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Abstract. The Semantic Web is a candidate for the next generation of the World
Wide Web. It is anticipated that the number of metadata written in RDF (Resource
Description Framework) and RDF Schema will increase as the Semantic Web be-
comes popular. In such a situation, demand for querying metadata described with
RDF and RDF Schema will also increase, and therefore effective query retrieval
of RDF data is important. To this end, we propose an indexing scheme for RDF
and RDF Schema. In our (proposed) scheme, we first extract four kinds of DAGs
(Directed Acyclic Graphs) from an RDF data, and extract all path expressions
from the DAGs. Then, we generate four kinds of suffix arrays based on the path
expressions. Using the indices, we can achieve efficient processing of query re-
trievals on RDF data including schematic information defined by RDF Schema
(for example, classes and/or properties).

1 Introduction

The Semantic Web [1, 2] has emerged as the next generation of the World Wide Web.
In the Semantic Web, human-to-machine and machine-to-machine interactions are ex-
pected to become more intelligent from the wealth of metadata associations between
resources on the Internet. The key difference between the current Web and the Semantic
Web is the quality and quantity of metadata. Currently available metadata are insuffi-
cient, in terms of quality and quantity, for the purposes of advanced processings. The
Semantic Web, on the other hand, makes it possible to perform high-level processes,
such as reasoning, deduction, and semantic searches, to make the best use of metadata
associated with web resources.

In the Semantic Web, RDF (Resource Description Framework) [3] and RDF Schema
[4] are commonly used to describe metadata. RDF is a framework to describe data
and their semantics, and is composed of the RDF model and RDF syntax. In the RDF
model, statements are used to describe relationships between pairs of terms. A state-
ment is called a triple, because a statement is comprised of three elements: a resource, a
property and a value. The value can be either literal or resource, and thus complex infor-
mation can be represented as a set of statements, such as a form of directed graphs. RDF
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syntax is a specification to serialize RDF statements as XML (Extensible Markup Lan-
guage) data. RDF Schema is the schema language for RDF used to specify schematic
information, such as definitions of resources, properties and classes.

In the near future, the quantity of metadata represented by RDF is expected to in-
crease significantly as the Semantic Web comes into wide use. We expect that RDF
databases will become important as an efficient means of access to massive meta-
data bases written in RDF and RDF Schema. One naive approach to constructing RDF
databases is to use XML databases to store and retrieve RDF data simply because any
RDF data can be represented in XML. However, this approach is not practical because
the structure of RDF data is different from the structure of XML data, and there are
many ways to serialize RDF data in XML form. Thus, queries to retrieve RDF data
cannot be implemented as queries of their XML representations.

Another way to implement RDF databases is to utilize relational databases. In this
approach, a piece of RDF data is decomposed and stored into relational tables. Several
methods have been proposed already [5]. RDFSuite [6] is an implementation of RQL
(RDF Query Language) [7], a query language for RDF. To store RDF data, RDFSuite
uses tailor-made relational schema specially designed for the RDF Schema that we
would like to explore. Jena [8] is an RDF database that implements RDQL (RDF Data
Query Language) [9] using MySQL. However, a few of the previously mentioned works
has investigated the performance of RDF databases.

We propose an indexing scheme for RDF and RDF Schema to achieve efficient
query retrieval. Specifically, we focus on path expressions extracted from RDF and
RDF Schema. Our first step is to extract four types of partial graphs from RDF and
RDF Schema, because RDF and RDF Schema data have four distinct relationships.
The graphs represent relationships among instances, classes and properties. Then, we
extract all possible path expressions from the graphs, and construct suffix arrays on
the path expressions. As a result, for a given query as partial path expression, we can
efficiently detect the result.

The basic concept underlying our proposal is similar to that of Yamamoto et al. [10].
The main difference is that this approach is used for XML data, whereas we propose
applying it to RDF and RDF Schema. Since XML data is a tree structure, enumeration
of all possible path expressions in XML is an easy task. However, path expression
cannot be as straightforward with RDF and RDF Schema, because they may contain
multiple paths and/or cycles. For this reason, we will limit our first targets to cases
where RDF and RDF Schema do not contain cycles.

However, even if we limit our target to DAGs, we should claim that our scheme can
be applicable to many applications due to the fact that a large majority of RDF data in
real applications is expressible as DAGs. For instance, WordNet [11], a famous on-line
lexical database written in RDF, does not contain cycles based on our investigation.
Following this step we will introduce a method to cope with cycles.

