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Abstract— Understanding the mobility of a traveller from 

mobile sensor data is an important area of work in context 

aware and ubiquitous computing. Given a multimodal GPS 

trace, we will identify where in the GPS trace the traveller 

changed transportation modes. For example, where in the GPS 

trace the traveller alight a bus and boards a train, or where did 

the client stop running and start walking. Using data mining 

schemes to understand mobility data, in conjunction with real 

world observations, we propose an algorithm to identify 

mobility transfer points automatically. We compared the 

proposed algorithm against the state of the art that is used in 

the previously proposed work. Evaluation on real world data 

collected from GPS enabled mobile phones indicate that the 

proposed algorithm is accurate, has a good coverage, and a 

good asymptotic run time complexity. 

I. INTRODUCTION 

Determining a traveller’s context from wearable computers 

is essential in pervasive computing and activity recognition. 

The mobility transfer points of a traveller denote some 

characteristics of his behaviour or travel pattern. In [1, 3], it 

was pointed out that detecting the transportation modes 

travellers from their uploaded GPS traces becomes easier 

with knowledge of a person's mobility transfer points . 

Another motivation for mobility transfer detection is 

mobility surveys. Travel demand surveys have taken 

multiple formats, such as telephone interviews and 

questionnaires. These data collection strategies rely on 

manual labelling of data after the completed trip, thus, these 

data collected manually retain inaccuracies. For example, 

one may not recall the exact time that they had exit a bus, or 

boarded a cab, or transfers from a bus to a train, etc. Using 

GPS enabled mobile phones is more reliable for reporting 

accurate location, trip time, and trip transfers [10]. Thus, if 

the precise mobility facts of individual users are recognized, 

it is possible to provide a more realistic travel demand 

picture. 

In this paper, we are not concerned about distinguishing 

the traveller’s mode of transportation, such as whether they 

are traveling by car, bus, or bike. Instead, we focus on 

identifying the points where she changed from one 
transportation mode to another. The proposed approach 

outperformed previously proposed algorithm for the same 

problem. More specifically, we compared the proposed work 

against the change point segmentation based algorithm that 

was proposed in [1, 3] and employed in the GEOLIFE 

project [6].  

The proposed scheme is able to detect the modal transfer 

points automatically without knowledge of the mobile 

client’s travel history (e.g. where the traveller parked) or 

external indexes such as GIS data (e.g. bus stop locations or 

road geometries). The detection algorithm is based on real 

world observations and knowledge extracted from collected 

GPS sensor data using data mining algorithms. From labelled 

collected GPS sensor data, we used data mining algorithms 

to study the correlations in the data. Based on this study, we 

determine certain threshold values. Using these pre-

determined threshold values, in addition to real world 

rational, we developed the algorithm. 

The proposed algorithm is compared against the change 

point segmentation based algorithm [1, 3] that is utilized in 

Microsoft’s GEOLIFE project [6]. In [1, 3], the authors used 

only speed and acceleration to determine the transition points 

in the change point algorithm. However, depending on them 

(i.e. speed and acceleration) solely is not enough, in some 

cases such as traffic or extreme weather, the speed and 

acceleration of walking, car, and bus are the same. Thus, in 

addition to speed and acceleration, we also utilize the 

heading change and accuracy of the GPS points within the 

GPS trace to accurately detect mobility transitions.  

II. RELATED WORK 

Transportation mode detection from sensor data has been 

documented in the literature [1, 2, 3, 4, 10, 13, 14, 15].  The 

general principle for mode detection is to apply machine 

learning algorithms on the collected sensor data, then for an 

unlabelled submission, the transportation mode is detected 

probabilistically. The states of the art are: (1) Reddy et al [5] 

combined GPS sensor data with accelerometer data in order 

to detect which mode of transportation a user is currently 

using (online system). In this work, the transportation mode 

detection is done in real time every second. Hence, there is 

no need to detect modal transfer points. (2) Stenneth et al [4] 

combined GPS sensor data with GIS information about the 

underlying transportation network to infer transportation 

modes. This proposed work is different as we only cater for 

transportation transition points and not transportation mode 

detection for the entire GPS trace. 
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 The closest work to the proposed approach is Zheng et al 

