Reducing Travel Time by Incident Reporting via CrowdSourcing

Leon Stenneth?, Waldin Stone!, and Jalal Alowibdi’
'Faculty of Engineering & Computing, University of Technology, Kingston, Jamaica
{wstone } @utech.edu.jm
2Department of Computer Science, College of Engineering, University of Illinois at Chicago
{Istenn2, jalowi2} @uic.edu

Abstract— The contribution of this work is the creation of a
novel system that enables motorists who witness incidents to
submit reports to our system via the web. These reports are
aggregated, validated and verified automatically. Then, they
are used to update the road network graph. In this work,
we designed and implemented an incident reporting system
whereby users can report an incident such as an accident or
construction on a road network. We extended the FreeSim
simulator to accommodate our incident reporting system.
Experimental results showed that our system is capable of
reducing the travel time of users. We also presented our
verification algorithms that are used to verify that reports
are fact. Current approaches to congestion detection such
as loop detectors probe vehicles, and video image detection
may not be available on arterial streets. These technologies
may not be available in countries whose transportation
budget is low. Our model is less expensive, easy to implement
and can work in any environment (e.g. extreme weather).
This work is dependent on people’s incident response input
and not from sensor signals converted to traffic measure-
ments. To the best of our knowledge, this approach is the
first to consider web-based incident Crowd Sourcing with
automatic incident verification. Other driver based models
are telephoned based.

Keywords: Crowd Sourcing, Shortest path, Vehicular networks,
Incident reporting, Travel time reduction

1. Introduction

The aim of this research is to provide end users with
the most optimal route for a particular trip. Most routing
engines are based on static information and do not take con-
gestion into route planning on arterial streets. We clearly dif-
ferentiate between recurring congestion and non-recurring
congestion. Recurring congestion is caused by peak travel
time when most motorists are expected to be travelling.
Figure 1 depicts recurring congestion during a single day
in a city. Non recurring congestion is spontaneous and may
result from accidents, road maintenance or extreme weather.
This project is based on the latter, which is non-recurring
congestion, since 2/3 of traffic delays are caused by non re-
curring incident based congestion [1]. This system proposed
and presented in this paper enables the end users to save

time and energy on a trip. Congestion information updated
by motorist will not include multimedia data. Instead the
information sent will be text based because of the limitations
of mobile devices (e.g. battery life) and the demands of
multimedia (e.g. processing power and storage). According
to the 2007 Urban Mobility Report, delays due to heavy
traffic are now costing Americans $78 billion in the form
of 4.2 billion lost hours and 2.9 billion gallons of wasted
fuel [1]. As seen in Figure 1, vehicular traffic congestion is
a growing problem with more drivers experiencing severe
and extreme delay where the travel time is in excess of 1.5
times of the free-flow trip time. In addition, 2/3 of traffic
delays are not caused by recurring congestion. However,
due to the traffic incidences, they are caused by point-
based spontaneous congestion [1]. We intend to enable the
latter, which is spontaneous congestion, to be taken into
consideration when returning a trip to the end user.
Effective routing engines must consider both recurring
traffic patterns and non-recurring spontaneous traffic events.
Also, We intend to take this work further by including
spontaneous causes of congestion such as accidents and
construction work in our model. We refer to accidents and
construction work as incidents. For a transportation graph G
= (V,E)where V is a set of vertices and E is a set of edges. V
corresponds to a point where two roads intersect and E is the
road connecting two vertices. Congestion on the road graph
results in an edge e € E, that becomes larger for travel time
or less for current travel speed and thus the characteristics
of G has changed and resulted a new shortest path graph.
For the congestion, it should be observed that the edge e

Index Value Planning Time

2.20 { Index n
2.00 - ,T /

1.80

% Buffer Index
1.60 5 < .
/ / Travel

1.40 4 / . = Time
/ " A N\ \ Index

/S ~ AN

3A 5 A 7TA 9A 11A 1P 3P 5P 7P S P 11P
Time of Weekday

Fig. 1: Diagram Illustrates the Recurring Vehicular Traffic
Congestion

will return to its original value after a period of time.

The goal is to be able to tackle incident based congestion
(e.g. peak time, accidents, events such as a football game
and constructions). Our application accepts congestion or
incidents reports from third parties (e.g. police, ambulance
drivers, highway patrol and motorist) into consideration
when returning possible trip routes to end users of the
system. Our goal is not to create a trip planner, instead, it is
to update the routing server of trip planners with congestion
information to produce more accurate trips to end users.

