
A Context-Oriented RDF Database

Mohammad-Reza Tazari

Computer Graphics Center, Dept. Mobile Information Visualization
Fraunhoferstraße 5, 64283 Darmstadt, Germany

Saied.Tazari@zgdv.de

Abstract. The importance of contextual knowledge in knowledge management
and organizational memory is shown in topical literature. Even in an initial
visionary scenario for the Semantic Web, one can immediately encounter the
contextual knowledge needed to realize the necessary services. Hence, it is not
inappropriate to claim that context management is an integral service of the
Semantic Web. After discussing the distributed nature of contextual
knowledge, we define some requirements for a context-oriented database
service and then introduce CORD as a service satisfying those requirements
based on the Semantic Web technologies. Selected features of CORD that
provide some contribution to the discussions within the Semantic Web research
community, like embedded resources, query language, and definition of rules,
are discussed in some detail.

1 Introduction

Most of the Semantic Web applications will be context-aware and personalized
services. A superficial look at the visionary scenario for explaining some of the
features of the Semantic Web in [2] shows the correctness of this claim. Already in
the first two sentences of this scenario1, the following contextual knowledge must be
available to realize the service:

�� User location (here, Pete's location)
�� Setup of the location (to identify devices near Pete and services offered there)
�� States of the resources (which of the sound-making devices are “on”, the phone

“ringing”, the phone in “talk” state)
�� Characteristics and capabilities of resources (which services can operate precisely

those sound-making devices near Pete that are on and loud)

Although the term context has a common meaning in the Semantic Web community –
see, for example, the definition by Tim Berners-Lee under http://www.w3.org/2000/
10/swap/doc/Glossary – we are purposing here a special user-centric view of context.
That is, by context we mean the user context in terms of personal, environmental, and

1 “The entertainment system was belting out the Beatles' "We Can Work It Out" when the

phone rang. When Pete answered, his phone turned the sound down by sending a message to
all the other local devices that had a volume control.” [2]

http://www.w3.org/2000/ 10/swap/doc/Glossary
http://www.w3.org/2000/ 10/swap/doc/Glossary

2 Mohammad-Reza Tazari

temporal conditions surrounding him or her. This is the situational view to the
context as it is investigated in Mobile Computing and Ubiquitous/Pervasive
Computing, too. The whole imaginary scenario in [2] is full of assumptions about the
existence of such contextual knowledge.

As already stated in [5], knowledge about the user context is highly distributed.
Except for the “current time” that in fact belongs to the user context in diverse forms2,
but has nothing to do with the distribution aspect of the contextual knowledge, most
of the other parts of this knowledge can be classified as follows (see also figure 1):

Fig. 1. Distribution of contextual knowledge. At any given time, the user finds himself at a
specific location and may be able to use resources there. Nevertheless, he may also be able to
use resources from his private space, community spaces to which he belongs, and public
resources available globally

�� Knowledge directly bound to the user and captured in diverse logical units, such as
the user profile3, profiles of user's mobile and accompanying devices, application

2 E.g. the absolute time, hour of the day, am / pm, day of the week, etc.
3 We believe that most parts of the user context may be imparted in form of profiles and define

a profile as the storage unit for a coherent collection of key-value pairs describing a distinct
resource, location, or user. If the described resource exists in an electronic form, then its
profile provides the corresponding metadata; otherwise a profile may simultaneously serve as
the electronic representation of the resource itself.

A Context-Oriented RDF Database 3

data from the domain of personal information management (i.e. PIM data, such as
to-dos, appointments, contacts), application-specific user preferences4, etc.

�� Knowledge bound to the user's location and captured as the location profile and
profiles of resources available there, where the location profile serves as an
integrating unit for all other info units.

�� Knowledge bound to communities (to which the user belongs) and captured as
group-based defaults, profiles of shared resources, and shared application data.

�� Public knowledge independent of the user, communities, and locations that will be
made available through the Web, such as profiles of public resources (e.g. services
that can be utilized by all, independent of the locations of the two ends5) and
profiles of classes of resources, which provide default values for a set of concrete
resources.

Obviously, the contextual knowledge includes many shared units, such as the user
profile, the location profile, and the profiles of several resources, of which different
context-aware applications may make use. Hence, a standardized service is needed
for managing profiles and offering shared mechanisms, relieving context-aware
applications from certain common overheads like monitoring the user context and
recognizing interesting situations. We call such a service the context management
service. In [5], we discussed the requirements for a context management service and
in [15], the aspect of modeling user context. Here, we focus on the data management
aspects of this service.

