
Event-Condition-Action Rule Languages for the

Semantic Web

George Papamarkos, Alexandra Poulovassilis, Peter T. Wood

School of Computer Science and Information Systems, Birkbeck College, University
of London, London WC1E 7HX

email: {gpapa05,ap,ptw}@dcs.bbk.ac.uk

Abstract. The Semantic Web is based on XML and RDF as its funda-
mental standards for exchanging and storing information on the World
Wide Web. Event-condition-action (ECA) rules are a natural candidate
for supporting reactive functionality on XML or RDF repositories. In
this paper we describe a language for ECA rules on XML and a proto-
type implementation of this language. We also discuss some preliminary
ideas regarding a language for ECA rules operating on a graph/triple
representation of RDF, and we describe the architecture of a distributed
deployment of such RDF ECA rules.

1 Introduction

XML and RDF are becoming dominant standards for storing and exchanging
information on the World Wide Web. With their increasing use in dynamic ap-
plications such as e-commerce and e-learning [9, 10, 14, 15, 1, 19, 16, 22], there is
a need for the support of reactive functionality on XML and RDF repositories.
Event-condition-action (ECA) rules are a natural candidate for this. ECA rules
automatically perform actions in response to events provided that stated condi-
tions hold. They allow an application’s reactive functionality to be defined and
managed within a single rule base rather than being encoded in diverse pro-
grams, thus enhancing the modularity and maintainability of the application.
Also, ECA rules have a high-level, declarative syntax and so are amenable to
analysis and optimisation techniques which could not be applied if the same
functionality were expressed directly in programming language code.
ECA rules have been used in many settings, including active databases [25,

20], personalisation and publish/subscribe technology [4, 9, 10, 12, 21], and spec-
ifying and implementing business processes [3, 11, 15]. An ECA rule has the
general syntax

on event if condition do actions

The event part specifies when the rule should be triggered, the condition
part is a query which determines if the database is in particular state, and the
action part states the actions to be performed automatically if the condition
holds. Executing a rule’s actions may in turn trigger further ECA rules, and

the rule execution proceeds until no more rules are triggered. Non-termination
of rule execution is generally a possibility and thus much research has focussed
on the development of static rule analysis techniques for detecting possibly non-
terminating rule sets; a practical solution to this problem adopted by commercial
DBMS is to set a predefined upper limit on the number of recursive rule firings,
and to abort a transaction if this is exceeded. More details on the foundations
of ECA rules in active databases, and descriptions of a range of implemented
active database prototypes can be found in [25, 20].
We begin this paper with a brief review of related work on ECA rules for

XML. We then describe our language for specifying ECA rules on XML reposi-
tories, and present a prototype implementation of it. This language can be used
for RDF data which has been serialised as XML but we are also exploring ECA
rule languages for RDF that will operate on a graph/triple representation. We
present an archetypal such language and also an architecture for distributed
deployment of such RDF ECA rules. Along the way, we discuss directions of
further work for both languages.
The work reported here is part of the ongoing SeLeNe project, which is

investigating techniques for managing RDF repositories of educational metadata,
and providing syndication, personalisation and notification services over this
metadata (see http://www.dcs.bbk.ac.uk/selene).

2 ECA Rules for XML

In recent work [7, 6], we specified a language for defining ECA rules on XML
data, based on the XPath and XQuery standards. We also developed techniques
for analysing the triggering and activation relationships between such rules1 and
showed how these techniques can be used to detect possibly non-terminating
sets of ECA rules. A number of other ECA rule languages for XML have also
been proposed, although none of this other work has focussed on analysing the
behaviour of the ECA rules.
Reference [9] discusses extending XML repositories with ECA rules in order

to support e-services. Active extensions to the XSLT [27] and Lorel [2] languages
are proposed which handle insertion, deletion, and update events on XML doc-
uments. Reference [10] discusses a more specific application of the approach to
push technology where rule actions are methods that cannot update the reposi-
tory, and hence cannot trigger other rules.
Reference [8] also defines an ECA rule language for XML. The rule syntax

is similar to ours, but the rule execution model is different. In our case we treat
insertions or deletions of XML fragments as “atomic” updates and ECA rule
execution is invoked only after the completion of such an update, whereas in [8]
such updates are broken up into a sequence of finer granularity requests each

1 A rule ri may trigger a rule rj if execution of the action of ri may generate an event
which triggers rj . A rule ri may activate another rule rj if rj ’s condition may be
changed from False to True after the execution of ri’s action. A rule ri may activate
itself if its condition may be True after the execution of its action.