We have implemented our approach and evaluated its performance in a series of
experiments. We used four kinds of RDF documents with different sizes using Wordnet
[11], and stored each of the four RDF documents in RDFSuite. Eight queries were
executed against the RDF database to compare the processing time using our index and
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Fig. 1. An RDF data model statement.

those of non-index (or original indices of RDFSuite). Our index was more efficient than
the non-index, and our approach has shown scalability.

The rest of this paper starts with an outline of RDF and RDF Schema using exam-
ples in Section 2. In Section 3, we describe our approach for efficient RDF retrieval. In
particular, we defined a suffix array for DAG, explained about extracting the four DAGs
from the RDF data, and described path expressions for each DAG. In addition, we de-
scribe our experimental setup and evaluate the performance using our index in Section
4. In Section 5, we describe an idea to cope with cycles. We discuss related work in
Section 6, and conclude the paper in Section 7.

2 An Overview of RDF

RDF (Resource Description Framework) [3] is a foundation for representing and manip-
ulating metadata on Web resources. RDF enables us to implement various applications,
such as resource discovery, interoperation of metadata and description of machine-
understandable information.

In RDF specification, the data model and its syntax are defined. In addition, RDF
Schema [4] is used to describe schematic information of RDF data.

RDF can be used to describe the metadata of any resource in the Net as long as
its location is identifiable using a URI (Uniform Resource Identifier) [12]. In RDF,
“statements” are used to represent binary relationships between two distinct (or maybe
identical) resources. Complex information can be represented by a set of statements.
Thus, an RDF document is modeled as a directed graph (DG), where a resource corre-
sponds to a vertex and a relation corresponds to an arc. For example, let us take a look
at the statement “this paper is authored by Akiyoshi MATONO.” The statement consists
of three parts, namely, a subject (“This paper”), a predicate (“is authored by”) and an
object (“Akiyoshi MATONO”). For this reason, the statement is also called a triple. We
call the relation represented by a statement the “predicate relation” (Figure 1).

For the purpose of exchanging metadata written in RDF, RDF syntax, by which we
can serialize RDF data into XML data, is defined. Figure 2 shows an RDF document
corresponding to the above example.

RDF Schema is used to give semantic information to RDF data. Specifically, RDF
Schema makes it possible to specify the properties of a resource, data type of a property,
class memberships of properties, and class hierarchies.

Using RDF and RDF Schema, we can represent complex information (Figure 3).
Classes and properties defined by RDF Schema are shown in the upper part. For exam-
ple, the property “creates” takes an “Artist” and an “Artifact” as its domain and range,
respectively. “Sculptor” is a subclass of “Artist”, and so on. Resource descriptions can
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<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:s="http://www-db.aist-nara.ac.jp/˜akiyo-ma/test.rdfs#">

<rdf:Description about="www.matono.net/paper">

<s:authored>Akiyoshi MATONO</s:authored>

</rdf:Description>

</rdf:RDF>

Fig. 2. An RDF document.
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Fig. 3. A complex example using RDF and RDF Schema.

be found in the lower part. Resources, such as “r1” and “r2”, are defined as instances
of classes. Consequently, resource “r1”, for example, has three properties, “last”, “first”
and “paints”, which are inherited from the “Artist” class. Resources as character strings,
such as “Pablo” and “Picasso”, are instances of the Literal class in RDF Schema.

3 Efficient RDF Data Retrieval using Suffix Array for DAGs

3.1 Problem description

Basically, queries on RDF data can be expressed as combinations of some path expres-
sions based on graph structures of RDF data. For example, the query “find all resources
that are created by artists” can be constructed as follows: 1) find all artists, and 2) for
each artist, find all resources that are reachable by following “create” property. As we
can see, both steps, 1) and 2), can be processed on the basis of path expressions of RDF
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graphs. We can therefore say that efficient processing of path expressions is crucial to
achieve efficient RDF data retrieval.

In fact, this is similar to XML data retrieval, and many researchers are devoted to
efficient XML query processing based on path expressions [13, 10, 14]. Both XRel [13]
and XParent [14] propose a relational schema based on path expressions for efficient
storage and retrieval of XML data into a relational database. In Yamamoto et al. [10],
an indexing scheme based on path expressions is proposed. In this approach, all path
expressions are extracted from XML data first. Then, a suffix array is constructed on
the extracted path expressions where the occurrences of element (or attribute) names
are alphabets. As a consequence, we can efficiently find any (partial) path expression
using the full-text search functionality provided by the suffix array.