1.1 Requirements for a Context-Oriented Database Service

In the discussion above, we have emphasized three specific points having to do with
data management aspects of the context management service: data distribution,
organizing data in profiles, and support for default values (group-based or class-based
defaults). The first aspect leads us to the requirement that a context-oriented database
service (CODBS) must overcome the problem with the distribution of contextual
knowledge. Secondly, if profiles as a collection of key-value pairs are the storage
units of a CODBS, then it must support arbitrarily structured keys and values6.
Thirdly, support for default values would mean that there must be a mechanism for
profiles of more concrete resources to inherit data from profiles of related, albeit more
abstract, resources. All of the above actually reveal different aspects of data
organization, namely data organization within a profile, between profiles, and
between databases.

To specify further requirements, we must zoom in on the data organization within a
profile. The organization of data within a profile will primarily be reflected in its
keys. That is, a fundamental requirement is the possibility of expressing complex

4 Context-aware and personalized applications may have some personalization scheme that is

specific to them and hence must be managed separately from the user profile that is a shared
unit based on a shared ontology that models user profiles in general.

5 The locality of the resource may eventually play an important role in order for it to be selected
/ referenced / used from among all competing resources.

6 This requirement is refined further in the next paragraph.

4 Mohammad-Reza Tazari

structures via keys. Another aspect, however, has to do with the values. Values may
be literal, which raises the question about support for data types, or references to other
resources. A key may be associated with a single value or with more than one value.
The latter case leads to the support for sequences, bags, and sets of alternative values.
Values may be valid only for a specific time period7 or independent of time. Last but
not least, they may be conditional/situational, meaning that a key may be associated
with different alternative values for different situations.

Assuming that for each profile type there is a schema defining its structure and
asserting some statements about its semantics, a CODBS must also use schemas in
order to be able to ensure data integrity by accepting data that is in accordance with
the structural and type-related assertions made in the schema. In addition, context-
aware applications will be able to ask for the underlying schemas if they are not able
to interpret some contextual knowledge.

Finally, a CODBS must provide a triggering mechanism for catching database
events, because changes in the state of the contextual knowledge may influence the
situation in which the user finds himself. The transition from one situation to another
is an important event for context-aware applications.

Hence, we can summarize the requirements for a CODBS, as follows:

1. Managing profiles in accordance with their underlying schemas and guaranteeing
data integrity based on the assertions made in the schemas

2. Providing a centralized view of the highly distributed contextual knowledge
3. Providing a triggering mechanism depending on complex situational DB events
4. Support for conditional values
5. Support for defining hierarchies of profiles that share the same schema to

facilitate the automatic inheritance of default values
6. Support for expressing complex structures via keys within profiles
7. Support for literal values with different data types
8. Support for sequences, bags, and sets of alternative values
9. Support for temporary values [13]
10. Support for using references to other resources as values

2 CORD: The Context-Oriented RDF Database

We have developed an RDF database called CORD that is the foundation for our
context management service. The context-manager itself is the wrapper agent that
provides an interface for agent communication [5]. CORD implements most of the
features enumerated as requirements for a CODBS in 1.1. After justifying the basic
approach, we discuss in the following subsections those aspects of our solution that
provide some contribution to the discussions within the Semantic Web research
community.

7 Especially sensory data may be of a temporary nature.

A Context-Oriented RDF Database 5

2.1 Choosing the Semantic Web Technology

Obviously, the exchange of contextual knowledge must be based on a knowledge
representation paradigm. On the other hand, profiles are nothing other than
descriptions about distinct resources. These two statements alone, along with the fact
that RDF provides solid concepts for not only describing resources, but also for
modeling them, justify the selection of RDF, RDF schema, and OWL. Besides, the
XML syntax of RDF fit perfectly into our multi-agent system, where XML was the
content language of choice in agent communication messages.

2.2 Why a New Database Service?

Many of the projects dealing with RDF data stores use a relational DBMS (see, for
example, the two surveys in [1] and [10] summarizing some of them). A general-
purpose mapping of the RDF data model onto the relational model, where no
assumptions about the type of resources being described are made, leads to the
definition of few tables with few columns (see, for example, proposed DB schemas at
[11]). Basically, if we consider the RDF data model as a set of triples, a three-column
table will come up with a huge number of rows storing the statements, each with a
subject, a predicate, and an object. Even if we consider the RDF data model as a
directed, labeled graph, the relational database design will come up with similar
results. With such a modeling, answering queries about complex resources may lead
to many self-joins on one big table – depending on the entry point given by the query
– where the consequences for the performance are not known.