of which may invoke the ECA rule execution. In general, these semantics may
produce different results for the same initial update.
ARML [13] provides an XML-based rule description for rule sharing among

different heterogeneous ECA rule processing systems. In contrast to our lan-
guage, conditions and actions are defined abstractly as XML-RPC methods
which are later matched with system-specific methods.
GRML [24] is a multi-purpose rule markup language for defining integrity,

derivation and ECA rules. GRML uses an abstract syntax based on RuleML,
leaving the mapping to a real language for each underlying system implemen-
tation. GRML aims to provide semantics for defining access over distributed,
heterogeneous data sources for rule evaluation and allows the user to declare
most of the semantics necessary for processing a rule, and to evaluate events
and conditions coming from heterogeneous data sources.
Finally, [23] proposes extensions to the XQuery language [28] to incorporate

update operations. These are more expressive than the actions supported by
our ECA rule language since they also include renaming and replacement oper-
ations, and specification of updates at multiple levels of documents. Triggers are
discussed in [23] as an implementation mechanism for deletion operations on the
underlying relational store of the XML. However, provision of ECA rules at the
“logical” XML level is not considered.

2.1 Our XML ECA Rule Language

An XML repository consists of a set of XML documents. In our XML ECA rule
language, we use XPath [26] and XQuery [28] to specify the event, condition
and actions parts of rules. XPath is used for selecting and matching fragments
of XML documents within the event and condition parts while XQuery is used
within insertion actions, where there is a need to be able to construct new XML
fragments.
The event part of an XML ECA rule is an expression of one of the following

two forms:
INSERT e

DELETE e

where e is an XPath expression which evaluates to a set of nodes. The rule is
triggered if this set of nodes includes any node in a new XML fragment, in the
case of an insertion, or in a deleted fragment, in the case of a deletion.
The system-defined variable $delta is available for use within the condition

and actions parts of the rule, and its set of instantiations is the set of new or
deleted nodes returned by e.
The condition part of a rule is either the constant TRUE, or one or more XPath

expressions connected by the boolean connectives and, or, not. The rule fires if
it is triggered and its condition evaluates to true.
The actions part of a rule is a sequence of one or more actions:

action1; . . . ; actionn

where each actioni is an expression of one of the following three forms:
INSERT r BELOW e BEFORE q

INSERT r BELOW e AFTER q

DELETE e

Here, r is an XQuery expression, e is an XPath expression and q is either the
constant TRUE or an XPath qualifier.
In an INSERT action, the expression e specifies the set of nodes, N , imme-

diately below which new XML fragment(s) will be inserted. These fragments
are specified by the expression r. If e or r references the $delta variable, then
one XML fragment is constructed for each instantiation of $delta for which the
rule’s condition evaluates to True. If neither e nor r references $delta, then a
single fragment is constructed. The expression q is an XPath qualifier which is
evaluated on each child of each node n ∈ N . For insertions of the form AFTER q,
the new fragment(s) are inserted after the last sibling for which q is True, while
for insertions of the form BEFORE q, the new fragment(s) are inserted before the
first sibling for which q is True. The order in which new fragments are inserted
is non-deterministic.
In a DELETE action, the expression e specifies the set of nodes which will

be deleted (together with their descendant nodes). Again, e may reference the
$delta variable.

Example 1. Consider an XML repository containing metadata about learning
objects (LOs) available on the web, as well as personal metadata about users of
these LOs. The XML document los.xml contains information about the LOs,
and we show below some of the information held for a particular book, “Data
On the Web”. Under annotations, a new review is appended every time a user
submits a review of the book.

<LOs>

..

<LO type="book" title="Data On the Web">

<subject>Computer Science</subject>

<creator>S. Abiteboul</creator>

<creator>P. Buneman</creator>

<creator>D. Suciu</creator>

<description>From Relations to Semistructured data and XML

</description>

<publisher>Morgan Kaufmann</publisher>

<isbn>1-55860-621-Y</isbn>

<annotations>

<review>

<reviewer>Teacher Education Review Panel</reviewer>

<date>2002-10-20</date>

<rating>9</rating>

<description>

This book gives a comprehensive, state-of-the art

discussion of data models, query languages and ...

</description>

</review>

<review>

<reviewer>John Smith</reviewer>

<date>2002-12-20</date>

<rating>10</rating>

<description>

I found this a great book to learn about querying

semi-structured data, which I didn’t know much about.

</description>

</review>

</annotations>

</LO>

...

</LOs>

The XML document users.xml contains information about users, and we show
below some of the information held for a particular user “Johnny Mnemonic”.
Users can subscribe to be notified of the latest review submitted for books in
subjects that they are interested in, and this information is used to automatically
update their personal metadata:

<users>

...

<user id="217">

<name>Johnny Mnemonic</name>

<profession>student</profession>

<subjects>

<subject>Computer Science</subject>

<subject>Mathematics</subject>

<subject>Economics</subject>

</subjects>

<LOs>

<LO type="book" title="Data On the Web">

<isbn>1-55860-621-Y</isbn>

<latest-review>

<reviewer>John Smith</reviewer>

<date>2002-12-20</date>

<rating>10</rating>

<description>

I found this a great book to learn about querying

semi-structured data, which I didn’t know much about.

