
Adopting Knowledge Based Security System for Software
Development Life Cycle

Jalal Alowibdi1
1Department of Computer Science, College of Engineering, University of Illinois at Chicago

jalowi2@uic.edu

Abstract— The high-demand from the software industry
led to the development of many Software Development
Life Cycle (SDLC) models that help produce high quality
software within budget and time constraints. Most of these
SDLC models do not completely cover security as early
as possible in the development cycle. Since security is a
major concern to the users and the developers, adopting
it at the early stages of the SDLC could help to ensure
integrity, accessibility and confidentiality in future systems. It
is still unclear how to achieve a perfectly secured software
system by modifying the SDLC models. In this paper, the
Knowledge Based Security System (KBSS) model is proposed
to help in modeling and specifying security at all stages of
SDLC in an effort to achieve a maximally secured software
system. KBSS is a system that categorizes, clusters, monitors,
alerts, and controls the Security Knowledge Management by
the knowledge of the Security Expert Team, who are able
to identify, collect, organize, manage, retrieve, provide and
store all aspects of security functions and issues.

Keywords: computer security, software life-cycle, knowledge-
based software engineering

1. Introduction
Software Systems (SS) play an integral role in many

organizations and companies. SS often hold private and
confidential information about organizations and companies
who are using them. Ensuring the integrity, accessibility
and confidentiality of such information in SS is a major
concern in the software industry. Protecting the infrastructure
of SS from threats and vulnerabilities could reduce the
overall risk of "cyber attacks” [1]. Technically, including
the security at the early stages of the Software Development
Life Cycle (SDLC) helps reduce the overall risk of cyber-
attacks as well as the cost and the time of restoring system
operations that might arise after the deployment of the SS.
Focusing on security at the early stages of the SDLC might
produce well protected SS that prevent cyber-attacks on
threats, vulnerabilities, and defects including man in the
middle, denial of service, buffer overflow, SQL injections,
and password attacks. It is critical and hard to guarantee
secured SS all the time. However, applying a "Learn from
Mistakes” approach could ensure just that. The approach is
to build a Knowledge Base Security System (KBSS) that

covers the most common threats, vulnerabilities and defects
available up-to-date in the industry. Understanding these
security issues, including abuse cases, as early as possible in
the SDLC could help the developers to devote appropriate
attention to security issues.

In this research, we seek to study different models that
have been used in the industry. In addition, we attempt to
model the security requirements using KBSS in order to pro-
vide up-to-date security functions and issues. These security
functions and issues must consider all stages of SDLC as
Iterative and Incremental Development Process (IIDP). This
paper is organized as follows: Section 2 provides the related
work in security at the early stages. Section 3 introduces the
relation between security and the SDLC at all stages. The
proposed model of KBSS within the SDLC at all stages,
using IIDP model, discusses in Section 4. Section 5 discusses
future work.

2. Related Work
A great deal of research has been conducted in the field of

adopting security at the early stages of system development.
Most of the research has been focused on security at the early
stages of the SDLC, ideally at the requirements engineering
stage. Very little research has been conducted on security
at all stages. In this section, we seek to explore an initial
concrete study of different models that have been used in
the past. There are several studies related to security in the
SDLC which can be summarized as follows:

McGraw [2] focuses on the security of the software at the
early stages of the SDLC. Based on his research, he applies
security concerns in the traditional waterfall model of the
SDLC. Rigorously, it starts with the security requirements
at the requirement stage to clarify the following questions:
"How to protect? What to protect? and Whom to protect
from?" Also, he describes the abuse cases. At the design
and analysis stage, he identifies the security privilege and
documents possible attacks, by a so-called risk analysis. At
the code stage, he concentrates on implementation flaws,
discovering the common vulnerabilities, and fixing bugs.
Finally, he intends to determine feasibility of an attack by
testing the overall functionality, called penetration testing.

Viega [3] used Comprehensive Lightweight Application
Security Process (CLASP) to build security requirements.



Clearly, CLASP is "a set of process components that design
to help the development teams to build and improve the
security of the SS” [3]. The CLASP approach consists of
four basic steps. These steps can be summarized as follows:
(1) Identify system roles and resources; (2) Categorize the
resources and the roles that make the process manageable
(e.g., user-highly-confidential, user-confidential, user-low-
confidential, system-private, and public); (3) Identify the
resource interactions that relate to the roles and resource
categorization; (4) Write the requirement specification. Also,
the author defines the security services of CLASP as follow:
Authorization, Authentication and Integrity, Confidentiality,
Availability, and Accountability. His recommendation is to
use the extension of the SMART+ requirements. Those
requirements are Specific, Measurable, Attainable, Reason-
able, Traceable, and + Appropriate.