Accident and Construction reports will be able to be
submitted by persons (e.g. police, ambulance, fire personnel
and regular motorists) at the scene of the incident with
regular motorist given lower priority due to trust factors.
Current incident detection frameworks do not have users to
submit incidents using the web and automatically verify the
reports [12]. Normally, the users may make a telephone call
to the transportation center and report the incident informa-
tion. Using the GPS sensor on the person’s mobile device
maybe fruitful in identifying an incident’s location. Our
approach is a web-based incident Crowd Sourcing system
with automatic incident verification. Some other strategies
to detect incident in prior work are loop detectors, CCTV
imaging, probe vehicles and microwave radar [12], [13].
These may not be available on arterial roads or in countries
who’s transportation budget is low. The remainder of the
paper is organized as follows: Section 2 explains the prior
work. Sections 3, 4, 5 and 6 introduces new edge weight
computation, validation and trust, updating shortest path
graph and system design respectively. Section 7 contains the
simulation, algorithms, experiments and system evaluation.
Section 8 and 9 contains the future work and conclusion
respectively.

2. Related Works

A wide variety of sensors can be used to determine where
and when an incident has manifested. Inductance loops,
microwave radar, probe vehicles and video detection are
some of the common sensors based approach [12], [13].

Inductance loops are inexpensive, robust and common
in incident detection [12], [13]. The pitfall of inductance
loop is that they require road closure for installation and
maintenance. Also, these devices under perform whenever
the weather condition is extreme, such as several inches of
snow on the ground that cover the inductance loop. Video
based approaches also have limitations [12], [13]. Since
they can be installed above ground, road closure may not
be necessary for installation and repair. Video detection
may under perform during extreme weather such as fog
or any other low visibility weather conditions. Also, we
may have the scenario where vehicles hide each other from
the cameras. For example, a large truck may hide several
cars from the camera and the correct speed of the cars
become undetected. Probe based vehicles [13] can be broken

down into two categories which are Beacon based and
GPS or positioning based [13]. Beacon based relies on a
device called a beacon that uses Dedicated Short Range
Communication (DSRC) to communicate with vehicle tags
as vehicles passes the beacon. By observing the temporal
and spatial components as vehicles pass from one beacon to
another, the travel time can be determined. The pitfall of this
approach is that all vehicles in this system are expected to
have a tag that can be used to communicate with the beacons.
GPS or positioning based eliminates the cost of constructing
a beacon based network. This facilitates more coverage of
the road networks. By taking the GPS coordinates of a probe
vehicle at different time intervals, we may be able to infer
the current status of the road network.

Observe that the models described above are not common
on arterial roadways. Furthermore,it is unrealistically expen-
sive to deploy any of the above systems over the entire road
network of a country. The models above operate by first
determining a threshold in terms of speed or travel time for a
road network. Then, algorithms continue to take sensor read-
ings and if the speed or travel time falls below the threshold
an alarm is triggered[12]. Our approach is less expensive
and can be used under extreme weather conditions. Based
on the fact that we consider people as sensors, the entire road
network of a country can be covered. Observe, our approach
is not the first driver based model [12]. Other driver based
models are not done via the web. Instead, they rely on phone
calls for reporting. One of the challenges we faced in driver
based models is the inconsistency of the reports submitted
by different users.

3. New Edge Weight Computation

One of the major issues for this research is the re-
computation of the weight of the road edge that has been
affected by the incident. In transportation graphs, edges have
weights which may be related to average time to travel an
edge or the length of an edge. In our system, the weight of an
edge is the current travel speed. We assume a free flow travel
speed of 65 mph in this work. If there is an incident on an
edge, then the edge attracts a new weight. The research issue
is how to determine the new value that should be assigned
to the weight of the affected edge. The approach that we
use to determine the new edge weight, is dependent on the
verification rule that is selected in our system.