However, we cannot apply the above technique to RDF data, because of the dif-
ferences between RDF and XML data. The differences can be summarized as follows;
1) RDF data may contain cycles, whereas XML data does not. This comes from the
topology of RDF graphs, that is, an RDF data forms a directed graph and an XML data
forms a tree. Extracting all possible path expressions from an RDF data is not trivial,
consequently. 2) In RDF data, not only vertexes but also arcs have labels, whereas arcs
are not labeled in XML data. Thus, we need to take care in path expressions. 3) We need
to take schematic information provided by the RDF Schema, because we think that the
query which involves schematic information is general on the Semantic Web.

3.2 Proposed method

In this paper, we propose a novel indexing technique based on suffix arrays for effi-
cient retrieval of RDF data. The basic idea behind our approach is similar to that of
Yamamoto et al. [10]. In order to cope with the above problems, we made the following
modifications.

1. To cope with problem 1), we first limit out target to RDF data of DAGs (Directed
Acyclic Graphs), that is, we assume that RDF graphs do not contain cycles. Thus,
we can extract all possible path expressions from a DAG. Then, we construct suffix
arrays on the path expressions. To this end, we newly introduce a suffix array for
DAGs, which is an extension of suffix arrays for character strings. In fact, the pro-
posed scheme can be adapted to the cases of general directed graphs. The algorithm
will be shown later in Section 5.

2. To cope with problem 2), we define a path expression as an alternation of labels
of vertexes and labels of arcs. In addition, we introduce special symbols to make a
distinction among classes, properties and literals.

3. To cope with problem 3), we extract four kinds of subgraphs, namely, predicates
in schema, predicates in resource descriptions, class inheritance and property in-
heritance graphs, from an original RDF graph. Then, we construct four kinds of
suffix arrays for each subgraph. As a consequence, queries including schematic in-
formation can be processed by a collaboration of these suffix arrays. To answer
such queries that include both schema and instance (e.g. find the titles of Paintings
painted by the instances of Painter class), we first get the instances of the “Painter”
class using class inheritance graph. We then get the titles of “Paintings” painted
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by the instances of “Painters” using predicates in resource descriptions. Finally, we
merge the answers and obtain the final result. In this way, complicated queries can
be processed using our proposed indexing scheme.

3.3 Extracting DAGs from RDF data

Given an RDF data with RDF Schema, we extract four kinds of DAGs by taking vertex
types, arc types and their semantics into account.

Predicates in schema This graph is obtained by extracting classes and their properties
from the schema part of an RDF graph. This graph may contain cycles.

Predicates in resource descriptions This graph is obtained by extracting resources
and their properties from the resource description part of an RDF graph. This graph
may contain cycles.

Class inheritance This graph is obtained by extracting classes and “subClassOf” arcs
connected to the classes. Note that “subClassOf” arcs do not have labels, and this
graph does not contain cycles.

Property inheritance This graph is obtained by extracting properties and “subProper-
tyOf” arcs in the schema part of an RDF graph, and thus we let properties, which
are arcs in the original graph, be vertexes in this subgraph. Note that “subProper-
tyOf” arcs do not have labels, and this graph does not contain cycles.

These subgraphs, except for predicates in the resource descriptions graph, cannot
be obtained if RDF Schema is not provided. In those cases, we just use predicates in the
resource descriptions graph. Otherwise, we can make full use of schematic information
to query RDF data.

3.4 Path expressions

Figure 4 shows the syntax, represented in EBNF (Extended Backus-Naur Form), for
path expressions. In the figure, schemaPath, instancePath, classPath and propertyPath
correspond to path expressions extracted from predicates in schema, predicates in re-
source descriptions, class inheritance and property inheritance subgraphs, respectively.
In the path expressions, ‘>’ is used as a separator. Additionally, some special prefixes,
‘#’, ‘+’ and ‘$’, are used to distinguish classes, properties and resources. If these spe-
cial symbols are used in labels, we replace their occurrence with an entity reference of
XML for encapsulation. For example, the RDF data in Figure 1 can be represented as