</description>

</latest-review>

</LO>

...

</LOs>

</user> ...

</users>

Johnny Mnemonic is interested in “Computer Science” and the following rule
replaces the current latest review (if there is one) of any Computer Science book
in his personal metadata by a new review of that book:

ON INSERT document(’los.xml’)/LOs/LO/annotations/review

IF $delta/../../subject[.=’Computer Science’]

DO DELETE document(’users.xml’)/users/user[@id="217"]/LOs/LO

[isbn=$delta/../../isbn]/latest-review;

INSERT <latest-review>{$delta/*}</latest-review>

BELOW document(’users.xml’)/users/user[@id="217"]/LOs/

LO[isbn=$delta/../../isbn]

AFTER isbn

Here, the system-defined $delta variable is bound to a newly inserted review

node detected by the event part of the rule. The rule’s condition checks that
the subject of the book in question is Computer Science. The rule’s action then
deletes the existing latest review for this book within Johnny Mnemonic’s meta-
data (if there is one) and inserts the new review.
Suppose now that the following update occurs, appending a new review for

the “Data On the Web” book:

INSERT <review>

<reviewer>Neo Anderson</reviewer>

<date>2003-04-29</date>

<rating>9</rating>

<description>

Very clearly written and very well-organised.

Describes in detail all the ...

</description>

</review>

BELOW document(’los.xml’)/LOs/

LO[isbn="1-55860-621-Y"]/annotations

AFTER TRUE

This update triggers the rule above, causing the replacement within Johnny
Mnemonic’s personal metadata of the previous review submitted by John Smith
by the new review submitted by Neo Anderson.
As another example rule, the following rule removes the current latest review

(if there is one) of a Computer Science book in Johnny Mnemonic’s personal
metadata if this review is removed from the list of reviews for this book (this
rule assumes that each reviewer reviews a book only once):

ON DELETE document(’los.xml’)/LOs/LO/annotations/review

IF $delta/../../subject[.=’Computer Science’]

DO DELETE document(’users.xml’)/users/user[@id="217"]/LOs/

LO[isbn=$delta/../../isbn]/

latest-review[reviewer=$delta/reviewer]

We refer the reader to [7, 6] for a more detailed discussion of the syntax and
semantics of our XML ECA rule language. Here, we next describe a prototype
implementation.

2.2 A Prototype Implementation

Due to the current immaturity of existing XML repository products in support-
ing a sufficiently expressive update language, for this first prototype implemen-
tation we have used flat files and have exploited the functionality provided by
the W3C DOM standard [29] for interacting with them. The architecture of our
system is illustrated in Figure 1.

PARSER for ECA
Language

EXECUTION ENGINE

Rule Base

R
u

le
 B

a
s

e

In
te

r
fa

c
e

Action Scheduler Condition Evaluator Event Dispatcher

WRAPPER

 Query & Update
 Manager

XML Documents

User Interface

Schedule Manager
Execution Schedule

XML translated rules

Prefix actions to
schedule

Send condition for eval’n
Receive Results

Send event query for eval’n
Receive changes set

Pop an action from the
head of the schedule

Rule Input

Connection
Driver

Establish connection.
Send updates and queries.

Receive Results.

Send action for
execution

Read from Rule Base

Registration
Unit

Fig. 1. ECA Engine Architecture

The Parser parses and checks the syntactic validity of a new rule. For con-
struction of the parser, we have used the JavaCC lexer-parser generator. Valid
rules are translated into an XML form and are added by the Registration Unit

to the Rule Base (which is an XML file). Details about each rule are stored here,
including its name, priority, and event, condition and action parts.

The Execution Engine encapsulates the rule processing functionality. In par-
ticular, the Event Dispatcher, Condition Evaluator and Action Scheduler imple-
ment these aspects of the rule processing, as we describe in more detail below.
All of these components interface with the Wrapper in order to send and receive
data to and from the underlying XML files.

The Execution Schedule contains a sequence of updates — these have the
same syntax as rule actions except that they do not contain any $delta expres-
sions within them. By “$delta expression” we mean an XPath expression (either
stand-alone or possibly nested within another XPath expression) that starts
with $delta. These portions of a rule’s action part are replaced by the result of
evaluating the expressions on the current document — see below.

The Wrapper interfaces with the XML files on disk. All update and query
requests from the upper levels of the system pass through this component, which
coordinates them. It undertakes to open files, submit queries and updates, and
receive back results from them. The Wrapper performs these services by using
the functionality of the Apache Xalan API. All queries are performed directly
by using XPath. For deletions, we identify the set of nodes that will be deleted
by using the XPath expression within the DELETE part of the request, and we
then remove all the subdocuments rooted at the nodes identified. For insertions,
we identify the set of nodes that will be affected by using the XPath expression
within the BELOW part of the request, and we then add the fragment specified
within the INSERT part as a new child of each of the nodes identified, placing it
relative to the existing children according to the AFTER or BEFORE qualifier.