[1, 3]. The transportation transfer algorithm proposed [1, 3] 

is utilized in Microsoft’s GEOLIFE project [6].  In [1, 3, 6] 

they proposed and considered a change point segmentation 

method to determine where the mobile client (i.e. traveller) 

changes from one transportation mode to another.  We 

compare the proposed work with the change point scheme in 

[1, 3] since it is the closest work to this paper.  Our proposed 

algorithm is different from the change point segmentation 

method used [1, 3]. For example, in the proposed approach, 

from the traveller’s GPS trace, we extracted speed, 

acceleration, GPS accuracy, and heading change. On the 

other hand, the change point method does not consider 

heading or GPS accuracy. Additionally, the change point 

method does not account for inaccurate GPS reports.  

Several other papers have considered the accelerometer 

sensor on the traveller’s mobile phone for transportation 

mode activity recognition [5, 13, 14]. This work is different 

since we did not use the accelerometer sensor. The GPS 

sensor is more common than the accelerometer. Further, [14, 

15] utilizes Wi-Fi and cell tower technology for mobility 

detection. This proposed work by us did not consider Wi-Fi 

or cell tower information. Consequently, the proposed 

algorithm is different. 

III. DATA MODEL 

In this section, we discuss the data model.  

Definition 1. GPS sensor report.  A GPS sensor report pi, 

represents data submitted by the mobile client from their 

mobile device’s GPS sensor. The format on the report is < lat, 

lon, t, v, h, acc > where: lat represents the latitude; lon 

represents longitude; t represents the timestamp of the sensor 

report; v represents the current ground speed of the device; h 

represents the direction of travel; acc is the accuracy level of 

the latitude and longitude coordinates. 

From each GPS report we need to compute two extra 

variables, heading change and acceleration. Given a finite set 

of GPS reports {p1, p2, p3, p4…pn}, the heading change of the 

i
th  

GPS report is given by 

  
               

      
      

    

             
              

    
   

Likewise, the acceleration of the i
th

 GPS report is given by 

  
                  

      
        

      
            

 

Definition 2.  GPS Trace.  A GPS trace T in our model is 

a sequence of time-stamped related GPS reports, T = p0 → p1 

→  · · ·  → pk,  0 ≤ i ≤ k, pi+1
t
  >  pi.

t  

 

Definition 3.  GPS Slow Point. The slow points on a 

trajectory T is a point pi, where pi
v
  < speed threshold and the 

acceleration of pi is below some acceleration threshold. The 

acceleration of pi, is pi 
acceleration  

= (pi
v
 -  pi-1

v
 )/ (pi

t
 -  pi-1

t
).  

In our experiments, the speed threshold = 1.88 m/s and the 

acceleration threshold is 0.4 m/s
2
. These thresholds were 

determined based on data mining techniques (see Section VI). 

On the contrary, if a GPS point is not a GPS Slow Point, it is 

then called a GPS fast Point.  

Definition 4.  Single Modal GPS Trace. Given a labelled 

GPS trace T, with points p0 → p1 →  · · ·  → pk, T is 

considered a single modal GPS trace if  0 ≤ i ≤ k, pi
transportation 

mode
 is the same. Intuitively, this means that all the points p0 

→ p1 →  · · ·  → pk ℰ T, are labelled with the same 

transportation  mode.  

Definition 5.  Multi Modal GPS Trace. Given a labelled 

GPS trace T, with points p0 → p1 →  · · ·  → pk, T is 

considered a multi modal GPS trace if  i,j 0 ≤ i, j ≤ k , 

∃i∃j(pi
transportation mode

 ≠ pj
transportation mode

). Intuitively, this 

means that there exists at least one GPS point from the set of 

all GPS points { p0, p1, …pk-1 , pk}  that has a different 

transportation modal label.  