Choosing an object-oriented database management system would not change the
above situation, either. The issue is: relational or object-oriented DBMSs may
meaningfully be used where a specific domain with concrete entity types is being
modeled. That is, if you know the types of resources being described in your RDF
data store, then you can provide a conventional database design with a meaningful
database schema. The database schema would then reflect at least parts of what you
state in the RDF/OWL schema for modeling the same resource types. A wrapper
could then provide the knowledge stored in the database in terms of RDF statements
to the world outside.

Due to the fact that the context management solution must be open for managing
profiles of resources having arbitrary types, choosing a relational or object-oriented
DBMS would confront us with the same dilemma as described in the previous
paragraphs. On the other hand, a glance at our requirements, especially the
requirements #3, #4, #5, and #9, shows that an existing database service may hardly
satisfy all of them. Although most of the DBMSs do provide a triggering mechanism,
even the utilization of stored procedures in the domain of relational databases or the
class methods in the domain of object-oriented databases is no solution for the
efficient recognition of interesting situations, that may be defined using complex
conditions8. The main reason is that the situations to be recognized are not definable
all at once, but their definitions will be added and removed dynamically. For the

8 Cp. also the discussion in section 2.5.

6 Mohammad-Reza Tazari

traditional database services, this would mean dynamism at the schema level. The
concept of conditional values, discussed in section 2.5, is new and no direct support
could be found in the domain of relational databases for storing them in arbitrary
columns of arbitrary rows of tables. The methods in Object-oriented databases do not
solve the problem, either, because they are defined within classes and are the same for
all instances. The automatic inheritance of default values requires hierarchical
relationship between rows of tables or instances of classes, which is not given, either.
Finally, support for temporary values presupposes a timeline management for each
column of each row or each field of each instance, which is not supported by
traditional DBMSs.

For the purpose of profile management, we tried to provide the OWL schemas for
user profiles, location profiles, terminal profiles, service profiles, and agent profiles
(as a special case for service-offering software components) [15, 16]. Not only the
term “profile management”, but also the complex structure of the above-enumerated
profile types, the requirement for inheriting default values from more abstract profile
instances in more concrete profile instances, and the concrete use cases in our projects
caused us to choose profiles as our storage units. Having to meet the requirements
listed in section 1.1, choosing profiles as the storage unit, having to manage profiles
of arbitrary types, and considering the fact that each instance of the context manager
deals with few instances of complex resources caused us to decide in favor of
developing CORD.

2.3 Profiles and Their XML-based RDF Representation

A profile is a reusable resource that can be identified via a URI. This URI, which
may be given as the value for xml:base in the XML representation of the profile, has
the following structure:

cord://<host>:<port>/profiles/<profile-name>

Internally, profiles are implemented as (hashed) trees quite similar to ldap or
Windows™ registry. The main difference with those solutions is the lack of a global
root binding all of the (sub-)trees in one big tree integrating them.

As stated before, profiles are containers of key-value pairs. We call each such pair
a context element, where the key serves both as the URI of the context element and as
the source of its semantics. In the tree representation of profiles, however, there is no
clear-cut distinction between keys and values. In addition to the leaves of the tree that
represent the literal values or URI references, any node in the tree can be seen as a
value associated with its path. Then, the path together with the base URI of the
profile serves as the key. Except for the root of the tree that represents the whole
profile resource (denoted as cord://<host>:<port>/profiles/<profile
-name>#), all other branch nodes represent some embedded resource identified with
a URI of the form cord://<host>:<port>/profiles/<profile-
name>#<path>. Paths are made of NDNames (XML-names9 minus ‘.’)
concatenated by dots (‘.’), e.g. a.b.c would be a valid path. Each NDName

9 See http://www.w3.org/TR/REC-xml#NT-Name.

A Context-Oriented RDF Database 7

corresponds to a property of the concrete resource addressed thus far. The possibility
of using paths as part of keys meets the requirement for expressing complex structures
via keys within profiles.

An example will further illustrate the usage of paths in keys. Let’s assume that a
schema with the URI http://www.zgdv.de/CORD/schemas/UserProfile
defines, among others, the following concepts:

�� the classes UserProfile, PersonalInfo, and PersonName.
�� the property personalInfo with domain UserProfile and range PersonalInfo.
�� the property name having PersonalInfo as its domain and PersonName as its range.
�� the properties first, middle, last, and nick having PersonName as their domain and

xsd:string as their range.