Our two verification rules are discussed thoroughly in the
algorithm section. The first rule is called "majority rule"
and the second called "GPS rule". For the "majority rule",
if the reporter is a "regular motorist", then the incident is
treated as a fact if the total number of distinct reporters
reporting the same incident exceeds some threshold. In our
system, for regular motorist the threshold used is three. We
then take the mean travel speed of the three reports as the
new edge weight. Additionally, if the incident is reported
by a uniformed personnel (e.g. police, highway patrol and

ambulance driver), then we treat the incident report as a fact
immediately since we assume uniformed personnel are more
trusted than regular motorists. In this case, we use the current
travel speed reported by the uniform personnel as the new
weight of the road edges affected by the incident

For the GPS rule, we treat an incident that is reported
as a fact if and only if the reporter is close to where the
incident has occurred. Closeness is determined by extracting
the reporter’s location coordinates (latitude and longitude)
and then computing the Euclidean distance between the
reporter and the incident’s location point. This rule enforces
the fact that persons can only reports incidents that they are
a close distance from. Privacy issues concerning the location
of the mobile user is addressed in our prior work [15], [16]

4. Validation and Trust

While reputation-based trust management protocols have
been proposed for mobile wireless networks, the scale and
potential dangers of misinformation may lead the system into
chaos. The large number of motorist pose a problem, which
may be reduced if we have persons willing to participate
in congestion control conduct a registration and then we
issue to the users them a key or unique id. When these
persons witness an incident and see traffic piles, they can
report online to the validation system.

We define an end user of the system as persons who
submit request for trips. And a trip is defined as a route
between two points, a start point and a destination point. We
also define an untrusted user as a motorist who is at the scene
of a congestion scenario and need to update our routing
component so that other motorist can be presented with trips
around the congested area. A trusted user in our system
is defined as an authority with more permission or trust
such as police, ambulance personnel and fire department
personnel. For the untrusted users, we will require them to
sign up to participate in congestion management afterwards
they are issued with a key to use our system. The virtual
ratings of this key may increase or decrease depending on
the information they provide. We could also offer virtual
incentives if the incident information that they provide is
correct. The validation for this type of user (untrusted) will
be more rigorous than the trusted user. The robustness of
the proposed model is determined by the number of similar
reports that must be received before the incident is verified
as a fact. Also, the constraint that ensure that users must be
close to an incident to submit a related incident report (GPS
rule).For trusted parties, the validation system may be less
vigorous since we assume that these persons have a higher
truthfulness level.

5. Updating Shortest Path (SP) Graph

After we compute the new weight for the incident edge,
recomputing the entire shortest graph may be time consum-
ing. To compute the shortest path between two vertices in a

directed graph, there are three general classes of algorithms
which are Naive, Dynamic class and Pre-Computed class
[14].

The Naive class of algorithms includes Floyd-Warshall’s
Algorithm [3] and Johnson’s Algorithm [4]. Both of which
compute the shortest path for all pairs of vertices in a graph.
The complexity may be up to V3. These algorithms, with
respect to the specific problem discussed, are required to be
executed every time a link update occurs, which is when
a trusted/untrusted third party update has been validated.
Although the other algorithms to be discussed next may be
faster for updates, re-running these algorithms every time
a edge update is received allows the fastest path to be
determined in constant time, since the fastest paths will
already have been computed.

The Dynamic All-Pairs Shortest Path algorithm, developed
by Demetrescu and Italiano, attempts to improve over the
naive algorithms by determining the path with minimum cost
between two vertices in a graph in constant time where there
is an edge update cost [5], [6].

The Pre-Computed class of algorithms [14] takes ad-
vantage of the fact that the graph is static. With no edge
insertions, all of the paths between all pairs of nodes can be
precomputed. Then, they do not require the application to
take the extra step of determining all of the paths between
two vertices when a request for a fastest path is being
answered [14].

The Constant Update Algorithm [14] sacrifices the speed
of retrieving fastest paths for the amount of time it takes
to update the weight of an edge. The algorithm does not
maintain the fastest paths at all times, but does compute
the fastest path when requested by an end user. When the
speed on an edge has changed by a specified threshold, the
time to traverse that edge will be updated, which can be
accomplished in constant time [14].

The Constant Query Algorithm [14] sacrifices the speed
of updating an edge for the time to retrieve the fastest path.
This algorithm always maintains the fastest path between
all pairs of vertices by recalculating the fastest paths for
all pairs of vertices that have a path containing the updated
edge whenever an edge update occurs. When the speed on
an edge has changed by a specified threshold, the time to
traverse that edge will be updated. Also, the fastest paths for
all pairs of vertices, that have a path containing that edge,
will be recalculated. In our system, an edge is updated with
its new weight each time an incident is verified.