Rule execution begins with a request from the Schedule Manager to the Query
& Update Manager to execute the update currently at the head of the schedule.
In case of an insertion, the Query & Update Manager executes the update and
annotates the newly inserted nodes, while in the case of a deletion it annotates
the nodes to be deleted without executing the deletion yet2.

Following the execution of the update, control then passes to the Event Dis-
patcher. This requests the Query & Update Manager to evaluate the XPath
query of the event part of each rule that may be triggered by the update that
was just executed. For each rule whose query result set contains annotated nodes
(either newly inserted or about-to-be deleted), the Event Dispatcher creates a
changes set containing these annotated nodes, and the rule is triggered.

The Condition Evaluator then requests the Query & Update Manager to
evaluate the condition part of each triggered rule on the affected document,
using as the evaluation context either the root node if there are no occurrences
of $delta within a query, or each instance of the changes set otherwise. The
rule’s delta set is thus created, consisting of those members of its changes set
for which the condition evaluates to true. If the delta set is non-empty, the rule
fires and control is passed to the Action Scheduler to further process the rule.
Otherwise, processing of this rule ends.

2 The annotation of nodes is performed using non-DOM methods provided by Apache
Xerces API that allow us to attach data to XML nodes without affecting the physical
representation of the file.

The Action Scheduler reformulates a given rule’s action(s) in order to elimi-
nate any instances of $delta expressions within them. The reformulation algo-
rithm performs the following steps for each node within the rule’s delta set:

– Replaces the $delta variable in each of the $delta expressions by the current
node of the delta set.

– Evaluates each of the modified $delta expressions with respect to the updated
document.

– Replaces each $delta expression within the rule’s action(s) by the corre-
sponding result of the previous step.

The outcome of this reformulation is that one instance of the rule’s action(s) is
created for each node in the rule’s delta set. These updates are now prefixed,
in an arbitrary order, to the front of the schedule — this is known as Immediate
scheduling, although other alternatives are also possible (see [20]). If multiple
rules have fired as a result of the last update executed, then the updates that
result from their actions are prefixed the schedule in order of the rules’ specified
priorities. Control then passes once more to the Schedule Manager and the cycle
repeats. If the last update executed by the Query & Update Manager was a
DELETE, then before control passes back to the Schedule Manager, the actual
deletion of the annotated nodes is first performed.

2.3 Future Work

There is as yet no accepted standard update language for XML. If ECA rules
are to be supported on XML repositories, then whatever standard eventually
emerges, there is also the parallel issue of designing the event language to match
up with this update language. Here we have seen how this was done in the
context of our particular update language for XML. Elsewhere [6] it is shown
how triggering and activation relationships can be detected for our particular
XML ECA rules. In general, the ability to analyse and optimise ECA rules
needs to be balanced against their complexity and expressiveness, and this issue
also needs to be borne in mind in future developments in ECA rule languages
for XML, and indeed for RDF.
It would be straightforward to extend our language to also support REPLACE

events and actions, where the former would have the syntax
REPLACE e

and the latter the syntax
REPLACE e BY r

meaning that the set of nodes identified by e (and their subdocuments, if any)
should be replaced by r. For example, the pair of actions in the first rule in
Example 1 could be replaced by the single action

REPLACE document(’users.xml’)/users/user[@id="217"]/LOs/LO

[isbn=$delta/../../isbn]/latest-review

BY <latest-review>{$delta/*}</latest-review>

In general, our INSERT actions may result in non-determinism in the order
in which a set of new fragments are inserted under a common parent, since
the BEFORE and AFTER constructs only specify the ordering of new fragments
with respect to the existing document content. It is an area of further work to
extend our XML ECA language to capture ordering relationships between new
fragments being inserted into a document.
At present we assume Immediate scheduling of rules that have fired, though it

would be straightforward to also allow rules with other scheduling modes. How-
ever, the practical applicability and performance implications of these extensions
is an area that requires further investigation.
Another important area is combining ECA rules with transactions and con-

sistency maintenance in XML repositories.

3 ECA rules for RDF

The above language can be used for RDF which has been serialised as XML.
However, we are also exploring ECA rule languages for RDF that will operate
directly on a graph/triple representation. In our archetypal RDF ECA rule lan-
guage, the event part of a rule is an expression of one of the following two forms:

INSERT e

DELETE e

where e is a path expression which again evaluates to a set of nodes.
The rule is triggered if this set includes any new node, in the case of an

insertion, or any deleted node, in the case of a deletion. The system-defined
variable $delta is again available for use within the condition and actions parts
of the rule, and its set of instantiations is the set of new or deleted nodes returned
by e.
The condition part of a rule is a query which may reference the $delta

variable. Analogously to our XML ECA rule language, condition queries consist
of conjunctions, disjunctions and negations of path expressions.
The actions part of a rule is a sequence of one or more actions, where each

action is of one of the following two forms:
[let− expressions IN] INSERT triples

[let− expressions IN] DELETE triples

Here, let−expressions is an optional set of local variable definitions of the form
let variable = e, where e is a path expression, and triples is a set of triples of
the form (subject, predicate, object).