Then, the following RDF description represents my profile partially:

Sample 1. Partial RDF representation of a user profile

<?xml version="1.0"?>
<rdf:RDF
 xmlns="http://www.zgdv.de/CORD/schemas/UserProfile#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xml:base="cord://st.zgdv.de:999/profiles/me">
 <UserProfile rdf:about="#">
 <personalInfo>
 <PersonalInfo rdf:about="#personalInfo">
 <name>
 <PersonName rdf:about="#personalInfo.name">
 <first>Mohammad-Reza</first>
 <last>Tazari</last>
 <nick>Saied</nick>
 </PersonName>
 </name>
 </PersonalInfo>
 </personalInfo>
 </UserProfile>
</rdf:RDF>

This results in the tree representation shown in figure 2 and the set of context
elements shown in table 1.

Table1. Set of context elements (key-value pairs) resulting from Sample 1

Key Value
cord://st.zgdv.de:999/profiles/me# The whole profile resource
cord://st.zgdv.de:999/profiles/me#rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#UserProfile
cord://st.zgdv.de:999/profiles/me#personalInfo The embedded resource rooted at ‘personalInfo’
cord://st.zgdv.de:999/profiles/me#personalInfo.rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#PersonalInfo
cord://st.zgdv.de:999/profiles/me#personalInfo.name The embedded resource rooted at ‘name’
cord://st.zgdv.de:999/profiles/me#personalInfo.name.rdf:type http://www.zgdv.de/CORD/schemas/UserProfile#PersonName
cord://st.zgdv.de:999/profiles/me#personalInfo.name.first Mohammad-Reza
cord://st.zgdv.de:999/profiles/me#personalInfo.name.last Tazari
cord://st.zgdv.de:999/profiles/me#personalInfo.name.nick Saied

http://www.w3.org/1999/02/22-rdf-syntax-ns

8 Mohammad-Reza Tazari

Fig. 2. Internal tree representation resulting from Sample 1 (leaf nodes have no background
color)

Embedded Resources. The above model leads to some issues that are not handled in
RDF or OWL standards. The most important issue concerns resources embedded in
the profile. Each non-leaf node within the tree representation of a profile actually
represents such an embedded resource as an identifiable resource.

The embedded resources result from either the part-of association – one of the
fundamental concepts in object-oriented modeling – or the theorem of weak entity
classes in database management. In UML, for example, associations having a
diamond on one side indicate that the class on that side represents composite objects
having instances of the class on the other side as their parts. They go even further and
say that if the diamond is darkened, then the instances of the class on the other side
may never exist independently from instances of the class on the side of the diamond
– quite similar to the concept of weak entity classes in database management.

However, there is currently no way to specify part-of associations as such in RDF
schema or OWL. CC/PP [8], as an RDF-based approach for articulation and
exchange of contextual knowledge in profiles, has proposed the concept of
components that can be seen as a solution for this problem. It was not consistent
enough, though. It seems that the understanding of profiles in CC/PP is something
like the “.ini”-files in Windows™; i.e. all attributes must appear in some component
and no attributes within components may have another component as value. None of
these restrictions matched our requirements. This approach ignores the evolution of
such config-files into tree structures like Windows™ registry10. This is the main
reason why we decided to establish the following conventions to enforce our idea of
profiles:

10 [6], another research activity on context management, has similar criticisms on CC/PP.

A Context-Oriented RDF Database 9

�� A schema modeling a profile type always defines a special class named after the
schema itself that serves as the “main class”. All other classes defined in the
schema are either super/sub-classes of the main class, appear in a (nested) part-of
association, or represent some weak entity class. The root of a profile instance
always represents an instance of this “main class” or its super/sub-classes.

�� All resources contained in a profile instance other than the root of the profile have
a path as their ID that results from concatenating (via dots) properties binding them
to the root of the profile. Hence, property names may not contain dots.

�� Many-valued properties refer to instances of rdf:Alt, rdf:Bag, or rdf:Seq as
embedded resources with an ID built up in the same way as stated in the previous
bullet. This has two implications: 1) the leaf nodes of a profile are always literal
values or URI references to other resources and 2) if the elements of the container
are some other embedded resources, then they have an ID resulting from
appending a ‘.rdf:_n’ to the ID of the container, where n is a decimal integer
greater than zero with no leading zeros. This means that the requirement for
supporting “sequences, bags, and sets of alternative values” is combined with the
requirement for “expressing complex structures via keys within profiles”.

�� In order to maintain profile boundary, all references to external resources are
stored as URI references.

�� All arcs that transform the tree representation into a graph are automatically
redirected to point to a leaf having the equivalent local URI reference as its value.