6. System Design

The operation of the incident reporting system is shown
in Figure 2. We clearly differentiate between the two types
of users that submit incident reports in our system. First,
we define a trusted user according to our system as a
"uniformed personnel” such as police. The reports, that
these personnel generated are more trusted than "regular

Trusted Party
Ung:f)tti?-i;?ny (Police, Ambulance,
drivers etc)
Trust Validation
System

Verification
Affected Link

Computation

End users

[Routing Component
Of Transit System

Fig. 2: Diagram Illustrates the System Design

motorist” and incident verification for these reports, are less
rigorous. A single report by a "uniformed personnel” may be
considered as a fact. Secondly, we classify the other motorist
as untrusted parties. These reports, that are generated by
untrusted parties, may be more rigorously verified. In our
system, if the same incident is reported at least three times
by three distinct untrusted parties and the users are close to
the incident, then the report is considered a fact.

A user, either trusted or untrusted, submits a report
reporting an incident that they witness on a road network.
We first validate the user to ensure the user is who they claim
to be and is authorized to use the system. After validation
we then consider verification which is done by two rules
conjunctively (1) Majority rule and (2) GPS rule. These
rules are used to verify that an incident, that was reported,
is a fact. When verification is completed, the next step is
to compute a new weight for the incident edge. This may
be done by taking an average of all the current travel speed
reported for that edge by the untrusted users. The weight of
the edge may also be taken directly from the incident report
by the "uniformed personnel”. The current travel speed of
the incident edge is a parameter for report input.

Finally, the routing component, in our case FreeSim traffic
simulator [2], [8] is updated with the new weight for the
incident edge. In publicly available transit itinerary planning
systems, the updated incident edge update would be sent to
the routing engine of the transit itinerary planning system
e.g Graphserver. End users, that request shortest path from
an origin to a destination, may now get a path where the
incidents are taken into consideration when returning the
shortest or fastest path.

7. Simulation and Experiment

We extended the FreeSim freeways simulator [2], [8]
to accommodate our congestion reporting system. FreeSim
is a transportation simulator that enables users to insert
transportation graphs and query the shortest or fastest point
from an origin to a destination. The simulator implemented
a variety of shortest path algorithms such as Dijkstra [9],
Bellman Ford [3] and Johnson’s [4]. For our experimental
evaluation, we used two real world road network. The first
is a road network representing the University of Illinois area
of Chicago (UIC)consisting of 14 nodes and 15 edges. The
second road network is represented a subsection of the Los
Angeles area consisting of 50 nodes and 64 edges. A map
of the UIC evaluation area in Chicago is shown in Figure 3.
The simulation environment was a HP Notebook PC running
Windows Vista containing a P8400 Intel DUO 2.27 GHz
processor with 4GB RAM. The system is developed using
JAVA and the development environment is Eclipse version
34.1.

7.1 Architecture and Methodology

In Figure 4, we discuss the architecture of our system. We
assume that each user has a mobile device with an Internet
connection. Each mobile device have access to positioning
information such as GPS, cell tower triangulation or WiFi
positioning.

A user u submits a request to our intelligent transportation
simulator simulator FreeSim for the shortest or fastest path
from an origin node to a destination node on the road
network graph. FreeSim engine then runs a selected shortest
path algorithm on the graph and returns the shortest or fastest
path as requested by the user. All users in our system, that
are traversing the road network, have access to the incident

L P
= W Harrison St oy
o LotiB L 3020%
% = r A C ||l.'|.r\-m
) Lot 14 . - 1
W
£ W-vermon Park.R Swdent Basketball o
) Center East 3
o University Jane Addams W Paolk St o
o Vilage = =1 Hull‘House i
sr‘g”ian -% X The Quad = Museum W Cabrini 5t
ar B
7 = !
I = Univer o A2 W Arthington ¢
q "R L,
@ w |Iinois -3 s
[W Taylor St - n A TR
wm — Al's Beaf [= =
: : 5 c
® = A
z 2 = y
£ 5 4] LotE, i | =
St Ignatiuves g - | ot 5C S a0 13
College Prep @ T u [
M\ Roosevelt Rd - W Roosevelt Rd
Hiysica |
Education Bldg WoA2th Bl @0
hbume fve_ ¥ o
5 Soccer 5
L5 A g
{5:? Les Miller G @2
@ Wi Mazwell St — Field Baseball