#www.matono.net/paper > +authored > ”AkiyoshiMATONO”

based on the definition.
For a given DAG, we can extract all possible path expressions using the algorithm

shown in Figure 5. This algorithm starts with the vertexes whose in-degree are zero (0),
and search for traversable paths in a depth first manner.
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paths ::= schemaPath* | instancePath* |

classPath* | propertyPath*

schemaPath ::= (classVertex ’>’ propertyVertex ’>’)*

classVertex

instancePath ::= (resourceVertex ’>’ propertyVertex ’>’)*

literalVertex

classPath ::= (classVertex ’>’)* instanceVertex

propertyPath ::= (propertyVertex ’>’)* propertyVertex

classVertex ::= ’#’ typeName

propertyVertex ::= ’+’ propName

instanceVertex ::= resourceVertex | literalVertex

resourceVertex ::= ’$’ URI-reference

literalVertex ::= ’"’ literal ’"’

typeName ::= see [3]

propName ::= see [3]

literal ::= see [3]

URI-reference ::= see [3]

Fig. 4. Path expression syntax (EBNF).

3.5 Suffix array for DAGs

An ordinary suffix array is a data structure for full-text search on documents constructed
on one-dimensional character strings. Given a text data, all suffixes are extracted and
sorted in lexicographical order. Any substring can then be detected by performing a
binary search on the array of suffixes. In addition, because any suffix can be represented
by an integer (an indexing point), the array of suffixes can be implemented as an array
of integers whose size is equal to the length of the original document.

When applying a suffix array on path expressions, we need an extension that allows
a suffix array to accommodate multiple path expressions. For this reason, we use a pair
of integers as an indexing point; The first number is for representing an identifier of
a path expression, and the other is for representing an indexing point within the path
expression. It is defined as follows:

Definition 1 (Suffix array for DAGs) Let G be a directed acyclic graph (DAG), V(G)
be the set of vertexes in G, and E(G) be the set of arcs in G. Arc e = (u, v) in E(G)
is represented by a pair of vertexes u, v ∈ V(G), and u and v are called the “source”
and “destination,” respectively. In addition, let R ⊂ V(G) be a set of vertexes whose
in-degree is equal to zero (0), and L ⊂ V(G) be a set of vertexes whose out-degree is
equal to zero (0). We call R and L the “roots” and “leaves,” respectively.

Given a path on G from a root st,1 ∈ R to a leaf st,2kt−1 ∈ L, it can be represented as
pt = st,1.st,2. · · · .st,2kt−2.st,2kt−1, where:

– t is the identifier of the path,
– kt is the length of the path,
– st,2h−1 ∈ V(G) (1 ≤ h ≤ kt), and
– st,2h = (st,2h−1, st,2h+1) ∈ E(G) (1 ≤ h ≤ kt − 1) .
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var roots := a set of vertexes whose in-degree is 0
var stack : Stack
foreach start ( roots ) begin

createPath ( start )
end
function createPath ( start : vertex ) : Void
var end : vertex
var arcs : set of arcs
var triple : tuple of (vertex, arc, vertex)
begin

arcs := a set of arcs connected from start vertex
foreach arc ( arcs ) begin

end := a vertex connected from arc
triple := ( start, arc, end )
stack.push ( triple )
createPath ( end )
stack.pop()

end
Creating a path expression based on stack

end

Fig. 5. An algorithm for extracting path expressions from DAGs.

+ ,
-

. /
0

1
2 3

4

5 6

Fig. 6. A simple DAG.

A suffix of p j = s j,1.s j,2. · · · .s j,2k j−1 is defined as S j,i = s j,i.s j,i+1. · · · .s j,2k j−1(i = 1, 2, · · · , 2k j−

1), whose indexing point is a j,i = [ j, i].
The suffix array S (p j) of the path p j is then defined as an array of indexing points

that is sorted in lexicographical order.
The suffix array of a directed acyclic graph G is an array of indexing points, using

all paths from roots {u|u ∈ R} to leaves {v|v ∈ L}, that is sorted in lexicographical order,
and duplicated occurrences of the suffixes are eliminated. �

We will demonstrate how a suffix array is constructed on a DAG using a simple ex-
ample (Figure 6). From the DAG, we can extract two paths, namely, “A.a.B.b.C.d.E.f.F”
and “A.a.B.c.D.e.E.f.F.” Then, we assign indexing points to them (Figure 7), sort them
in lexicographical order, and eliminate duplicates of identical suffixes (Figure 8). As a
result, we obtain the suffix array of [1,1] [2,1] [1,3] [2,3] [1,5] [2,5] [1,7] [1,9] [1,2]
[2,2] [1,4] [2,4] [1,6] [2,6] [1,8].