Example 2. Consider the two RDF graphs illustrated in Figures 2 and 3. Based
on the application described in Example 1, the first shows the metadata relating
to the “Data on the Web” book, while the second shows the personal metadata
relating to user 128.
Suppose that user 128 wants to keep his set of reviews of Computer Science

books up-to-date. If a new review of a Computer Science book is inserted, then
the following ECA rule adds a new arc linking the new review into user 128’s
personal metadata:

http://www.dcs.bbk.ac.uk/LOs/BK187

Book

dc:type

Data On the
Web

dc:title
Computer
Science

dc:subject

rdf:Bag

http://www-rocq.inria.fr/
abiteboul/

http://www.cs.washington.edu/
homes/suciu/

http://www.cis.upenn.edu/
~peter/PeterHOME.html

rdf:type

rdf:_1

rdf:_2

rdf:_3

dc:creator

From Relations to
Semistructured Data

dc:description

bbk:annotation rdf:Seq

http://www.dcs.bbk.ac.uk/
books/AN1289

http://www.dcs.bbk.ac.uk/
books/AN1297

rdf:type

rdf:_1

rdf:_2

N.
Anderson

2001-12-01

Fantastic
book ...

bbk:reviewer

dc:date

bbk:details

J. Smith

2002-10-02

...

bbk:reviewer

dc:date

bbk:details

Reviewdc:type

Review
dc:type

Fig. 2. Learning Object Metadata

http://www.dcs.bbk.ac.uk/users/
128

T.S. Eliot

rdf:Bag

rdf:Seq

http://www.dcs.bbk.ac.uk/
books/AN1289

http://www.dcs.bbk.ac.uk/
books/AN1297

vCard:FN

bbk:interest

bbk:review

rdf:type

rdf:_1

rdf:_2

rdf:type

rdf:_1

rdf:_2

Computer Science

Economics

Fig. 3. User Metadata

ON INSERT resource()[child(dc:type)=’Book’]/child(bbk:annotation)/

element()[child(dc:type)=’Review’]

IF $delta/parent()/parent()[child(dc:subject) = ’Computer Science’]

DO LET $reviews = resource(‘‘http://www.dcs.bbk.ac.uk/users/128’’)

/child(bbk:review) IN

INSERT ($reviews,seq++,$delta)

Here, the event part of the rule checks whether a new review has been added for
a book (expressed in the syntax of RDFPath [17]). The condition part checks if
the new review is for a Computer Science book. If so, the action part inserts the
new arc between user 128’s reviews collection and the new review (we use the
syntax seq++ to indicate an increment in the collection’s element count).
As another example, if user 128 removes one of his interests, then the fol-

lowing rule removes from his personal metadata all arcs to reviews of learning
objects on that subject:

ON DELETE resource(‘‘http:://www.dcs.bbk.ac.uk/users/128’’)

/child(bbk:interest)/element()

IF TRUE

DO LET $reviews = resource(‘‘http://www.dcs.bbk.ac.uk/users/128’’)

/child(bbk:review);

$review = $reviews/element()[parent()/parent(bbk:annotation)

[child(dc:subject) = $delta]] IN

DELETE ($reviews,seq?,$review)

Here, the event part checks if an interest of user 128 has been deleted. The
condition part always holds. The LET part of the rule’s action defines $reviews
to be user 128’s reviews collection and defines $review to be those reviews which
relate to learning objects whose subject is the same as the deleted interest.
Finally, the DELETE part will generate one triple to be deleted for each pair of
distinct values of $reviews and $review (we use the syntax seq? to match any
order of the review being deleted within the collection).

3.1 Future Work

There is as yet no standard query/update language for RDF and hence our RDF
ECA language is even more prototypical than our XML ECA language. Some of
the observations we made in Section 2.3 regarding the XML ECA language also
apply here, namely the need to match up the event sub-language with the update
sub-language, the need to balance expressiveness of ECA rules against the ability
to analyze and optimize them, the possibility of a variety of scheduling modes
beyond Immediate rule scheduling, and combining ECA rules with transactions
and consistency maintenance in RDF repositories.
For the immediate future, we plan to:

– define formally the event, condition and action sub-languages of our RDF
ECA rules;

– define the API requirements for the support of such rules over SeLeNe’s RDF
repository (likely to be FORTH’s RDFSuite [5]);

– implement and experiment with the language, using as a testbed SeLeNe’s
educational metadata.

