
An Empirical Study of Data Race Detector Tools
Jalal S Alowibdi1,2,Leon Stenneth1

1. Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607
E-mail: {jalowibd,lstennet@cs.uic.edu}

2. Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, KSA

Abstract: The industry of software applications has been increased significantly because of the high demand of using

the software applications. This revolution leads on developing many concurrent software systems. Noticeably, some

of these concurrent software systems have falsely report data race condition to one or more of their shared variables.

Debugging such concurrent software systems to find the race condition is a challenge, especially for large and complex

software systems. Since the race condition concerned mostly ignored in the concurrent software systems, adopting it

could help to ensure the efficiency of these software systems. There are few detector tools that have been known in the

industry focusing on data race detectors. This paper aims to study those tools. We are going to conduct empirical study

of data race using well known tools in order to measure the correctness, performances and effectiveness of those tools in

practical by using some benchmarks. Those benchmarks will be tested on each tool and compare it with others to see the

similarity and differentiate.

Key Words: Data race, Performance, Correctness, Concurrent program

1 INTRODUCTION

When two or more processes are sharing the same variables

and each one of them is trying to access the variable before

the others at the same time without proper synchroniza-

tion, this behaviour leads to false value of variable for one

of the processes which is called race condition [1]. There

are three types of data race detector tools. Static data race

detector tools that analyze the source code of the program,

study the behaviour of the program and report all the pos-

sible race condition. This type of detector tools target the

source code level and cannot be analyzed at the run-time

compile. Oppositely, dynamic data race detector tools that

lead the program to be executed and then analyze and study

the history of its memory accesses behaviour in order to

predict the race condition. This can be done at the run-time

compile [2]. The third type is the hybrid data race detector

tools which lead to combination of both static and dynamic

data race detector tools behaviour. Because of the increase

of the race conditions among the concurrent software sys-

tems which leads to faulty behaviour, there are quite few

race detector tools available that can effectively analyze the

behaviour of the software systems and report back with the

possible race condition and some suggestion if needed. Un-

derstanding these detector tools might help the developers

to pay more attention and try to get the race condition out of

the software system as soon as possible. Using one of those

detector tools to analyze and debug the product before the

delivery, could prevent the race condition that might lead

to major problem.

In this research, we aim to explore and provide a con-

crete study of different data race detector tools that have

been used in the industry. We study the behaviour and the

performance of each tool by considering the same bench-

marks. In our empirical study, we will test five different

static data race detector tools where two of the processes

can be hybrid. These tools are: RaceFuzzer [3], RacerAJ

[4], Jchord [5], Race condition Checker RCC [6] [7], and

Java RaceFinder JRF [8].

This paper organized as follows: section 2 provides a brief

explanation of the data race detector tools. Section 3 in-

troduces the benchmarks that we are using. The analysis

and results discussion are in section 4. Section 5 provides

an extension future work. The last section concludes the

study and discussion.

2 DATA RACE DETECTOR TOOLS

Traditionally, most of the users and the developers are not

aware of the race condition fault. As previously mentioned,

there are five tools that we are going to test, study, and an-

alyze their behavior and performance. These detector tools

are RaceFuzzer, RacerAJ, Jchord, Race Condition Checker

(RCC), and Java RaceFinder (JRF). Each detector tool has

its own specific technique and checker in reporting the race

condition. Few works have been conducted in the field of

race condition in both side of static and dynamic detection.

Nevertheless there is no work has been conduct in the field

of comparing these data race detector tools. In this section,

we aim to explore and provide initial study of five different

data race detector tools that have been known in the indus-

try. These tools are next discussed as follow:

2.1 RaceFuzzer
RaceFuzzer is an algorithm for determining real data races

in concurrent programs that uses a randomized scheduler

to produce real conditions of data races. In RaceFuzzer,

an Enabled thread is a thread that is not waiting to get a

lock held by another thread; an alive thread is a thread that

3951978-1-4673-5534-6/13/$31.00 c©2013 IEEE

has not yet terminated its execution [9]. CalFuzzer is the

RaceFuzzer tool that we are using for the purposes of this

study. Calfuzzer is framework of active testing for produc-

ing analysis of concurrent bugs such as data races as well as

scheduler for active testing. The technique of calfuzzer for

testing concurrent program is called active testing which

has two phases; First phase uses off-the-shelf analysis tools

to extract potential data races. Second phase uses the out-

comes report of off-the-shelf to feed back the system for

more accuracy in discovering data races [3].