2.4 The Query Language

Fig. 3. Concept for CORD queries

Queries submitted to a CORD instance must be RDF descriptions based on the
concept summarized in figure 3. Unlike the existing solutions that try to propose a
general-purpose RDF query language concentrating on the syntax (see, for example,
[7], [9], [12] and [14]), we have concentrated on the application of RDF in describing
profiles and our related concepts like paths. Although we are practically using only
the XML syntax of RDF to submit queries, deriving a compact SQL-like notation
from the same concept is straightforward. In the following subsections, each of the
main parts, from which CORD queries are formed, will be discussed in some detail.

10 Mohammad-Reza Tazari

Query References. A query must contain at least one query reference. Each query
reference will be expanded to a set of matched keys (compare table 1) and an RDF
description containing the context elements identified by those keys will be returned
as query result. A query reference is a CORD URI-reference with the following
wildcarding possibilities (most combinations of them are also legal):

�� If the <host>:<port> slot is missing, then the CORD instance receiving the
query will consolidate all other known CORD instances in the ascertainment of the
query results.

�� If the profile name is missing, then all profiles managed by the CORD instance
will match.

�� If the query reference ends with the fragment separator (#), then the whole content
of the profile will match.

�� If the <path> slot begins with a dot (.), then any context element having the
remainder of the <path> slot as the suffix of its own path will match.

�� If the <path> slot ends with a dot (.), then the sub-tree rooted at the resource
matching the leading part of the <path> slot will match.

�� If the <path> slot contains two subsequent dots (..), then any context element
within the sub-tree rooted at the resource matching the leading part of the <path>
slot and having the remainder of the <path> slot as the suffix of its path will match.

The special case of cord://<host>:<port>/profiles/, where again the
<host>:<port> slot may be left empty, will cause a query result to contain only a
bag of URI references to the matching profiles without the descriptions of their
contents.

Variables. A query may have a sequence of initialized variables that store literal
values or URI references. A subsequent variable may use a previous variable storing
a URI reference to store a subordinate value (cp. last paragraph in this section about
the usage of variables). This facilitates, among other things, the switching to
referenced profiles and inter-profile joins.

Variables may be of type KeyVariable or ValueVariable. The sub-type influences
the interpretation of the value to be assigned to the variable. In the case of key
variables, it is expected that the value is a URI reference that must be resolved so that
its associated value is assigned to the variable. In the case of value variables,
however, the value given will be assigned to the variable as-is, be it a URI reference
or not.

There are some predefined variables that are set automatically, normally just before
CORD begins to process a new request:

�� The current time is stored in variables like currentTime, amPM, dayOfMonth,
dayOfWeek, etc., quite similar to the constant fields defined in java.util.Calendar.

�� The certificate of the agent that sent the request is stored in accessor. This is
interesting for the definition of conditional values (see section 2.5), when the
accessor plays a role in the decision about the applying value.

�� As stated before, a query reference will be expanded to a set of matched keys.
Each time, after selecting one of the matched keys for further processing, two
variables are set automatically that keep their values until CORD leaves the context

A Context-Oriented RDF Database 11

of that matched key. These are currentProfile, which contains the URI reference
of the profile from which the matched context element originates, and
matchedComponent, which contains the URI reference of the lowest embedded
resource matched during the expansion of the query reference into the matched
key.

�� Two other special variables are set automatically whenever a context element is
added, updated, or deleted. These variables are only interesting for the processing
of subscriptions (see section 2.5). They are triggerKey, which contains the URI
reference of the changed element, and triggerValue, which contains the new value
associated with the key of the context element, if applicable. The setting of
triggerKey causes the time variables and the currentProfile variable to be set
automatically in the context of processing the DB event.

In general, whether predefined or defined by the requestor, variables can be used to
build up new query or other URI references, can be used in query filters or conditions
of rules (see section 2.5), or wherever values are expected. Variable substitution
occurs whenever a special construct is found in a way similar to macro expansions in
the C programming language. For example, assuming that the standard variable
currentProfile contains a reference to a user profile in a special context, one can use it
in the following construct in place of a direct value:

<cord:VarRef>
 <cord:variable rdf:resource=”&cord;currentProfile”/>
 <cord:suffix>personalInfo.name.last</cord:suffix>
 <cord:action rdf:resource=”&cord;substituteAndEval”/>
</cord:VarRef>

If at runtime the variable has the value cord://st.zgdv.de:999/profiles/
me#, then, due to the specified action, the above variable reference is first replaced
and expanded to cord://st.zgdv.de:999/profiles/me#personalInfo
.name.last which will then be evaluated to the literal value Tazari. Other
possible values for action are substitute and evalAndSubstitute. Another property of
the VarRef class not used in the above example is cord:prefix.