When processing queries, we perform binary searches on the suffix array. For this
reason, O(log2(n + 1)) of computational complexity is required.
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1 2 3 4 5 6 7 8 9
1 A . a . B . b . C . d . E . f . F
2 A . a . B . c . D . e . E . f . F

Fig. 7. Suffixes of paths.

A.a.B.b.C.d.E.f.F : (1, 1)
a.B.b.C.d.E.f.F : (1, 2)
B.b.C.d.E.f.F : (1, 3)
b.C.d.E.f.F : (1, 4)
C.d.E.f.F : (1, 5)
d.E.f.F : (1, 6)
E.f.F : (1, 7)
f.F : (1, 8)
F : (1, 9)

A.a.B.c.D.e.E.f.F : (2, 1)
a.B.c.D.e.E.f.F : (2, 2)
B.c.D.e.E.f.F : (2, 3)
c.D.e.E.f.F : (2, 4)
D.e.E.f.F : (2, 5)
e.E.f.F : (2, 6)
E.f.F : (2, 7)
f.F : (2, 8)
F : (2, 9)

⇒

(1, 1) : A.a.B.b.C.d.E.f.F
(2, 1) : A.a.B.c.D.e.E.f.F
(1, 3) : B.b.C.d.E.f.F
(2, 3) : B.c.D.e.E.f.F
(1, 5) : C.d.E.f.F
(2, 5) : D.e.E.f.F
(1, 7) : E.f.F
(

(
(

((h
h

h
hh

(2, 7) : E.f.F
(1, 9) : F
�

�
��X

X
XX

(2, 9) : F
(1, 2) : a.B.b.C.d.E.f.F
(2, 2) : a.B.c.D.e.E.f.F
(1, 4) : b.C.d.E.f.F
(2, 4) : c.D.e.E.f.F
(1, 6) : d.E.f.F
(2, 6) : e.E.f.F
(1, 8) : f.F

�
�

�
��X

X
X

XX
(2, 8) : f.F

Fig. 8. Sorting and deletion of suffixes.

4 Performance Evaluation

This section evaluates the performance of the proposed scheme in a series of experi-
ments.

4.1 Experimental setup

Datasets We used RDF and RDF Schema documents of Wordnet [11] as the experi-
mental data. Wordnet is an online lexical reference system whose design is inspired by
current psycholinguistic theories of human lexical memory. English nouns, verbs, ad-
jectives and adverbs are organized into synonym sets, each representing one underlying
lexical concept.

As far as we have investigated, the RDF data of Wordnet does not contain any
cycles, and thus we can apply our scheme directly to the datasets. We created sub-
documents of them with different sizes 500 KB (Type A), 1 MB (Type B), 2 MB (Type
C) and 4 MB (Type D). Table 1 shows the details of the datasets.
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Table 1. Details of RDF documents of Wordnet

Type A B C D
Number of RDF Schema documents 1 1 1 1
Number of RDF documents 4 4 4 4
Total size of RDF Schema documents (KB) 4 4 4 4
Total size of RDF documents (KB) 513 999 2,073 3,982
Number of elements and attributes 15,089 29,542 62,565 119,368
Number of classes in RDF Schema documents 6 6 6 6
Number of properties in RDF Schema documents 5 5 5 5
Number of resources in RDF documents 1,555 3,100 6,571 12,380
Number of properties in RDF documents 5,647 10,851 22,773 42,878
Number of literals in RDF documents 4,553 8,645 18,107 33,473

Table 2. Performance evaluation queries

Queries for predicates in schema
#1 +glossaryEntry># Retrieval of classes for a given property
#2 #LexicalConcept>+ Retrieval of properties
#3 #LexicalConcept>+antonymOf>#LexicalConcept>+hyponymOf>#LexicalConcept>+

A long path expression
Queries for predicates in resource descriptions

#4 +hyponymOf># Retrieval of objects for a statement
#5 #&wn;400062583>+wordForm># Retrieval of statements
#6 #&wn;100033830>+similarTo>#&wn;100033153>+wordForm>#

A long path expression
Queries for class inheritance

#7 #Adjective>$ Retrieval of instances
#8 #Resource#LexicalConcept>#Adjective>#AdjectiveSatellite>$

A long path expression

Query sets The query expressions used in the experiments are shown in Table 2. In the
table, “ &wn;” is a character entity reference for representing the namespace of Word-
net. Using these queries, we intend to evaluate the following aspects: queries for pred-
icate relations in schematic information (#1-#3); queries for predicate relations among
instances (#4-#6); and queries for inheritance relations among classes (#7 and #8).