Mead and Stenshney [4] defined the Security Quality
Requirements Engineering (SQUARE) method, which “pro-
vides achievement for eliciting, categorizing, and prioritiz-
ing security requirements for the SS” [4]. Moreover, the
SQUARE methodology builds security concepts into the
early stages of the SDLC by documenting and analyzing se-
curity. The SQUARE method is divided into nine steps each
having its own input, technique, participants and output. Rig-
orously, SQUARE starts with common security definitions
and then identifies the goals of these security definitions.
Once the organization has defined the common goals, it starts
transforming them into deliverable requirements. It follows
by choosing the elicitation techniques. These requirements
can be categorized to meet the business goals. Next, risk
assessment is performed with respect to the categorized
requirements. The categorized requirements are prioritized.
Then, this is followed by the inspection by the stakeholder
as final step.

Romero-Mariona, Ziv, and Richardson [5] surveyed sev-
eral approaches supporting the security requirements en-
gineering in later stages of the SDLC. They explore six
main areas to be considered in Later Stage Support (LSS)
which represent support for the security requirements. First,
security requirements integration provides support for inte-
grating security requirements in the later stages of the SDLC.
Second, constraint consideration expresses new constraints
for security purposes. Third, security-oriented test cases
provide validation of the security requirements. Fourth, test
cases are developed alongside the security requirements.
Fifth, the efforts to produce secure software are estimated.
Sixth, the integration of other type of requirements focuses
on non-security requirements.

Vetterling and Wimmel [6] combine a phase-oriented
software development with Common Criteria (CC). They
apply a so-called Target Of Evaluation (TOE) to assess
the security requirements of the product based on the CC.
The security requirement of the CC can be simplified into
security functional requirements and security assurance re-

quirements. Both are important to meet security objectives
of the TOE. Moreover, the authors list the products of
different assurance classes of the CC. Those classes are
security target, configuration management plan, design and
representation, life cycle documentation, test documentation,
vulnerability assessment, guidance documents, and delivery
and operation documentations.

Table 1 summarizes the previous survey by comparing
the methodologies with respect to the following criteria:
Defined Security Objectives (DSO), Adopted Method (AM),
Target Development Process (TDP), Target Stage (TS), It-
erative and Incremental Approach (IIA), Documented Se-
curity Functions and Issues (DSFI), Adopted Monitoring
and Alerting Security System (AMASS), Used Heuristic Se-
curity Approach (UHSA), and Used Deterministic Security
Approach (UDSA). Respectively, the proposed Knowledge
Based Security System KBSS methodology is corresponding
to all criteria.

Table 1: Summary compares the related works.
M [2] V [3] M, S [4] R, Z, R [5] V, W [6]

DSO YES YES YES YES YES
AM NONE SMART+ SQUARE LSS CC
TDP waterfall NONE NONE NONE NONE
TS ALL REQ REQ REQ REQ
IIA NONE NONE NONE NONE NONE
DSFI NONE NONE NONE NONE NONE
AMASS NONE NONE NONE NONE NONE
UHSA YES NONE NONE NONE NONE
UDSA NONE NONE NONE NONE NONE

3. Security and the SDLC
Traditionally, many users think that a SS product is just

code. we view a SS as a complete process methodology. It
starts from the requirements stage and ends with deployment.
The most famous SDLC is the waterfall model. There are
many other models that have been used in the industry such
as extreme programming, rapid application development,
iterative and incremental development, the rational unified
process, the spiral model, scrum development, and agile
software development. However, most SDLC models do not
completely cover security as much as they could. Addition-
ally, the requirements stage is the earliest stage of the SDLC
in all models. There are many sub-topics under the require-
ments to be considered within our proposed KBSS model as
inputs and/or outputs of the requirements stage. Among them
are stakeholder identification and system prototypes. These
sub-topics might help in describing the security of the SS
for our KBSS model. Good requirements engineering leads
to a successful project within budget and time constraints.
Security concerns are usually included in the non-functional
requirements of a SS. However, our research focuses on
security as part of functional requirements and constraints
as well.