Definition 6.  GPS Trace Leg.  Given a trajectory T, as 

defined in definition 2. A GPS trace leg is subset of the 

continuous points {pn → pn+1→ pn+2 · · ·  pm},  n>=0, m <= k  

from {p0 → p1 →  · · ·  → pk }, such that the subset 

corresponds to a Single Modal GPS Trace. Also, {p0 → pn-1} 

could represent zero or more GPS Trace Legs, likewise the 

subset {pm+1 → pk}.  

A. GPS sensor sample rate 

The sample rate of the GPS sensor is important in mobile 

sensing because sensor sampling consumes energy [14]. 

Since the algorithms are for mobile devices, it makes sense 

to adjust the sensor sample rate in accordance to the 

available battery power. In other words, the proposed 

algorithms should be energy-aware. In this work, we utilized 

a fix GPS sensor sample rate of once per second. Energy-

aware dynamic sampling is a subject of future work.   

B. Mobile phone’s GPS accuracy 

In this work, three types of mobile devices (Samsung 

Galaxy, IPhone 3G, and HP IPAQ) are considered for 

validating the proposed algorithms (see Appendix). Based on 

previous studies by Miller et al [11, 12], these devices 

possess a GPS accuracy of within 10m 95% of the time.   

IV. PROPOSED ALGORITHM 

In our modal transfer algorithm, we aim to discover start 

and end points of GPS Trace Legs where the corresponding 

modal label is walking. Given the multimodal GPS trace, we 

extract four properties; speed, acceleration, accuracy, and 

heading. In the change point method used in [1, 3], heading 

and accuracy was not considered.  

The algorithm has three phases (1) Remove spurious data 

points that were introduced by GPS uncertainty (2) From the 

set of GPS points { p0 → p1 →  · · ·  → pk } in the trajectory 

T, we form GPS Trace legs, where each GPS Trace leg 

modal label is walking or not. (3) Finally, we validate each 

GPS Trace leg whose modal label is walking by observing 

the average heading change for that GPS Trace leg.  
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C. Phase 1 – Uncertainty pruning 

In phase one of the proposed work, we prune inaccurate 

GPS points. GPS systems may return inaccurate location 

results for several reasons, such as GPS sensor in building or 

in canyon. Pruning of inaccurate GPS points is done in two 

steps. First, given a GPS trace T, with points p0 → p1 

→  · · ·  → pk, we remove uncertain GPS reports by 

observing the accuracy parameter of the GPS report. We 

suppress GPS points whose accuracy values are greater than 

40m.  We ascertain points whose accuracy readings are high 

by scanning linearly through the GPS trace T and observing 

the accuracy attribute. For any point pi in the GPS trace T, if 

pi
accuracy

 >40m, pi is suppressed.   

Next, starting from p0, if a GPS fast Point lies between 

two GPS slow Points, we prune the GPS fast Point. 

Subsequently, if a GPS slow Point lies between two GPS fast 

Points we prune the GPS slow point. This stage will remove 

some amount of the uncertainty that was introduced by the 

GPS. For example, if a person is walking, an incorrect 

positioning may lead to an increase in the velocity 

computation, hence irrelevant GPS fast Point are introduced 

in the trajectory. This stage 1 prunes unauthentic points of 

this nature.  

D. Phase 2 – GPS trace leg construction 

The set of GPS points {pn → pn+1 → · · · → pm}, n>=0 

and m<=k, remaining in T from stage 1 is called Tʹ, Tʹ ⊂ T.  

Starting from pn in Tʹ, for consecutive sets of GPS slow 

Points or GPS fast Points, we prune all intermediary points 

except the first and last points of each set. This stage is the 

first step in forming trip legs. After this stage, the first and 

last point of each set form possibly GPS Trace Legs. It 

should be clear to the reader that these possible GPS Trace 

Legs contain only the start and end point of the leg. The set 

of remaining points is called Tʹʹ, Tʹʹ ⊂ Tʹ.    