Query Filters. A container of query filters can be used to select only a subset of the
matched keys resulting from the expansion of query references. If the container is of
type rdf:Seq, then an implicit and-connector is assumed between the query filters
given in the sequence; in the case of rdf:Alt, an implicit or-connector is assumed.
Beside query filters, elements of such containers may also be a container of the other
type to switch between connector types11.

A query filter says which criterion must be satisfied in order to keep a previously
matched context element in the set of those to be returned in the query result by
specifying what must be compared how with which value(s). To specify the how, one
must select an operator from the enumeration defined by CMOperator. Currently, the

11 The point with the container type and its relation with the connector type and the possibility

of nesting them to switch from one connector type to another is not shown in figure 3 in
order to keep the model straightforward.

12 Mohammad-Reza Tazari

possible values are equal, greater, less, in, including, notEqual, notGreater, notLess,
notIn, and excluding.

The criterion must be selected from the enumeration defined by CMProfileProp
and given as the value (in the form of a URI reference) for a property called onProp.
The possible values are basically:

�� schema: to select context elements coming from a specific profile type. For
example, to filter context elements coming from user profiles, one may define a
query filter on schema property, choose the equal operator, and give
http://www.zgdv.de/CORD/schemas/UserProfile as a single URI reference for the
value property.

�� parents/children: to select context elements from a profile that has the given
profiles as its parents/children.

�� begin/end/importance/priority12: to select context elements whose values are valid
during a certain time period (for temporary context values) or satisfy certain
weighting criteria (not to be discussed further).

�� value: to select context elements whose values satisfy the given condition.
�� currentProfile/matchedComponent: combined with a suffix for building up a new

query reference, they can be used to filter the matched context elements further.
The resulting query reference forms a sub-query with the possibility to check the
values returned by the sub-query in the same CMQueryFilter and to further filter
them based on the conditions provided by the optional where property.

2.5 Rules

CORD supports two forms of rules that are structured similarly: one for forming
conditional values and the other one for posting subscription requests. These are
discussed in the following subsections.

Conditional Values. Values (especially those given for preferences) can be rule-
based, in the sense that the value depends on some contextual state or situation.
When a rule-based value is queried, first the cases within the rule will be examined
using the current values of referenced context elements. If one of the alternative cases
applies, then the associated value is returned, otherwise rdf:nil. Figure 4 summarizes
the CORD concept for conditional values.

Basically a CORD rule is a “switch-case” construct. Each case has a condition part
and a value part. The cases are considered in the sequence of their specification. As
soon as a case is found whose condition part evaluates to true, the evaluation will
cease and the value associated with that case is used as the result of the evaluation. A
case without any conditions always evaluates to true. The condition part of each case
is a container (of type rdf:Seq or rdf:Alt quite similar to the containers of query filters
– see also footnote 9) of comparisons, where normally values of context elements are
compared with literal values or with values of other context elements.

12 Special properties introduced by CORD and applicable to all nodes within a profile.

A Context-Oriented RDF Database 13

Due to some complications in the implementation, conditional values are currently
a special case of literal values; this leads to two side effects: 1) the restriction for
cases to contain only one value (literal or URI-reference) and 2) the delay in parsing
until the conditional value is accessed.

Fig. 4. Concept for conditional values in CORD

From another perspective, we can say that conditional values equip CORD with
something like “passive inference”. With “passive inference” we mean that on the
one hand CORD does not have its own rules to infer the new state of the contextual
knowledge, but the logic of inferring comes from “producers”/”providers” of the
contextual knowledge. On the other hand, the inferring process only leads to a
selection between suggested alternatives depending on the current situation (cp. [5]
for our concept of situations as contextual states).

The concept of variables and variable references is already discussed in section 2.4.
However, an interesting aspect of using variable references in comparisons is that the
corresponding variables don’t have to be defined in the variables part of the rule. If
they are defined in the rule, they will usually refer to some shared contextual facts
(facts known to the CORD instance at the time of rule interpretation). But, since such
rules are interpreted at query time, one may define the variables in his or her queries.
This way, the facts to be used in the evaluation of the rule may be the premises of the
requestor.