4 ECA Rules in a Distributed Environment

Beyond the centralized version of our system, we plan to develop a distributed
version supporting ECA rules on distributed RDF repositories, as part of the
ongoing SeLeNe project (http://www.dcs.bbk.ac.uk/selene). This project is
investigating the technical requirements, and possible technical solutions, for ‘self
e-learning networks’, where a self e-learning network is a distributed repository
of metadata relating to learning objects (LOs) accessed by users wishing to
publish or use such LOs. A self e-learning network (SeLeNe) will have a peer-
to-peer topology, with facilities for peers to join or leave the network. Each peer
will manage a fragment of the overall distributed metadata. This metadata will
be expressed in RDF, and will contain information about learning objects and
about the users of the SeLeNe (see [16]). Support of such networks will require:

– techniques for reconciliation and integration of heterogeneous metadata;
– definition of personalised views over this distributed metadata resource;
– detection, notification and propagation of changes to the metadata descrip-
tions.

These requirements have a good fit with the functionality that could po-
tentially be provided by ECA rules, and the architecture that we envisage is
illustrated in Figure 4. Each ‘peer’ shown in that diagram is actually a ‘super-
peer’ (SP) which may be coordinating a group of further peers (not shown in
the figure).
At each SP there is installed one local ECA Engine, which has the same

features and components as the centralized architecture discussed in Section 2.2
above and illustrated in Figure 1. One possibility is that each local ECA Engine
will operate as a Web Service and that the communication between them can
be via XML messages (e.g. SOAP).

Local ECA Engine

LO Metadata
User Metadata

Peer 1

Event
Detector

Rule Base 1

Peer 2

Local ECA Engine

Event
Detector

Condition
Evaluator

Action
SchedulerRule Base 2

LO MetadataUser Metadata

LO Metadata

User Metadata

Peer 3

Local ECA Engine

Event
Detector

Condition
Evaluator

Action
SchedulerRule Base 3

Execution Schedule

Condition
Evaluator

Action
Scheduler

Execution Schedule Execution Schedule

Fig. 4. Distributed System Architecture

Whenever a new ECA rule r is registered at a peer P, it will be sent to P’s SP
for storage. As we will see below, from there r will also be sent to all other SPs,
and a replica of it will be stored at those SPs that are relevant to r i.e. where
an event may occur that may trigger r’s event part, or which may participate in
evaluating r’s condition part, or where r’s actions may have to be scheduled for
execution. At present, we assume that individual events and actions will occur
at a single peer (which is likely to be the case in SeLeNe) although condition
evaluation may be distributed.

Indexing at Peers and Super-Peers In order to determine whether an SP
is relevant for a rule, an index can be kept at each peer and super-peer. There
are a number of possibilities for doing this and we indicate here one solution:

As the RDF descriptions stored at each peer change over time, so each peer
maintains an annotated copy of its local RDF Schema, which shows for each
node in the schema whether or not there is RDF data of this type at this peer
(a ’0’ or ’1’ bit).

This information is also propagated to the peer’s coordinating SP. This SP
maintains a combined RDF Schema which is annotated so that each node shows
the set of peers in its own peer group that manage data of this type (a set of
peer IDs), and also the remote SPs whose peer group manages such data (a set
of SP IDs).

The latter information is gathered and maintained as follows: if a node in the
RDF Schema of an SP changes from not having any data in this peer group to
having data, or vice versa, this change is notified to all other SPs so that these
can update the relevant annotation in their RDF Schemas. Note that in general
the SPs may hold heterogeneous RDF Schemas, so there will need to be an RDF
Schema translation service between SPs (as is indeed envisaged for SeLeNe).

Finally, as well as this annotated RDF Schema, each SP also keeps for each
node annotated with a ’1’ in its RDF Schema a list of the RDF resources of this
type that each peer in its peer group references — we call these lists of RDF
resources resource indexes.

Comparison with related approaches: Querying and indexing data in a dis-
tributed RDF-based P2P network is more complex than for distributed struc-
tured databases. In the latter, the database servers and the database schema at
each of them is known and fixed whereas in the former peers may dynamically
join or leave the network and may manage data conforming to varying schema
fragments. Schema-based routing indexes have been proposed to address this
problem in Edutella [18]. Edutella uses two kinds of routing indexes: Super-
Peer/Peer (SP/P RI) and Super-Peer/Super-Peer (SP/SP RI).

An SP/P RI stores information about metadata usage in each peer in its
peer group. This includes information such as the schemas (e.g., dc or lom) or
properties (e.g., dc:subject) used, as well as possibly conventional indexes on
property values. When a peer registers with a SP, it provides the SP with its
metadata usage, a process called advertisement. The peer undertakes to keep this
advertisement up-to-date by informing its SP each time that a change affecting
the advertised metadata takes place. At each super-peer, query fragments are
matched against the SP/P RIs in order to determine peers that are relevant to
this query (although this gives no guarantee that the returned result set from a
peer is not empty). A similar approach is used in SP/SP RIs, but at a higher level
of granularity and possibly only representing approximations of the information
regarding their peers. A further difference to the SP/P RI is that an SP/SP
RI contains information only about its neighbouring SPs in the SP topology.
Update of SP/SP RIs is again based on broadcast messages sent between SPs.