2.2 RacerAJ
RacerAJ introduced an aspect-oriented approach to detect

program events by evolving an extension to the oriented

programming language called AspectJ. AspectJ allows the

developers to easily predicate bug for concurrent program

using pointcuts lock(), unlock() and maybeShared(). The

first two allow us to acquisition and release of a lock us-

ing synchronized blocks and methods in java program and

maybeShared() helps in gain runtime efficiency by moni-

toring the access of those fields among threads. The Racer

algorithm that has been proposed is using the AspectJ lan-

guage extension which is a variant of the Eraser algorithm

for data race detection. The Racer algorithm is adoption of

the Eraser algorithm in regard to the java memory model

where the Racer detects data races in java program and the

Eraser detect data race in C program [4].

2.3 JCHORD
JChord is a static and dynamic program analysis frame-

work for Java. It has four key characteristics which are

stand-alone program, extensible, compositional and ef-

ficient. The algorithm consists of four stages that in-

volve memory access which are reachable-pairs computa-

tion, aliasing-pairs computation, escaping-pairs computa-

tion and unlocked-pairs computation [5].

2.4 Race Condition Checker (RCC)
RCC is a static analysis system for detecting race condi-

tions in Java programs. The RCC analysis supports the

lock-based synchronization discipline plus other indicators

[6]. RCC detects data race condition early in the devel-

opment cycle before producing the entire code of the pro-

gram. It requires the developers to write some annotations

that can be inserted as function of the lacking technique

used by the program. RCC has number of features among

them are: classes parameterized by lock, safety accessibil-

ity and escaping mechanism [7].

2.5 Java RaceFinder (JRF)
Java PathFinder, is ”a model checker for java byte code that

simulates its own virtual machine with specified properties

after it reads java class files” [10]. From the approaches of

informal reasoning exercises by writing a concurrent pro-

gram to the approaches of formal reasoning methods and

tools such as model checkers, the sequential consistency

is their start assumption. It is not a valid assumption for

current concurrent program. The proposed tool called Java

RaceFinder which is ”an extended tool of Java PathFinder

that use the JPF listener interface to intercept memory

model relevant operations such as locking, unlocking, start

new thread, reading or writing a variable, etc.), and that can

represent the heuristic function h”. Furthermore, JRF con-

siders a synchronization approach to analyze the extensive

set of the concurrent data structure [8].

3 BENCHMARKS

The benchmarks are the data tests that used in the data

race detector tools in order to know the performance and

the efficiency. In our benchmark, we start with around 20

lines of code and end up with around 700 lines of code.

we chose our benchmark by looking through each detector

tools’ benchmarks and consider the benchmark that is not

used in any other race detector tools as well as the bench-

mark that is used in all tools. Our consideration of choosing

the benchmarks is to help us in predicting the performance

of the race condition detector tools as well as to assist us

in detecting and reporting different potential data race in

each tool. Our technique on how to choose the right bench-

marks is to go from the easier to the moderate benchmarks

and from the small to somehow larger benchmarks. We

have decided on choosing five different benchmarks to be

used in the experiment. We categorize these benchmarks

to three different categories: simple benchmarks, moderate

benchmarks and hard benchmarks. These benchmarks can

be summarized as follow:

1. Simple benchmarks with small line of code. In this

category, we have three different benchmarks that can

be summarized as follow:

• Benchmark has one thread and does not have

data race. This benchmark has no data race to be

discover and the result must be obviously nega-

tive.

• Benchmark has two threads and has one data

race that is disable or got covered using syn-

chronization. This benchmark has a real data

race nevertheless it will not affect the program

since we used synchronization. The result must

be negative as well.