E. Transportation transition  point identification 

The remaining points from the set Tʹ in stage 2 is referred 

to as Tʹʹ. Since it is highly likely that a modal transfer point 

is represented by a walk leg as observed in [1, 3], in this 

stage we identify and verify walk legs. A walk leg is 

identified by any consecutive points that are GPS Slow 

Points in Tʹʹ. For each walk leg WL in Tʹʹ, we revisit the 

trajectory Tʹ, each GPS point in Tʹ between and inclusive of 

the start and end point of WL forms the candidate set for that 

walk leg.  Next, for each candidate set, we compute the 

average heading change. If the average heading change is 

greater than the heading threshold, the walk leg’s start and 

end points are added to Tʹʹʹ. We are interested in heading 

change to concur if a leg is a walk leg; the heading change of 

a person walking is greater than if they are using motorized 

modes [1, 3, 4]. Hence, at this stage we are able to 

distinguish walking from motorized modes in traffic.  

Each walk leg’s start point and end point in Tʹʹʹ are now 

modal transfer points. In our previous work [4], we used 

classification models such as Decision Trees to infer a 

traveller’s transportation mode probabilistically from the set 

{still, walk, bike, car, bus, above ground train}. This work is 

different; we did not use classification for mobility transfer 

point detection.  

Our modal transfer algorithm is different from change 

point method in [1, 3] in a number of ways. First, in the 

proposed work we consider the speed, acceleration, heading, 

and accuracy. For example, in phase 1, we suppress 

inaccurate points by observing the accuracy reading of the 

GPS sensor reports. On the other hand the change point 

method only uses speed and acceleration.   

Second, we validate all walk legs in stage 3 by 

considering another dimension of context, namely the 

heading change of the traveller. This was not the case for [1, 

3]. Additionally, to remove uncertainties, we do not merge 

segments into its backward segment. Furthermore, the 

change point method in [1, 3] does not work well in 

congestion.  Instead, in heavy and persistent traffic, even 

though one may be driving slowly or on a bus, Microsoft’s 

change point algorithm concludes that the traveller is 

transferring, hence misclassifies the mobility pattern as a 

possible change point.  

Our proposed algorithm solves this congestion problem by 

considering the heading change as another facet to validate 

walk legs in stage 3. Persons who are walking have a higher 

heading change rate than driving because cars and buses are 

constrained by the road network, and cannot change their 

heading as flexibly. Likewise, trains are constrained by the 

rail line.  

V. ALGORITHM DEMONSTRATION 

Below in Table 1 and Figure 2, we demonstrate our modal transfer 

algorithm for clarity and discussion purposes only. The GPS trace T 

consisting of ten GPS reports {a, b, c, d, e, f, g, h, i, j} are submitted 

and the accuracy of the reports are below 40m. 

TABLE 1- SENSOR REPORT PROPERTIES 

 

 

 

 

 

 

 

FIGURE 2- ALGORITHM TRACE 

 a b c d e f g h i j 

speed (m/s) 1 18 1.2 0.6 8 17 0.45 5 1.1 1.23 

acceleration 

(m/s2) 

0.3 2.3 0.39 0.42 1 3.2 0.19 2.1 0.15 0.25 

heading 

(degrees) 

32  38 59 113 117 119 119.4 116.6 126.5 134.3 
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In phase 1 of the algorithm, given GPS trace T (see Figure 

2), both GPS point b and GPS point g are removed from T to 

form Tʹ. The points b and g are removed since b’s speed is 18 

m/s (fast point) that is between two slow points (i.e. a and c), 

and g is a slow point between two fast points.  Next in phase 

2 of our algorithm, we form possible GPS Trace legs in Tʹʹ 

by removing point c and f from T’ since they are 

intermediary points of their trip legs. For example, in T’ 

points a, c, and d forms a trip leg since they are consecutive 

slow points. We are only interested in the start and end points 

of each trip leg. Hence we can remove c. Observe that 

removing c is not because of uncertainty of the GPS report. 