Methodology We used an RDF database, RDFSuite [6], as a basis for implement-
ing our (proposed) scheme. RDFSuite is implemented on top of PostgreSQL, an open
source relational database management system. Specifically, RDFSuite supports two
kinds of relational schemas, GenRepr and SpecRepr, for storing RDF data. GenRepr
has two relational tables; Resources is for storing resources and their identifiers, and
Triples is for storing triples extracted from statements. On the other hand, SpecRepr’s
relational schema is designed according to the RDF Schema of the RDF data being
stored. In our experiments, we used SpecRepr because it is more efficient than GenRepr
from the view point of performance.
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Table 3. The number of path expressions and arrays of index-points

Description A B C D
# paths (total) 9,709 19,480 43,008 90,058
# suffixes (total) 25,977 51,060 111,108 217,549
# paths (preds in schema) 10 10 10 10
# suffixes (preds in schema) 21 21 21 21
# paths (preds in resource descs) 8,144 16,370 36,427 77,668
# suffixes (preds in resource descs) 19,409 37,999 83,459 165,512
# paths (class inheritance) 1,555 3,100 6,571 12,380
# suffixes (class inheritance) 6,547 13,040 27,628 52,016
# paths (property inheritance) 5 5 5 5
# suffixes (property inheritance) 10 10 10 10

We compared the query processing time between RDFSuite and RDFSuite powered
by our indexing scheme as follows:

1. We store each dataset in RDFSuite based on SpecRepr schema. Then, we construct
suffix arrays on the relational tables of RDFSuite. Specifically, a table for storing all
path expressions extracted from Wordnet data, and four tables for storing indexing
points are created in the relational database.

2. We then measure the query processing time of the queries in Table 2 for the two
cases, pure RDFSuite and RDFSuite powered by suffix arrays.

We used a PC with an Athlon 1.1 GHz CPU and 768 MB memory running RedHat
Linux 8.0, and used Java 1.4.1 for the implementation.

4.2 Experimental results

Table 3 shows the statistical data of the generated suffix arrays. From the table, we can
observe that the number of path expressions and suffixes increase in proportion to the
sizes of the datasets for the cases of “predicates in resource descriptions” and “class
inheritance.” However, this is not the case for “predicates in schema” and “property in-
heritance,” because this information solely depends on RDF Schema, and RDF Schema
is fixed for the experiments in this paper.

Figure 9 shows ratios (N/I) of the processing time of RDFSuite (N) to our scheme
(I). That is, our approach is about four times faster than RDFSuite with respect to query
#2 for dataset A. It is clear that our scheme outperforms RDFSuite.

Table 4 shows the details of the processing times. Note that for the case of #1 – #3,
because the dataset is small, the absolute processing times are too short, and the results
may not be reliable compared to other results.

Our scheme can process #4 – #6 in almost the same time, whereas RDFSuite does
not. In particular, #4 is slower than others (#5 and #6). This is because #4 searches
objects for a given predicate, while #5 and #6 search objects for a given pair of subject
and predicate. For this reason, RDFSuite can make use of built-in indices to process the
queries.
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Table 4. Processing time

Type A B C D
Suffix array Yes No Yes No Yes No Yes No

#1 30.7 30.0 25.6 27.0 25.9 28.2 28.4 28.2
#2 27.6 109.0 26.0 97.3 26.0 96.0 28.0 92.0
#3 23.2 164.7 24.3 162.6 24.8 180.4 25.1 158.0
#4 99.5 396.5 130.6 707.3 205.9 1274.9 337.9 2325.8
#5 82.8 166.6 113.6 217.4 182.7 357.5 312.3 541.9
#6 84.7 182.1 108.0 231.6 178.0 385.9 300.7 646.4
#7 71.4 237.6 80.3 334.2 114.1 702.7 142.3 1238.7
#8 77.0 263.0 91.3 447.7 122.0 579.6 160.7 816.9

When processing queries for inheritance between class and instance (#7 and #8),
as the data size is large, the ratios of the processing time between our scheme and
RDFSuite are larger. In other words, our scheme achieved scalability.

5 Coping with Cycles

In this paper, we limited our targets within directed acyclic graphs. We think that we can
find many other RDF data without cycles, because even a large scale data like Wordnet
does not contain cycles. Consequently, our scheme can be used for many applications.
However, some RDF data with directed graph structures with cycles also exist. Thus,
it is important to be able to cope with cycles in order to widen the applications of our
scheme.