For our purposes, we want to maintain more precise information about where
various forms of metadata reside in the network and, as far as possible, do not
want unnecessary routing of queries and updates to peers and super-peers that
are not relevant. Hence, we have adopted the approach of using annotations on
a full RDF schema and also resource indexes. The scalability of our proposal,
however, still needs to be investigated.

Registering an ECA rule When a new rule is generated at a peer, it is sent to
the peer’s own SP for storage in its local rule base. The SP annotates the event,
condition and action parts of the rule with the local peers that are relevant to
each part (a list of peer IDs).
This can be determined by matching each part of the rule against the SP’s

annotated RDF Schema and/or its resource indexes — the former is useful if no
resource is specified in this part of the rule and the latter is useful if a resource is
specified. As the annotated RDF Schema and resource indexes at the SP evolve,
so the annotations on the ECA rules can also be evolved to maintain consistency.
The rule is also sent to all other SPs that may be relevant to it — this is

determined from the SP ID annotations on the originating SP’s RDF Schema.
These SPs repeat the above process of matching each part of the rule against
their own annotated RDF Schema, and storing the resulting annotated rule in
their own rule base it if it is indeed relevant to any of their peer group. Note
that, due to schema heterogeneity, the rule may first have to be translated so
that its parts are expressed with respect to the local RDF Schema.
The final result is a replica of the rule at each SP which is relevant to the

rule, annotated with local information about which peers may be affected by
each part of the rule.
As the information at SPs changes with time, it may be that an ECA rule

is no longer relevant to that SP, in which case the rule can be deleted from the
SP’s local rule base. Conversely, an ECA rule stored somewhere else may become
relevant to an SP. This can be handled as follows:
Since all SPs know what kinds of data is stored at all other SPs, if any SP,

SP1, is notified of a change in status of another SP, SP2, from not having data
associated with a particular RDF Schema node to having such data, then SP1
will send SP2 a copy of any ECA rules that originated from SP1 and that may
now have become relevant to SP2.

Rule triggering and execution At run-time, whenever an event E occurs at
a peer P, it will notify its SP. This will determine whether E may trigger any
ECA rule annotated with P’s ID. If a rule r might have been triggered, the SP
will send P r’s event query to evaluate.
If r has indeed been triggered, its condition will need to be evaluated, after

generating an instantiation of it for each value of the $delta variable if this is
present in the condition. The annotations on r can be used to determine to which
local peers and other SPs sub-queries of the condition should be dispatched
for evaluation. If the $delta variable is present in the condition, it will have

been instantiated and so we also consult the SPs’ resource indexes for more
precise information about which local peers are relevant to sub-queries of the
instantiated condition.
If a condition evaluates to true, each corresponding rule action will be sent

to, and scheduled, by the SPs that will execute it. Again this can be determined
by the annotations on the rule action and consulting the SPs’ resource indexes.

4.1 Future Work

There are several open issues remaining in realising the P2P ECA architecture
we describe above:

– developing algorithms for matching rule event, condition and action parts
with the schema-based indexes;

– defining the syntax of messages that will be passed between peers for dis-
tributed processing of ECA rules;

– defining the coordination with SeLeNe’s distributed query processor for the
evaluation of rule conditions;

– defining the coordination with SeLeNe’s mediation functionality, for trans-
lating data and rules between heterogeneous schemas;

– more generally, mapping this distributed ECA functionality onto SeLeNe’s
service-based architecture;

– exploring distributed transactional aspects of the ECA rules (even though
we assume that individual events and actions will occur at a single peer,
the execution of an ECA rule may trigger another ECA rule and this whole
cascade of rule firings may need to have the semantics of a single transaction).

5 Conclusions

In this paper we have discussed the provision of ECA rules for XML and RDF
repositories, and have highlighted some of the new issues that arise in the context
of such data. We have described a language for ECA rules on XML, and some
preliminary ideas regarding a language for ECA rules on a graph/triple repre-
sentation of RDF. We have described a prototype centralised implementation of
the XML ECA rule language, and the architecture of a distributed implemen-
tation of the latter. For future work there are several directions to explore, as
highlighted in Sections 2.3, 3.1 and 4.1 above.
An important issue is to evaluate the applicability and scalability of our lan-

guages, their execution models, and implementation. For this, we plan to deploy
them for providing reactive functionality on distributed RDF repositories of edu-
cational metadata, as part of the ongoing SeLeNe project. This will also provide
an opportunity to assess the impact of moving from a centralised to a distributed
environment, with the additional challenges of network delay, network reliabil-
ity, synchronisation of rule execution, maintaining consistency of the distributed
metadata resource, tolerance of delays and failures etc.