• Benchmark has two threads and has two data

races. One of the data race is disable or got cov-

ered using synchronization and the other one is

real data race. Since there are two real data races

but one of them will not affect the program, the

result must be positive with one data race to be

reported.

2. Moderate benchmarks with medium line of code. In

this category, benchmark has ten threads and has two

data races. This benchmark has real data races and

the result must be positive with two data races to be

reported.

3. Hard benchmarks with large line of code. In this cat-

egory, benchmark has few threads and has nine data

races. This benchmark has real nine data races that

will affect the program and the result must be positive

with nine data races to be reported.

3952 2013 25th Chinese Control and Decision Conference (CCDC)

4 ANALYSIS AND RESULTS

Analysing the race condition detector tools is not trivial

since there is no standard measurements to be considered.

However, there must be initiative questions to be asked in

order to be able clearly to answer them. Among of the

questions are; How powerful is the performance of each

tool?, How much work need to be done in order to use each

tool?, What type of race condition does each tool detect?,

How many race condition each tool is detect?, Is there any

suggestion that each tool does when it detects race condi-

tion? And how many line of code the benchmarks have?

We have to pay attention to the benchmarks that we are

testing. The lines of code of those benchmarks are the ex-

act number of lines in the file to be tested and any other re-

lated files to be considered in the benchmarks directly. All

other files, that are not related to the benchmarks and they

are part of the program, are not considered to the bench-

mark such as thread classes, string classes, buffer classes

and etc. Also, we have numbered all five benchmarks that

we have as the following:

• benchmark has one thread and does not have data race.

This benchmark is represented by B1.

• Benchmark has two threads and has one data race that

is disable or got covered using synchronization. This

benchmark is represented by B2.

• Benchmark has two threads and has two data races.

This benchmark is represented by B3.

• Benchmark has ten threads and has two data races.

This benchmark is represented by B4.

• Benchmark has few threads and has nine data

races.This benchmark is represented by B5.

We have tested five different benchmarks on five different

data race detector tools. Each one of the tools has been

represented on the following tables and each table has a

comparison of five different benchmarks versus one data

race detector tool. We considered eight different criteria in

our experiment. These criteria are:

• Compilation Time (CT) in second.

• Number of Line of Code (LOC).

• Number of Classes (NOC).

• Number of Reported Data Race (RDR).

• Numbe of Actual Data Race (ADR).

• Type of Data Race (TDR).

• Output Result (OR).

• Tool Usage (TU).

There are two types of data race which are:

• Not Applicable (NA).

• Not Classified (NC).

Table 1: RaceFuzzer is represented by comparing five

benchmarks against eight criteria.

Also, in the tool usage, there are three different types we

faced when we used the tool for detecting data race. These

three types are: Simple, Moderate and hard. We have tested

the experiment on Mac BookPro Machine with 2.4GHz of

CPU and 4GB of memory. The following tables are com-

parison of the five different benchmarks for each tool.

For the RaceFuzzer, we need to make some configurations

to the test race condition in order to have the tool to work

perfectly.

Table 2: RacerAJ is represented by comparing five bench-

marks against eight criteria.

For the RaceAJ, there are two features provided with the

tool. We only used the optimized feature because the other

feature is not supported by MAC BookPro Machine. Tech-

nically, using the tool with the optimized feature takes

some time to compile. Once it get optimized, running the

race detector takes millisecond to analyse he program with

finding results. However, we have to consider the over-

all running time with no exception. For benchmark B5,

RaceAJ fails to run on this benchmark.

For the JChord, the output result is not easy to read. You

can not read how many data races have been found. I have

to count the number of data races from the output result by

counting the number of lines of the occurrence data races

that are provided by the tool. For benchmark B3, JChord

is reported 3 data races occurrence where two of them are

false reported data races and one real data race.

For the RCC, it is hard to use the tool because you are re-

quired to inject some statements that are defined by the tool

in order to have the tool to work perfectly. Also, if you have

implemented some classes to runnable type, then the tool

2013 25th Chinese Control and Decision Conference (CCDC) 3953

Table 3: JChord is represented by comparing five bench-

marks against eight criteria.