Last but not least, a special feature resulting from the inheritance of default values
is worth mentioning. Assuming that the profile p1 is a parent of the profiles p2 and p3
and a conditional value defined in p1 is being inherited by both p2 and p3, the use of
local URI references in the rule might cause the same rule to return a different value
in the context of p2 compared to the value returned in the context of p3, even if the
two evaluations are performed “simultaneously”. An example may illustrate this nice
effect better: Assume that a travel planing agent stores a profile for each travel to be
planned in the user’s personal context-manager letting it inherit from the default
travel profile provided by the context-manager of the company where he works. If a

14 Mohammad-Reza Tazari

property transportMeans in the default profile has a conditional value in the following
simplified form

if #distance.inKm greater 500
 return my:plane
else if #numberOfCompanions greater 1
 return my:rentACar
else
 return my:train

then a query about the transport means for a concrete travel where the user must travel
alone to a city 225 km far from his residence would result in my:train.

Subscription Requests. Requestors may subscribe for notification or other actions to
be performed by CORD. There are two kinds of subscriptions: simple or conditional.

A simple subscription is formed from a bag of query references and causes CORD
to immediately inform the current context elements whose keys match the given
query references. Additionally, CORD will watch for changes of context elements
and will inform the subscriber about the new value whenever the key of the changed
context element matches one of the given query references. Changes of the value will
occur due to insert, update, and delete requests or due to the expiration of a time-
stamped value (which causes the use of the next alternative value as the current
value). This way, from the time of subscription, the subscriber will always know
about the state of all context elements known to CORD (or made known at any time
in the future) whose keys match the given query references.

The conditional version is based on Event-Condition-Action rules (ECA rules).
The only events supported are again changes of values in the sense of the previous
paragraph; hence, the “event” part of an ECA rule is nothing other than a bag of query
references wildcarding those context elements whose change of states should trigger
the evaluation of the condition-action part. This latter part of an ECA rule is quite
similar to the rules outlined in the previous subsection. That is, there are variables,
and conditions are structured exactly the same way as in the case of conditional
values, i.e. containers of comparisons of context and constant values in a switch-case
construct. Unlike those rules, instead of a value, a sequence of actions can be
specified for each case. Actions are operations that can be done by CORD, which
include:

�� Sending the current values of some specified context elements to the subscriber or
other receivers.

�� Sending a given literal message to the subscriber or other receivers.
�� Inserting new context elements or updating existing ones; this triggers other events

and may lead to indirect notifications.

Usually, the subscribers specify the bag of query references in ECA rules in such a
way that the keys of all context elements that play a role in the condition part would
match those query references. Such rules are quasi “alive”: as soon as a case applies,
it will be recognized. Therefore, they are the cornerstones for situation recognition
for our context management service [5].

A Context-Oriented RDF Database 15

2.6 Insert, Update, and Delete

Insert and update requests must be submitted with the corresponding RDF
descriptions, such as the one given in Sample 1. Delete requests, however, must
contain a query description, which will lead to the deletion of matched context
elements.

3 Summary and Future Work

We showed that contextual knowledge plays an important role in the Semantic Web
and concluded that context management is the missing service in the Semantic Web.
Our work contributes to filling this gap through the development of CORD, the
context-oriented RDF database. CORD provides a solution based on the Semantic
Web technology mainly for managing profiles. The concrete contributions of this
paper are the introduction of: 1) a storage system for RDF-based profile data handling
embedded resources, 2) a query language suitable for querying data organized in
profiles, 3) a concept for storing rule-based values in profiles, and 4) a model for
subscribing to context management services via the so-called event-condition-action
rules.

We will continue this work by: 1) consolidating data from sources other than
instances of CORD to satisfy the requirement #2 from section 1.1 completely, 2)
equipping CORD with a special logic for reasoning about user location when sensory
data is missing, based on information provided by PIM applications and the history of
the location data, and 3) enhancing the existing privacy protection mechanism13 by
employing P3P and APPEL concepts when dealing with public service providers.

Acknowledgement. This work is partially sponsored by the Information Society DG
of the European Commission. It is part of the MUMMY project (IST-2001-37365,
Mobile Knowledge Management – using multimedia-rich portals for context-aware
information processing with pocket-sized computers in Facility Management and at
Construction Site) funded by the Information Society Technologies (IST) Programme.
See http://mummy.intranet.gr.

References

1. Barstow, A (2001). Survey of RDF/Triple Data Stores. World Wide Web Consortium.
Retrieved April 10, 2003 from http://www.w3.org/2001/05/rdf-ds/DataStore (last update
Feb. 26, 2003).

2. Berners-Lee, T. & Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific
American, May 17, 2001. Retrieved February 26, 2003 from http://www.sciam.com
/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21.