Likewise, in T’ points e, f, and h forms a trip leg since they 

are consecutive fast points. Again, we are interested in the 

start and end points of each leg. Thus, f is removed from T’. 

Observe, in Tʹʹ we have three possible GPS Trace legs {{a, 

d}, {e, h}, {i, j}}. Then for phase 3, in Tʹʹʹ we only select the 

sets {a, d} and {i, j} for two reasons; (1) {a, d} and {i, j} are 

walk legs because they start and end with GPS slow points.  

(2)  The average heading change of all points between GPS 

point a and GPS point d {a, d} also, GPS point i and GPS 

point j {i, j} in Tʹ is greater than the heading change 

threshold. In the experiments, we configured the heading 

change threshold system parameter to 1.5 degrees. Finally, 

GPS Trace Legs (walk legs {a, d} and {i, j}) in Tʹʹʹ start and 

end points are modal transfer points. Below, we explain the 

strategy that we used to determine the thresholds used in the 

proposed work.  

VI. CLUSTERING GPS TRACES TO DETERMINE THRESHOLDS 

In the data model discussed earlier, we defined a GPS 

slow point using two thresholds. The first is the speed 

threshold (i.e. 1.88 m/s) and the second the acceleration 

threshold (i.e. 0.4 m/s^2). These thresholds are utilized as 

system parameters in the final algorithm. Below we give the 

motivation for assigning specific values for these thresholds. 

Using K-means clustering on collected GPS traces, we 

receive an insight on suitable values for these thresholds. We 

refer readers to [8] for details on this data mining algorithm. 

Using a clustering scheme, we can form meaningful groups 

from the dataset. In this way objects of the same clusters 

have high similarities, and objects of different clusters have 

big differences.  

For this section, to determine the clusters, the dataset used 

is dataset 1 (see Appendix for further details on this dataset). 

To apply the K-Means algorithm on the dataset, we used the 

WEKA machine learning toolkit [9]. K-Means will partition 

the input into K sets. K was predetermined since data set 1 

has only one mode of transportation (i.e. walking mode). 

Therefore,        
Given K, the K-Means algorithm then calculates a mean 

point (i.e. centroid) of each set. Given the centroid, it then 

associates each GPS report with the closest centroid. New 

centroids are computed, and the process is repeated until 

convergence. K-means minimizes the following objective 

function. 

         
   

     
 
   

 
   

2 

Where     
   

     
2
 is distance between data point   

   
 (i.e. 

GPS report pi) and its centroid      However, we are only 

interested in data points or GPS reports that corresponds to 

walking, therefore   
       

and also the centroid of the 

walking cluster (i.e.     ). Given       , we can extract the 

acceleration       
              

and speed       
      

as the thresholds. 

Therefore, 

                             
             

                      
      

Though we considered K-Means for threshold 

determination, we are aware that K-means is primarily for 

unsupervised learning. In general, any algorithm that 

computes the mean can be utilized for determining suitable 

thresholds.  

VII. EVALUATION BY EXPERIMENT 

First, we encourage readers to see the Appendix for a 

description of the data collection procedure and the datasets 

that we utilized when evaluating the algorithms. Both 

datasets (i.e. dataset 1 and dataset 2) are real world datasets 

collected by travellers from their mobile phones (see 

Appendix).  

A. Evaluation matrices 

Coverage - The coverage matrix for the algorithms is the 

ratio, number of modal transfer points in labeled ground truth 

for a multimodal GPS trace divided by the number of correct 

modal transfer points returned by algorithm that corresponds 

to the labeled ground truth. For example, if an experiment 

participant recorded 10 transportation transition points in 

their GPS trace and the algorithms only detected 8 correctly, 

the coverage is therefore 8/10=80%. The coverage of the 

algorithm is a measure of accuracy and effectiveness.  