Table 4: RCC is represented by comparing five benchmarks

against eight criteria.

will not work unless you remove them. For benchmarks

B1, B2 and B3, RCC is reported some errors beside the

data races which is odd since the files are free of error.

Table 5: JRF is represented by comparing five benchmarks

against eight criteria.

For the JRF, it reports the first occurrence of data race and

stops after that. it seems to me that JRF reports only the first

one of the data race regardless of the other data races that

have been known. For benchmarks B4 and B5, unknown

means that we can not tell neither data race nor error.

Based on the previous tables, we can come to the con-

clusion that there are significant differences in the perfor-

mance of detecting data races. Java RaceFinder (JRF) is the

best performance and RacerAJ is the worst performance.

The following graph represents the performance of the five

tools in seconds:

Based on the previous tables, we can come to the conclu-

sion that there are significant differences in the efficiency

of detecting data races. RaceFuzzer is the best efficiency

Figure 1: Shows the average time of the performance in

detecting data race for all five benchmarks in seconds

and RCC is the worst efficiency in the case of ignoring the

JRF. Figure 1 represents the efficiency of the five tools in

term of the number of the data race occurrences compare

to the actual data race occurrences:

Figure 2 shows that the actual data race occurrences are

0, 0, 1, 2 and 9 for benchmarks B1, B2, B3, B4 and B5

respectively. Each tool has reported different results which

can be summarized as follow:

• RaceFuzzer has reported 0, 0, 2, 2 and 9 data races for

benchmarks B1, B2, B3, B4 and B5 repsectively.

• RacerAJ has reported 1, 0, 1, 6 and 12 data races for

benchmarks B1, B2, B3, B4 and B5 repsectively.

• JCHORD has reported 3, 2, 3, 2 and 9 data races for

B1, B2, B3, B4 and B5 repsectively.

• RCC has reported 2, 0, 3, 6 and 15 data races for

benchmarks B1, B2, B3, B4 and B5 repsectively.

• JRF reported 0, 0, 1, 1 and 1 data races for bench-

marks B1, B2, B3, B4 and B5 repsectively.

based on the outcomes, we came to the conclusion that

helps us on deciding which tool to use in order to test our

Figure 2: Shows the number of data races found by each

tool for all the five benchmarks compare to the actual data

races which are 0, 0, 1, 2 and 9.

3954 2013 25th Chinese Control and Decision Conference (CCDC)

program. We found that RaceFuzzer would be the best

choice. Through the experiment, we notice that the five

tools are not really quite easy to use since they are different

in configuration, usage level and model. We can summa-

rize the experiment outcomes experience as follow:

• RaceFuzzer is a moderated tool for data race detec-

tion. You need to work on your code as well as the tool

configurations in order to perfectly detect data races.

• RacerAJ is also a moderated tool for data race detec-

tion. You need to work on your code as well as more

on the tool configurations in order to perfectly detect

data races.

• JCHORD is a moderated tool for data race detection

as well as deadlock detection. You need to work on

your code as well as more on the tool configurations

in order to perfectly detect data races.

• Race Condition Checker (RCC) is a hard tool for data

race detection. You need to inject some statements in

the code in order to have the tool to work perfectly

where in my opinion is like finding the data race man-

ually.

• Java RaceFinder JRF is a moderated tool for data race

detection. You need to work on your code as well as

the tool configurations in order to perfectly detect data

races. Also, it reported the first occurrence of data

race and ignore the rest if any.

All in all, we recommend the RaceFuzzer data race detector

tool to be used in order to free your code from data race.

5 FUTURE WORKS

We plan to extend our work to go deeper in the race condi-

tion by providing more benchmarks to be tested. Also we

plan to extend our work to include the deadlock detector

tools since it is mostly ignored.