n

Fig. 3: Diagram Illustrates the Evaluation Area

reporting system and report an incident that they witnessed.
A typical report has the following properties reporter name,
reporter id, incident, report location. The reporter name and
reporter id is the name and identification of the person that
submit the incident. The report location is the latitude and
longitude of the reporter which may be accessible if the users
have positioning features on the mobile device. If the mobile
device is limited and cannot infer a latitude or longitude,
our system still works. An incident in the report has the
following properties incident location, current travel speed,
incident time, incident type , source node, destination node.
Below we explain the properties of an incident as defined in
our work.

o Incident location represents the latitude and longitude
of the incident

o Current travel speed represents the current travel speed
of vehicles after the incident. Before the incident, we
assume that vehicles travel at 65mph.

o Incident time represents the time of the incident

e Incident type represents the type of incident example
accident or road construction

e Source node and Destination node are nodes defined
by our system. The source node is a node before the
incident point and the destination node is a node after
the incident point.This information assist us in detecting
the incident edge.

7.2 Data Structures

Three hash maps are used to track the reports and the
incidents. There is an hash map called alllncidents that
keep track of all incidents reported in the system. Another
hash map called allReports that maintain a list of all re-
ports in the system. The reports are stored with reporter
identification as index in the hash map. If an incident is
confirmed by the GPS rule or majority rule, that report is
added to theconfirmedReports hash map and removed from
the allReports hash Map. Before we add a report to the
confirmed hash map of reports, we first verify that the hash
map does not already contain the possible new report.

Incident
report

i
H - FREESIM SIMULATOR
Incidentd}.. . *map of UIC area
report | [, g 2 * map of LA area
|l — L— *SP Algorithms (Dijastras,
| 288 i a Johnsons, Bellman Ford)
Incident ~ o= i

’ | /./

Fig. 4: Diagram Illustrates the System Architecture

report

7.3 Algorithms

We discuss two algorithms that we used in our system
to verify an incident that was reported is a fact. The first
algorithm is called majority rule. It considers a report or set
of reports as a fact if the same incident was reported by at
least three different users in the case of untrusted users. The
second algorithm is called GPS rule. It considers a report
or set of reports to be a fact if the location that a user
submitted a report from is in close proximity to the report’s
incident location. Both rules have to be satisfied before a
report can be treated as a fact. Algorithm 1 is our majority
rule verification algorithm. These algorithms are used each
time a new report is entered into the system. In the first
step, the algorithm checks to see if the user that submitted
the incident report is a "Uniformed Personnel" or not. If the
user is uniformed personnel, then the data that they provide
is more trusted and a single report from these personnel are
considered as a fact. We then update the traffic simulator
and add to the confirmed incident hash map the new report
and update the road network graph in constant time with
the new edge weight. Secondly, if the reporter is a "regular
motorist”, the algorithm compares against all other reports
in the system searching for reports with a common incident
source and destination. If the algorithm discovers at least
three other reports from different users in the system, then
that incident is confirmed. For all confirmed incidents, we
update FreeSim traffic simulator with the new weight of the
edge containing the incidents. The weight of the new edge is
determined by taking an average of the current travel speed
as reported by the three users. In line 17 of the algorithm,
before updating the simulator, we ensure that this report is
not duplicated the list of confirmed reports.

Algorithm 2 is our GPS rule for incident verification. For

Algorithm 1: Majority Rule

precondition: allReports !=null
input: Hash Map allreports,confirmedReports
/* Hash map of all reports and confirmed reports in the system™/
Report newReport
method:
if(newReport.reporterld == “Uniformed Person™)
allConfirmedReports.put(newReport);
updateTraffieSimulator()/** update FREESIM **/
return
endif
int count = 0;
for(j=1 to allReports.size())
if(allReports.get(i)!=null && newReport!=null)
if(allReports.get(i).incident.sourceNode==newReport .incident.sourceNode)
if(allReports.get(i).incident.DestNode==newReport .incident.DestNode)
if(allReports.get(i).reporterId!=newReport .reporterld)

LHASmE LN~

-
RE2

count++
endif
endif
endif
endif
if (count==3&& newReportlc allConfirmedReports)
allConfirmedReports.put(rnewReport)
updateTrafficSimulator()/** update FREESIM **/
allReports.remove(j)

B B et et b ke
NeeENaA AN

endif
endfor

Lol el
RS

end

each report, the rule operates as follows. For each report, it
checks to see if the incident location is close to the reporters
location. This clearly means that reporters can only report
incidents that you are close to. To determine if a reporter
is close to an incident we compute the Euclidean distance
between the reporter’s location and the incident’s location.
Even though we refer to the ruleas GPS rule, positioning
techniques used by this rule is not limited to GPS. Other
positioning techniques may be considered such as cell tower
triangulation or WiFi positioning.