5.1 Path expressions extraction and index construction

When applying indices based on suffix arrays for querying graphs, we need to extract
all possible path expressions beforehand. However, the previous algorithm for extract-
ing path expressions cannot cope with graphs that include cycles, because it may not
terminate due to dissatisfaction of terminal conditions. For this reason, we made some
improvements on the algorithm so that it can extract all the vertexes and arcs thoroughly.

The algorithm in Figure 12 has two features as follows: 1) if a path expression
contains two (or more) identical vertexes, a loop-stamp(s) is put on their second (and
later) occurrence; and 2) we change our strategy to decide the starting positions of the
path expressions. Actually, we make a list of vertexes whose in-degrees are equal to
zero (0), followed by vertexes ordered by the differences between the out-degrees and
in-degrees in ascending order. Starting from these vertexes, we try to enumerate path
expressions until all the vertexes and arcs are included.

Let us take a look at such an example. Figure 10 illustrates a graph including a cycle,
and Figure 11 shows two path expressions extracted from the graph using the algorithm
in Figure 12. Note that ‘ˆ’ is the loop-stamp.

We then create suffixes with respect to those path expressions and sort them in
lexicographic order. Finally, we get the following suffix array: [2,1] [1,1] [2,3] [1,3]
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Fig. 10. Directed graph including a cycle

[2,5] [1,5] [2,7] [2,9] [1,7] [2,11] [2,2] [1,2] [2,4] [1,4] [2,6] [2,8] [2,10] [1,6], whose
length is 18.

5.2 Query processing

When processing queries based on path expressions against a graph with cycles, han-
dling unintended termination of the path expressions is crucial. That is, path expressions
listed in a suffix array are not powerful enough to express cycles because of the limi-
tation of their expressiveness. As a consequence, we may come to the end of such a
termination when we are matching a query key and a path expression in the index, and
may thus miss correct answers.

If a query #E>+e>#B>+b>#C>+c>#D is given, we cannot find the same occur-
rence in the suffix array, although it is a correct answer. When processing this query, we
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1 2 3 4 5 6 7 8 9 10 11
1 #A>+a>#B>+b>#C>+f>#F

2 #A>+a>#B>+b>#C>+c>#D>+d>#E>+e>#ˆB

Fig. 11. Path expressions and indexing points of the suffixes

start from the starting element (#E) and proceed as much as possible as usual. Then, we
get the indexing point [2,9] (#E>+e>#ˆB). This intermediate result partially patches
until #E>+e>#B. Eventually, we come to the loop-stamp. Then, we decompose the
query path expression here, let the following path expression (#B>+b>#C>+c>#D) be
a new query, and initiate it. As a result of the brand-new query, we get a suffix [2,3]
(#B>+b>#C>+c>#D>+d>#E>+e>#ˆB). Now, the initial query key is fulfilled, and we
get a result of the query.

We expect that we can achieve efficient retrieval for a directed graph with cycles
using the indexing scheme. However, we may have to improve the scheme, because the
number of path expressions and suffixes are increasing in the case of the target data that
contains many cycles.

6 Related Work

Indexing techniques for structured documents are classified into a position-based index
and path-based index according to Sacks-Davis et al.w [15].

The indices proposed by Kanemoto et al. [16] and Shin et al. [17] are position-
based indices. Kanemotno et al. [16] proposed an approach in which four indices are
combined to achieve efficient document retrieval. The indices were a content index for
maintaining positions of elements and contents, local structure index for maintaining
the tree structure of document instances, global structure index for maintaining the
tree structure of document schema, and structure meta index for maintaining the meta
information of the other indices. Although this approach was efficient, the performance
did not scale with respect to data size, because four kinds of indices must be joind. In
the study by Shin et al. [17], an indexing scheme called BUS (Bottom Up Scheme) was
proposed. In this approach, document features were maintained in a bottom-up manner.