6 CONCLUSION

As for the author’s knowledge, there is no work done nei-

ther on an empirical study of data race detector tools nor

deadlock detector tools. In this study we explore five dif-

ferent tools that detect the data race which are RaceFuzzer

[3], RacerAJ [4], Jchord [5], Race condition Checker RCC

[6], and Java RaceFinder JRF [8]. The study have been

shown that each one of them has significant feature that

can be uniquely identified its possibility of detecting race

condition. A good data race detector tool leads to success-

fully clean the software system from race condition faulty.

Indeed, the results shown that each tool has its own specific

way in detecting the race condition and each tool reported

differently from the others which leads to have comparative

tools. Based on the experiment we conduct, we showed that

the most important things to be considered are what is the

average time to detect the race condition? And how many

race condition the tool finds compared to the actual race in

the code that we test? The results showed that the best time

is registered for the Java RaceFinder (JRF) race condition

detector tool that is not accurately detecting the race condi-

tion when it comes to have many races which we can’t de-

pend on. Also, the worst time is registered to RacerAJ race

condition detector tool that is also not totally dependable

since it comes second best tool in detecting the race con-

dition. Furthermore, when it comes to the number of the

races that have been reported, the best result is registered

to the RaceFuzzer race condition detector tool that leads

to almost most dependable tool to be considered when you

plan to free you program from the race condition. Also, the

worst result is registered to the Race Condition Checker

(RCC) race condition detector tool that never detects the

exact amount of race compare to the actual races.

REFERENCES
[1] Netzer, R. H. and Miller, B. P. 1992. What are race condi-

tions?: Some issues and formalizations. ACM Lett. Program.

Lang. Syst. 1, 1 (Mar. 1992), 74-88.

[2] Yu, Y., Rodeheffer, T., and Chen, W. 2005. RaceTrack: effi-

cient detection of data race conditions via adaptive tracking.

In Proceedings of the Twentieth ACM Symposium on Oper-

ating Systems Principles (Brighton, United Kingdom, Octo-

ber 23 - 26, 2005). SOSP ’05. ACM, New York, NY, 221-234.

[3] P. Joshi, M. Naik, C.-S. Park, and K. Sen, ”An Extensible Ac-

tive Testing Framework for Concurrent Programs,” in Proc.

21st International Conference on Computer Aided Verifica-

tion (CAV’09), 2009

[4] Bodden, E. and Havelund, K. 2008. Racer: effective race

detection using aspectj. In Proceedings of the 2008 interna-

tional Symposium on Software Testing and Analysis (Seattle,

WA, USA, July 20 - 24, 2008). ISSTA ’08. ACM, New York,

NY, 155-166.

[5] Mayur Naik, Alex Aiken, and John Whaley. E?ective static

race detection for java. In Proceedings of the 2006 ACM SIG-

PLAN conference on Programming language design and im-

plementation (PLDI), pages 308?319. ACM Press, 2006.

[6] Cormac Flanagan and Stephen N. Freund. 2001. Detecting

race conditions in large programs. In Proceedings of the 2001

ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering (PASTE ’01). ACM, New

York, NY, USA, 90-96.

[7] Cormac Flanagan and Stephen N. Freund. 2000. Type-based

race detection for Java. SIGPLAN Not. 35, 5 (May 2000),

219-232.

[8] Kim, K., Yavuz-Kahveci, T., and Sanders, B. A. 2009. Pre-

cise Data Race Detection in a Relaxed Memory Model Us-

ing Heuristic-Based Model Checking. In Proceedings of the

2009 IEEE/ACM international Conference on Automated

Software Engineering (November 16 - 20, 2009). Automated

Software Engineering. IEEE Computer Society, Washington,

DC, 495-499.

[9] K. Sen, ”Race Directed Random Testing of Concurrent

Programs,” in Proc. ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI’08),

2008, pp. 11-21.

[10] G. Lindstrom, P. Mehlitz and W. Visser, ”Model Checking

Real Time Java Using JavaPathfinder”, In Proceedings of the

Third International Symposium on Automated Technology

for the Verification and Analysis (ATVA), October 2005.

2013 25th Chinese Control and Decision Conference (CCDC) 3955

