to modify the interaction interface and its implementation independantly. By
changing the <SelectFunction>, the relation between interaction interface and services can be adjusted.

Table 1 lists the comparison of service connection adaptations in those two prototypes of the case. It
says that these connections can be adjusted, and the adjustments all impact application behaviors with
effects to semantics. However, adaptations of control flow based service connections and service
adaptors involve more efforts of executants obviously. Role-based service connector can be
reconfigured at runtime. And changes of the connection are incremental, which means that a new service
can be incorporated into the service composition while old ones co-exist [13]. With the CAFISE
Framework, the adaptation process is semi-automatic, and change impacts can be controlled. The
comparison shows that the role-based service connector model provides more support to connection
adaptation.

 10

Table 1. Properties of Service Connection Adaptations in the Case

3.3 Evaluation Based on the Case Study

The case study demonstrates how to use a role-based service connector model to make service
connections adaptable. In addition, it also shows that a role-based service connector has advantages in
improving connection adaptability at the following aspects:
• Communication Stability

Communication is the essential function of a role-based service connector, which takes charge of data
exchange between services involved in an interaction. Through features, roles expose an interaction
interface, and allow requestors to invoke services. Role features offer a unified interface for service
interaction, improving communication stability from the view of connection structure.
• Structure Expansibility

A role-based service connector is extensible in structure aspect. Service resources and user
requirements are various and mutable. Unavoidably, service connections have to co-evolve with
changes. A role-based service connector provides an extensible cadre composed of <Feature>,
<Services> and <Selector>, which enables the connector to be extended and reconfigured according to
changes.
• Connection Adaptability

The role-based service connector model provides essential support to connection adaptation. With the
extensible cadre, it can be modified and reconfigured. Besides that, it can accommodate changes of
connection to some extent through encapsulating changes in service providers. And the connection can
be adapted at run time, for role-based service connector can dynamically switch service provider in the
way of modifying parameters to change connection structure at run time.

4 Conclusions

Service-oriented application development in network environments meets large challenges due to open
and dynamic features of the environments, which requires service connections to be adaptable.

In this paper, a role-based service connector model is presented to solve the problem. With role
features, a role-based service connector offers a changeable service connection structure, which makes

Control flow based

service connections
Service adaptors

Role-based service

connectors

Adaptation executants programmers programmers users

Adaptation way
by modifying source

codes

by modifying source

codes or customizing
by reconfiguring

Degree of automation non-automation non-automation semi-automation

Adaptation time at non-runtime at non-runtime
at both runtime and

non-runtime

Incremental changes no no yes

Effects to semantics yes yes yes

Change impacts control no no yes

 11

connections more adaptable: by modifying the feature and related service references, the connection can
be reconfigured. In addition, adjustments in a role-based connector are limited to some modifications;
changes of interaction partners do not influence each other. So that, the connector enhances the
flexibility of service coordination.

Through the case study of project FLAME2008, we conclude that the role-based service connector
model has advantages in adaptation of service connection. Besides that, the following work should be
done.
− To reduce side effects of adaptation, a run-time model of the connector should be offered to

monitoring status of service connection;
− The application of the model in Web service chaining, such as BPEL4WS, is to be considered in

further work.

Acknowledgements

When we wrote the paper, Dr. Agnes Voisard gave some good suggestions; Dipl.-Inf. Norbert
Weissenberg corrected the writings. And Dipl.-Inf. Rdiger Gartmann gave generous helps on paper
presentation. We are grateful to them for their helps.

References

1. I. Foster, C. Kesselman, J. Nick, S. Tuecke: Grid Services For Distributed System Integration. Computer. vol.

35, no.6 (2002) 37-46

2. I. Foster, C. Kesselman, S. Tuecke: The anatomy of the grid: Enabling scalable virtual organizations. The

International Journal of Supercomputer Applications. vol.15 no.3(2001) 200-222

3. F. Casati, S. Ilnicki, J. LiJie, S. Ming-Chien: An Open, Flexible, and Configurable System for E-Service

Composition. The Second International Workshop on Advanced Issues of E-Commerce and Web-Based

Information Systems, Milpitas, USA, June 2000

4. E. Kiciman, A. Fox: Using Dynamic Mediation to Integrate COTS Entities in a Ubiquitous Computing

Environment. The Second International Symposium on Handheld and Ubiquitous Computing, Bristol, UK,

September 2000

5. Emre Kiciman etc: Position Summary: Towards Zero-code Service Composition. The Eighth Workshop in

Hot Topics in Operating Systems, Oberbayern, Germany, May 2001

6. S. Krishnan1, P. Wagstrom1, G. Laszewski: GSFL: A Workflow Framework for Grid Services.

http://www-unix.globus.org/cog/projects/workflow/, July 2002

7. T. Andrews, F. Curbera etc.: Business Process Execution Language for Web Services Version 1.1.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, May 2003

8. F. Steimann: On the Representation of Roles in Object-Oriented and Conceptual Modeling. Data &

Knowledge Engineering. vol. 35, no.1(2000)83-106

9. B. Kristensen: Object-oriented Modeling with Roles. The 2nd International Conference on Object-Oriented

Information Systems, Dublin, Ireland, 1995

10. J. Goguen: A Categorical Manifesto. Mathematical Structures in Computer Science. vol. 1, no. 1(1991)49-67

11. Cervesato etc.: A Meta-notation for Protocol Analysis. The 12th IEEE Computer Security Foundations

Workshop, Mordano, Italy, June 1999

 12

12. Y. Han, Z. Zhao, G. Li etc.: CAFISE: An Approach to Enabling Adaptive Service Configuration of Service

Grid Applications. Journal of Computer Science and Technology. vol. 18, no.4(2003) 484-494

13. G. Li: Adaptive software architecture and Adaptive software architecture development. Ph.D. Dissertation,

Beijing University of Aeronautics and Astronautics. 2002