References

1. S. Abiteboul, S. Cluet, G. Ferran, and M.-C. Rousset. The Xyleme project. Com-
puter Networks, 39:225–238, 2002.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L. Wiener. The Lorel query
language for semistructured data. VLDB Journal, 1(1):68–88, 1997.

3. S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha. Relational transducers for
electronic commerce. JCSS, 61(2):236–269, 2000.

4. A. Adi, D. Botzer, O. Etzion, and T. Yatzkar-Haham. Push technology personal-
ization through event correlation. In Proc 26th Int. Conf. on Very Large Databases,
pages 643–645, 2000.

5. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In Proc.
2nd. Int. Workshop on the Semantic Web (SemWeb 2001), 2001.

6. J. Bailey, A. Poulovassilis, and P.T. Wood. An Event-Condition-Action Language
for XML. In Proc. WWW’2002, Hawaii, 2002.

7. J. Bailey, A. Poulovassilis, and P.T. Wood. Analysis and optimisation for event-
condition-action rules on XML. Computer Networks, 39:239–259, 2002.

8. A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Proc. of the
IEEE Conference on Data Engineering (ICDE), 2002.

9. A. Bonifati, S. Ceri, and S. Paraboschi. Active rules for XML: A new paradigm
for e-services. VLDB Journal, 10(1):39–47, 2001.

10. A. Bonifati, S. Ceri, and S. Paraboschi. Pushing reactive services to XML reposi-
tories using active rules. In WWW’01, 2001.

11. S. Ceri and P. Fraternali. Designing Database Applications with Objects and Rules:
The IDEA Methodology. Addison-Wesley, 1997.

12. S. Ceri, P. Fraternali, and S. Paraboschi. Data-driven one-to-one web site gen-
eration for data-intensive applications. In Proc. 25th Int. Conf. on Very Large
Databases, pages 615–626, 1999.

13. E. Cho, I. Park, S. J. Hyum, and M. Kim. ARML: an active rule mark-up language
for heterogeneous active information systems. In Proc. RuleML 2002, Sardinia,
June 2002.

14. S. Cluet, P. Veltri, and D. Vodislav. Views in a large scale XML repository. In
Proc. 27th Int. Conf. on Very Large Databases, pages 271–280, 2001.

15. H. Ishikawa and M. Ohta. An active web-based distributed database sys-
tem for e-commerce. In Proc. Web Dynamics Workshop, London, 2001.
http://www.dcs.bbk.ac.uk/webDyn/.

16. K. Keenoy et al . Self e-Learning Networks — Function-
ality, User Requirements and Exploitation Scenarios. See
http://www.dcs.bbk.ac.uk/selene/reports/Del22.pdf, August 2003. Se-
LeNe Project Deliverable 2.2.

17. S. Kokkelink. Transforming RDF with RDFPath. See
zoe.mathematik.uni-osnabrueck.de/QAT/Transform/RDFTransform.pdf, March
2001.

18. W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and
A. Loser. Super-peer-based routing and clustering strategies for RDF-based peer-
to-peer networks. In Proc. WWW2003, pages 536–543, 2003.

19. W. Nejdl et al. EDUTELLA: A P2P Networking Infrastructure Based on RDF.
In Proc. WWW’2002, 2002.

20. N. Paton, editor. Active Rules in Database Systems. Springer-Verlag, 1999.

21. J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-based
publish/subscribe systems. In Proc 7th Int. Conf. on Cooperative Information
Systems (CoopIS’2000), pages 162–173, 2000.

22. B. Simon et al. Smart space for learning: A mediation infrastructure for learning
services. In Proc. WWW’2003, 2003.

23. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 413–424, 2001.

24. G. Wagner. How to Design a General Rule Markup Language? In Invited talk
at the Workshop XML Technologien für das Semantic Web (XSW 2002), Berlin,
June 2002.

25. J. Widom and S. Ceri. Active Database Systems. Morgan-Kaufmann, San Mateo,
California, 1995.

26. World Wide Web Consortium. XML Path Language (XPath), Version 1.0. See
http://www.w3.org/TR/xpath, November 1999. W3C Recommendation.

27. World Wide Web Consortium. XSL Transformations (XSLT), Version 1.0. See
http://www.w3.org/TR/xslt, November 1999. W3C Recommendation.

28. World Wide Web Consortium. XQuery 1.0: An XML Query Language. See
http://www.w3.org/TR/xquery, November 2002. W3C Working Draft.

29. World Wide Web Consortium. Document Object Model (DOM) Level 3 Core Spec-
ification. See http://www.w3.org/TR/DOM-Level-3-Core/, February 2003. W3C
Working Draft.