7.4 System Evaluation

In Figure 5, we present the system during operation. The
graph is a section of the Downtown area of Chicago in
particularly of the UIC area along Halsted Street. In the
diagram above to the left is the FreeSim traffic simulator
[2], [8] and to the right is the incident reporting system
that we extended the simulator to accommodate. The nodes
in the graph are as follows starting from the upper left:
Halsted and 20th, Halsted and 19th, Halsted and 18th,
Halsted and 17th, Halsted and 16th, Halsted and 14th,
Halsted and Roosevelt, Roosevelt and Morgan (South West
of Halsted and Roosevelt), Roosevelt and Jefferson (North
East of Halsted and Roosevelt), Halsted and Taylor (South of
Halsted and Roosevelt), Halsted and Polk (South of Halsted
and Taylor), Halsted and Harrison(South of Halsted and
Polk) Morgan and Taylor (West of Halsted and Taylor),
Harrison and Jefferson (East of Halsted and Harrison).

In the demonstration in Figure 5, the user submits a query
for the fastest path from Halsted and 20th as origin and
Halsted and Harrison as destination. The path recommended
is highlighted in red as shown above. The total distance to be
traveled is 10.30 miles and duration of travel is 9 mins and 30
seconds. The shortest path algorithm used is Dijkstra [9]. We
assume that users travel at 65mph and that each block is 1/10
of a mile. Also, we discuss the situation where an incident is
reported and verified and the simulator is updated with the
new edge weight after a set of incidents have been reported
and verified. In Figure 6, an incident is reported by a user
(Alice). The incident is reported to have occurred on the edge
between Halsted and Roosevelt and Roosevelt and Jefferson
and the current travel speed is Imph. Two other users before

Algorithm 2: GPS Rul

precondition: allReports !=null
input: Hash Map all reports,confirmedReports
/* Hash map of all reports and confirmed reports in the system*/
method:
for(j=1 to allReports.size())
if(allReports.get(i)!=null)
if(allReports(i).incidentLatitude closcTo allReports(i).reportLatitude)
if(allReports(i).incidentLongitude closeTo allReports(i).reportLongitude)
allConfirmedReports. put(allReports.get(i)}
updateTrafficSimulator()/** update FREESIM **/
allreports.remove(i)
endif
endif
endif
endfor

DEemEA AL -

-

end

CTS Project UIC Area
Chicago

Inccent T

| carert Travel Speed

W Usamy GPS [" Donetuse my P

submt

Fig. 5: Diagram illustrates the System GUI-A

Alice had submitted a similar report on the incident and was
close to the incident. Based on the majority rule, the incident
is verified and the updated edge speed sent to the simulator
as shown in blue in the message section of the simulator.
After the edge is updated, another user requested the same
query as described in the first screen shot. The new fastest
path is highlighted in red above and takes 10 minutes and
26 seconds and the total distance is 11.30 miles. Observe
that, if the previous shortest path as in the first screen shot
was taken by the user, in the event of the incident, the total
travel time would have been 27 minutes and 14 seconds.
This reduces the travel time of Alice by over 16 minutes.
Also, there is also a reduction in fuel consumption, however
we did not compute the amount of fuel that was saved.

8. Future Work

We intend to extend this work by using a mobile object
generator [10], [11] to generate synthetic users moving in the
streets and submitting requests to the system. These mobile
objects generated by the moving object generator will report

HEE
T = - YR
s — CTS Project UIC Area
i N Repoter Name David
(1) cident onkimed by egortCous. nctestID = 14576 Chicago

x Fresuny ysten

it Tyge aidert (ous & fuck

CuertTrawisped 1

Fastest Pth Algrithn Source Node Halsted and Roosevet

FesksiFan | | StoristP:
7ah | | SherastPalt Det Hade Rucsealtang Jebersan

¥ Daratuse myGPs

sumt

Fig. 6: Diagram illustrates the System GUI-B

incidents and the current travel speed of an edge. Incidents
will be generated randomly on the road network, statistical
results could then be used to show how much time can be
saved by the usage of our system.