Number of irrelevant transfer points – This is a count of the 

number of false mobility transfer points return by the 

algorithm. This metric is also a measure of the accuracy of 

the algorithms. For example, for a given multimodal GPS 

trace T
multimodal

, if the ground truth for the number of mobility 

transfer points is X, and the algorithm returns Z mobility 

transfer points such that Z ≥ X. Then, the number of 

irrelevant transfer points in T
multimodal

 is Z-X.   

B. Results 

In the Figures (Figure 3, Figure 4) we show preliminary 

results of our proposed modal transfer algorithm and the 

change point [1, 3] methodology that is used in GEOLIFE 

[6]. For evaluation purposes, to validate the proposed 

algorithm, 13 multimodal GPS Traces from thirteen different 

individuals, with transportation modes from the set {still, 

walk, car, bus, train, cycle} is considered. Description of this 

data set from the 13 individuals is presented in the Appendix. 

In Figure 3 the horizontal axis represents the trace number 

and the vertical axis represents the percentage accuracy of the 

transportation mode change detection.  
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Figure 3 illustrates that the modal transfer algorithm 

proposed in this paper has good coverage. In most cases, all 

the mobility transfer points were discovered in the 

multimodal GPS trace. In general, the proposed mobility 

transfer algorithm has a better coverage than the change 

point segmentation scheme. From Figure 3, in some cases we 

don’t achieve 100%, for example for trajectory 3 in the 

labelled ground truth we have four modal transfer points. 

However our algorithm only detected three of these points. 

For the case of trajectory 3, the mobile client alights one bus 

and boards another at the same bus stop.  

In general, Figure 3 indicates that the proposed modal 

transfer algorithm is more consistent than the change point 

method in [1, 3] since the expected number of modal 

transition points are always identified.  

 

 

FIGURE 3– COMPLETENESS 

 
FIGURE 4 – IRRELEVANT TRANSPORTATION TRANSITION POINTS 

We study the irrelevant modal transfer points in Figure 4. 

The vertical axis represents the number of irrelevant modal  

change points and the horizontal axis represents the 

multimodal GPS traces. In most cases, our algorithm 

detected the correct amount of transportation mode change 

points. 

However, in some cases such as GPS trace 8 and GPS 

trace 12; the proposed algorithm produces excessive transfer 

points. We observe that the location of the two traces GPS 

trace 8 and GPS trace 12 were collected in the city centre 

downtown Chicago, where GPS uncertainty is high because 

of the skyscrapers. Likewise, traces 10, 11, 12, and 13 were 

collected in heavy traffic. For the change point method used 

in [1, 3], in most cases the algorithm returns much more than 

the number of change points.  

The fundamental reason why the change point algorithm 

will always return more transfer points than expected is due 

to the fact that in traffic and heavy weather, motorized 

vehicles move slowly. Hence, since the motorized vehicles 

are moving slowly, they may be misclassified as transfer 

points. For the proposed modal transfer algorithm, we solved 

this problem by considering mobility patterns derived from 

other parameters such as heading change and GPS accuracy. 

VIII. COMPLEXITY ANALYSIS 

In the analysis of the complexity of the proposed mobility 

transfer algorithm, we observe that the run time complexity 

is O(n). The complexity of step 1 is bounded by the input of 

modal traces represented by |T| = n. Also, in step 1, T′ is 

derived, which in the worst case |T′| = |T| = n, which makes 

step 2 also executing n times. In step 2, T′′ is used as input 

for step 3. In step 3, the worst case |T′′| = n and step 3 is 

executed n times. Overall, the complexity is bounded by n, 

hence O(n). 