Path-based indices were proposed by Yamamoto et al. [10], Kaushik et al. [18] and
Cooper et al. [19]. The study by Yamamoto et al. [10] is a basis of our proposal. In this
paper, given an XML document, all possible path expressions were extracted, and suffix
arrays were constructed on path expressions and reverse path expressions, and hence
efficient processing of path expressions (and reverse path expressions) was achieved. In
the study by Kaushik et al. [18], they created compact models from document trees by
grouping similar vertexes into one vertex. Query processing was performed using path
expressions on the compact models. That is, they achieved space efficient indexing by
giving up accuracy. An indexing scheme called Index Fabric, as an extension of Patricia
trie [20], was proposed by Cooper et al. [19]. Patricia trie was an efficient and compact
indexing scheme that could deal with large-size text. Index Fabric is an extension of
Patricia trie, and is a height-balanced indexing structure for semi-structured data,
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In addition, combinations of position- and path-based indices were proposed by
Sacks-Davis et al. [15] and McHugh et al. [21]. In Sacks-Davis et al.’s study [15], a
position-based index was constructed as inverted lists consisting of all words and ele-
ments, and a path-based index represented the list of element names and their positions
for each path. In McHugh et al.’s study [21], four indices were proposed, namely, the
Value Index, Text Index, Link Index and Path Index. Value Index has pairs of values and
element names. Text Index is implemented as an inverted list of text. Link Index main-
tains information on a list of children for each element. Finally, Path Index has path
information for all elements.

Path-based indices were also used in object databases [22–24]. Similar to our ap-
proach, these approaches maintain the relationships of class hierarchies and/or object
composition hierarchies. The key difference between our scheme and their approaches
is that we treat path expressions as character strings, whereas the others do not.

Christophides et al. [25] have proposed a labeling scheme for efficient retrieval of
RDF Schema. The study relevant to our research. They applied previously proposed
labeling schemes for tree structures to RDF schema. Concretely, there approach em-
ployed the study by Agrawal et al. [26], in which an optimal spanning tree is generated
from a DAG based on the number of ancestors per node, so that it can handle DAGs.
The labeling schemes investigated in [25] are classified into bit vector, prefix and in-
terval scheme. Bit vector [27] is a labeling scheme in that a node is represented by a
n bits vector. Prefix scheme directly encodes the label of a node in an XML tree, in
that the prefix is inherited by the parent’s label followed by the order of the node in its
siblings. Dewey scheme [28] is one of prefix scheme. Interval scheme [29, 26, 30] en-
codes the interval label ( start, end ) such that it is contained in its parent’s interval label.
Christophides et al. [25] limited the target data as RDF Schema for efficient retrieval.
Making a comparison between their scheme and ours is an interesting topic. We plan to
do it in the near future.

7 Conclusions

In this paper, we proposed an indexing scheme to enable RDF and RDF Schema to
achieve efficient query retrievals on path expressions. To this end, we first proposed four
types of partial graphs that can be obtained from RDF and RDF Schema. In addition, we
proposed suffix arrays on DAGs. By applying this scheme to path expressions extracted
from the above graphs, we achieve efficient RDF query processing. Because most of
the RDF and RDF Schema in real applications are expected to be modeled as DAGs,
we can make use of our proposed scheme. We conducted a performance study and the
results showed that our approach outperformed an existing RDF database, RDFSuite.

In the future, we will try to deal with RDF data that include cycles and investigate
query optimization techniques for RDF queries. Since our indexing scheme needs to
precompute all paths as statical indexing data, we must consider an update of RDF data
and schema.
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var stack : stack /* for storing triple */
var roots1 : list of vertexes /* whose in-degree = 0 */
var roots2 : list of vertexes /* sorted by values of (in-degree − out-degree)

into descending order − roots1 */
var roots := append ( roots1, root2 )
foreach start ( roots ) begin

createPath ( start )
end
function searchGraph ( start : vertex ) : Void
var end : vertex
var arcs : set of arcs
var triple : tuple of ( vertex, arc, vertex )
begin

roots.remove ( start )
arcs := a set of arcs connected from start
foreach arc ( arcs ) begin

end := a vertex connected from arc
roots.remove ( end )
triple := ( start, arc, end )
/* a path expression does not include same statements. */
if ( stack = nil or triple < stack.items ) then

stack.push ( triple )
searchGraph ( end )
stack.pop ()

end
end
var path : path expression
var loop stamp : loop-stamp /* for representing a path expression containing cycles */
path := concat ( path, stack[0].start )
for (var i := 0; i < stack.length; i := i + 1) then

var vertex := stack[i].end
/* When a path expression has same vertexes */
if ( vertex ∈ path.items ) then

vertex := vertex + loop stamp
end
path := concat( path, stack[i].arc, vertex )

end
end

Fig. 12. An algorithm of creating path expressions for DG