9. Conclusion

We present a system that reduces the travel time and fuel
consumption of motorist whenever there is an incident on the
road network. In our system, the road network graph is very
dynamic and new edge weights are added to the graph when
incidents are detected. The system we created is an extension
of the FreeSim traffic simulator [2], [8] to accommodate
our incident reporting system. Algorithms that we used for
incident verification in our system are presented. Also, a
demonstration example of our system during operation is
provided. The demonstration shows a motorist saving over
16 minutes of travel time when our system is used.

Current sensor based models for incident detection may
not be available on arterial streets. It is impractical to cover
the entire road network with these sensors. Our approach
uses people as witnesses and sensors. Clearly, in our model,
users can perform collaborative cheating to lead the system
into chaos. In subsequent work on this paper, the plan is
to develop a collaborative cheating prevention algorithm for
this system.

References

[1] R. Mangharam, I. Lee, and O. Sokolsky, “Real-Time Traffic Conges-
tion Prediction,” in 2nd Workshop on Experimental Evaluation and
Deployment Experiences on Vehicular Networks, WEEDEV 2009.

[2] J. Miller, and E. Horowitz, “FreeSim éf\s A Free Real-Time Traffic
Simulator,” in 10th International Intelligent Transportation Systems
Conference (ITSC 2007), pp. 18-23, IEEE 2007..

[3] R. Floyd, “Algorithm 97: Shortest Path,” in Communications of the
ACM, vol. 5, no. 6, ACM 1962.

[4] D. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Net-
works,” in Journal of the ACM (JACM), vol. 24, no. 1, ACM 1977.

[5] C. Demetrescu and G. Italiano, “A New Approach to Dynamic All
Pairs Shortest Paths,” in the Thirty-Fifth Annual ACM Symposium on
Theory of Computing (STOC ’03), pp. 159-166, ACM 2003.

[6] C. Demetrescu and G. Italiano, “Experimental Analysis of Dynamic
All Pairs Shortest Path Algorithms,” in ACM Transactions on Algo-
rithms(TALG), vol. 2, no. 4, pp. 578-601, ACM 2006.

[7] The Bits Laboratory, “TransitGenie website” [Online]. Available:
http://www.transitgenie.com, 2011.

[8] J. Miller, “FreeSim website” [Online].
http://www.freewaysimulator.com/index.html, 2011.

[9] E. Dijkstra, “A Note on Two Problems in Connexion with Graph,” in
Journal Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[10] B. Gedik, and L. Liu, “Location Privacy in Mobile Systems: A
Personalized Anonymization Model,” in 25th IEEE International
Conference on Distributed Computing Systems (ICDCS 2005), pp. 620—
629, IEEE 2005.

[11] B. Bamba, L. Liu, P. Pesti and T. Wang, “Supporting Anonymous
Location Queries in Mobile Environments with PrivacyGrid,” in 17th
International Conference on World Wide Web (WWW °08), pp. 237—
247, ACM 2008.

[12] E. Parkany, and C. Xie, “A Complete Review of Incident Detection
Algortihms & Their Deployment: What Works and What Doesn’t,” in
The New England Transportation Consortium, 2005.

Available:

[13] Cambridge Systematics Inc., and Texas Transportation Institute, “Traf-
fic Congestion and Reliability:Trends and Advanced Strategies for
Congestion Mitigation,” in Federal Highway Administration, 2005.

[14] J. Miller, “Dynamically Computing Fastest Paths for Intelligent
Transportation Systems,” in [EEE Intelligent Transportation Systems
Magazine, Volume 1, Number 1, Spring 2009.

[15] L. Stenneth, P. Yu, and O. Wolfson, “Mobile Systems Location
Privacy: "MobiPriv" a Robust K-Anonymous System,” in /EEE 6th In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), 2010.

[16] L. Stenneth and P. Yu, “ Global Privacy and Transportation Mode
Homogeneity Anonymization in Location Based Mobile Systems with
Continuous Queries,” in 6th International ICST Conference on Col-
laborative Computing: Networking, Applications and Worksharing,
November 2010.