In [1, 3] the change point segmentation algorithm, the 

runtime is bounded by the input size n, which makes the 

overall complexity of the algorithm also O(n). However, the 

algorithm has an extra step (step 4) and performs a backward 

merger of consecutive uncertain segments. In our analysis 

we find that backward segment merging is done with n-1 

comparisons. However, if sorting is involved with the 

merger then the complexity could be absorbed by the 

complexity of the sorting operation. Based on our 

observation, the merging is a simple concatenation and only 

needs n-1 comparisons. Thus, the overall complexity of 

change point method of [1, 3] is O(n) time. The space 

complexity of both algorithms is O(n). 

IX. CONCLUSION 

In this document, we propose a method to detect transfer 

points in multimodal GPS traces. Our algorithm is based on 

real world observations and parameter value selection via a 

K-means clustering strategy. Results indicate that the 

proposed approach is more accurate and effective for 

detecting mobility transfer points than the previously 

proposed change point algorithm [1, 3] used in Microsoft’s 

GEOLIFE project [6].  

The proposed algorithm is robust and simple; it can detect 

transfer points under extreme weather and traffic conditions.  

Using two different real world datasets consisting of GPS 

traces collected via mobile phones, we evaluated the 

algorithms under varying traffic conditions (see appendix). 

These datasets were collected under varying traffic 

conditions because we wanted to understand the algorithm’s 

effectiveness in the real world.  While in the prior art the 

authors only considered speed and acceleration to detect 

transportation mode transition points, we consider more 

parameters. We believe that using these additional 
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parameters on GPS accuracy and heading change will give 

us an enhanced picture in terms of understanding the 

mobility of the traveller.  This approach has a better coverage 

in the sense that it will find all the mobility transfer points.  

Additionally, it produces less false transition points than [1, 

3], hence it is more accurate.  

The run time complexity of the proposed algorithm is 

O(n), where n is the number of GPS reports in the GPS trace. 

This is asymptotically the same as the previously proposed 

work.   
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XI. APPENDIX 

In this section, we will discuss the datasets that is utilized to 

evaluate the algorithms and the data collection strategy.  

Data Collection 

The discussion of the data collection methods are separated in two 

sections (data set 1, data set 2). Both data sets were collected in 

Chicago, Illinois, USA.   

Dataset 1 

This is the data set that was considered to determine the threshold 

values used by our algorithm. The GPS traces in the dataset is 

single modal of type walking was collected by 6 individuals, 3 

females and 3 males over a 3 week period. On this dataset we 

performed K-means clustering to pre-determine system parameter 

settings. Additionally, three types of mobile devices were used for 

data collection. The three devices considered are: (1) HP IPAQ 

PDA, (2) Android based Samsung Galaxy, and (3) IPhone 3G. 

These devices are shown below in Figure 5. In total, this dataset has 

91 minutes of GPS trace single modal data. 

 

 
 

FIGURE 5- MOBILE DEVICES UTILIZED FOR DATA COLLECTION 

Dataset 2 

This data set was used to evaluate the algorithms. This data set 

consists of 13 multimodal GPS traces, supplied by thirteen different 

participants (seven males and six females). The sample participants 

were different in both experiment datasets, to ensure a level of 

robustness and adaptability. Three different types of mobile phones 

were used for data collection and proposed algorithm. The three 

mobile devices are Samsung Galaxy, HP IPAQ, and the IPhone 3G 

(see Figure 5).  

Four of the thirteen traces were collected in heavy traffic in the 

Downtown Metropolitan region of Chicago. We considered heavy 

traffic because we wanted to understand how the algorithm 

performs in the real world. Dataset 2 was collected over a one week 

period and consists of trips with transportation modes from the set 

walking, bus, car, still, aboveground train and bike. This data is also 

labeled with transportation mode and mode transition point ground 

truth. For algorithm evaluation, the mode transition labels are 

pruned, and next when the algorithms generate the transition points, 

the results are compared with the mode transition ground truth. We 

studied the algorithms’ effectiveness in the real world such as 

varying traffic. In total, dataset 2 has 264 minutes of multimodal 

GPS traces.  
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