13 Currently, CORD provides access control mechanisms for the communication with context-

providing and -consuming components that belong either to the user or to the communities of
which the user is a member.

http://mummy.intranet.gr/
http://www.w3.org/2001/05/rdf-ds/DataStore
http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

16 Mohammad-Reza Tazari

3. deVos, A. (2002). An RDF Query Language Based on DAML. Langdale Consultant,
revision 1.0, Feb. 2002. Retrieved April 10, 2003 from http://www.langdale.com.au/RDF/
DAML-Query.html.

4. Fikes, R. & Hayes, P. & Horrocks, I. (2002). DAML Query Language (DQL) – Abstract
Specification. The Joint United States / European Union ad hoc Agent Markup Language
Committee, August 2002. Retrieved April 10, 2003 from http://www.daml.org/2002/08/
dql/dql.

5. Grimm, M. & Tazari, M.R. & Balfanz, D. (2002). Towards a Framework for Mobile
Knowledge Management. Proceedings of the 4th international conference on Practical
Aspects of Knowledge Management (PAKM2002), Vienna, Austria, December 2002.

6. Indulska, J. & Robinson, R. & Rakotonirainy, A. & Henricksen, K. (2002). Experiences
in Using CC/PP in Context-Aware Systems. Proceedings of the 4th International
Conference on Mobile Data Management (MDM2003), Melbourne, Australia, January
2003. Lecture Notes in Computer Science. Springer Verlag, LNCS 2574. pp. 247-261.

7. Karvounarakis, G. & Alexaki, S. & Christophides, V. & Plexousakis, D. & Scholl, M.
(2002). RQL: A Declarative Query Language for RDF. ACM 1-58116-449-5/02/0005,
WWW2002, Honolulu, USA, May 2002.

8. Klyne, G. & Reynolds, F. & Woodrow, C. & Ohto, H. & Hjelm, J. & Butler, M.H. &
Tran, L. (2003). Composite Capability / Preference Profiles (CC/PP): Structure and
Vocabularies. http://www.w3.org/TR/CCPP-struct-vocab/, W3C Working Draft March
25, 2003.

9. Kokkelin, S. (2001). Transforming RDF with RDFPath. Working draft, March 2001.
Retrieved April 10, 2003 from http://zoe.mathematik.uni-osnabrueck.de/QAT/Transform/
RDFTransform.pdf.

10. Magkanaraki, A. & Karvounarakis, G. & Anh, T.T. & Christophides, V. & Plexousakis,
D. (2002). Ontology Storage and Querying, Technical Report No. 308. Foundation for
Research and Technology Hellas, Institute of Computer Science, Information Systems
Laboratory. Crete, Greece, April 2002. Retrieved April 10, 2003 from ftp://
ftp.ics.forth.gr/tech-reports/2002/2002.TR308.Ontology_Storage_and_Querying.pdf.gz.

11. Melnik, S (2001). Storing RDF in a Relational Database. Retrieved April 10, 2003 from
http://www-db.stanford.edu/~melnik/rdf/db.html (last update Dec. 3, 2001).

12. Miller, L. & Seaborne, A. & Reggiori, A. (2002). Three Implementations of SquishQL, a
Simple RDF Query Language. Proceedings of the 1st International Semantic Web
Conference (ISWC2002), Sardinia, Italy, June 2002. Retrieved April 10, 2003 from
http://www.hpl.hp.com/techreports/2002/HPL-2002-110.pdf.

13. Schirmer, J. & Bach, H. (2000): Context-Management within an Agent-based Approach
for Service Assistance in the Domain of Consumer Electronics. In: Proceedings of
Intelligent Interactive Assistance, Mobile Multimedia Computing, Rostock, Germany,
November 2000.

14. Sintek, M. & Decker, S. (2002). TRIPLE — A Query, Inference, and Transformation
Language for the Semantic Web. Proceedings of the 1st International Semantic Web
Conference (ISWC2002), Sardinia, Italy, June 2002. Retrieved April 10, 2003 from
http://triple.semanticweb.org/iswc2002/TripleReport.pdf.

15. Tazari, M.R. & Grimm, M. & Finke, M. (2003). Modelling User Context. Proceedings of
the 10th International Conference on Human-Computer Interaction (HCII2003), Crete
(Greece), June 2003.

16. Tazari, M.R. & Plößer, K. (2003). User-Centric Service Brokerage in a Personal Multi-
Agent Environment. To be presented in the International Conference on Integration of
Knowledge Intensive Multi-Agent Systems (IEEE KIMAS'03), Cambridge MA (USA),
October 2003.