The increase of the SS vulnerabilities has made the
software industry rethink security in their SDLC models.
A major challenge in SS security is anticipating all plau-
sible future attacks and ensuring that these attacks will
not succeed. When an attack is discovered or expected, an
appropriate solution is provided. The technical details of
preventing the attacks are in continuous evolution. We have
to extend our knowledge by understanding existent cyber-
threats and by guessing future possible cyber-attacks. As
long as there are malicious users trying to attack different
SS using different techniques, there will be a challenge
of providing 100% secured SS. In addition, we must also
provide an iterative procedure to ensure SS security by
incrementally expanding our KBSS.

3.1 Security Objectives and Attacks
Ideally, there are many security objectives to be consid-

ered, simulated and identified to have a secured SS. Each
SS has its own security objectives that might be shared
or not. Identifying the common objectives at the early
stages of the SDLC lead to ensure the SS security. Getting
familiar with the objectives will help to understand them
from different aspects of our proposed KBSS. The common
shared objectives are:

• Authentication is the concept of confirming the cor-
rectness of the identity of a user, and assuring the
process of the system is trusted [7], [10]. An example of
authentication is as follows: A user X plans to use the
software system Y, Y must ask X for information that
is provided by X and then verified by Y to authenticate
X claiming identity is valid and trusted.

• Authorization is the concept of defining and specifying
access rights or policies such as permit or deny to
a user and/or a process of system [3], [7]. Ideally,
authorization is a kind of approval or permission. For
example, if the user X shows proper identification to
the software system Y, Y authenticates X. Then, Y
would grant authorization to X to access a set of certain
information. Other information that is not related to X
would not be allowed to access.

• Confidentiality is the concept of ensuring that the data is
protected, secured, viewable and accessible only to the
authorized user and preventing unauthorized user [7],
[12]. An example of confidentiality is as follows: When
the user X intends to access data D from the software
system Y, Y must ensure that X has a permission to
access D.

• Availability is the concept of ensuring the SS is reli-
able, runnable, serviceable and accessible to legitimate
users [7]. Also, it is the concept of protecting the SS
from unauthorized users who intend to make the SS
unavailable. For example, when the user X decides to
access the software system Y, Y must be available and
ready for X.

• Accountability is the concept of ensuring that the inter-
action and communication between the users and the
SS is trusted, traceable, reliable and accountable [7],
[8]. For example, when the user X plans to use the
software system Y, X would provide Y with informa-
tion and Y would respond to X. The interaction and
communication between X and Y must be accountable.

• Integrity is the concept of ensuring the quality, correct-
ness and consistency of the data during the processing
operations such as data transfer, data storage, data
retrieval, and data quality. Also, it is the concept of
protecting the data of SS from unauthorized users who
intend to destroy the data during operation [7], [11]. For
example, a user X intends to exchange data and infor-
mation from the software system Y, the provided data
must be accurate, correct, and complete. Y assures that
the data does not get corrupted or deleted accidentally
by unauthorized users who intend to change or delete
the data during operation.

• Non-Repudiation is the concept of ensuring the com-
munications of send and receive between the SS and
legitimate user without being deniable [7], [9]. For
example, a user X asks the software system Y for data
D. Y sends X the required D, and X receives D from
Y, where Y non-repudiation objective is to prevent X
from denying receiving D in future.

• Non-Intrusion is the concept of preventing unauthorized
user who attempts to break into the SS by identifying
possible security breaches [13]. For example, a user X
intends to compromise the software system Y using
common known threats and attacks techniques that
break Y. Y must assure that all the common fragility at-
tacks techniques are perfectly secured and fixed toward
preventing X’s attempt, such as Buffer Overflows, SQL
Injections, Design Flaws.

• Assurance is the concept of covering all security objec-
tives by ensuring their workability and correctness. The
SS is not going to have an error, failure or shutdown
during an unauthorized user who attempts on attacking
the SS by using common known threats and attacks.
Assurance might raise a flag and alert the SS when the
attack is detected [7]. For example, when the user X
attempts to access the software system Y, Y must check
its security using assurance A. A provides a checkpoint
to check the correctness, stability, and workability of
each security objective in Y. Then, A provides Y with
information about the status of Y’s security. Based on
the provided information, Y decides whether to enable
or disable X.

There are many relationships that can be defined between
users, the SS, and security objectives in our KBSS. To
apply security objectives correctly and produce secured SS,
we must first have our SS to check its security objectives’
correctness via assurance while the user is requesting to



Fig. 1: Diagram illustrates the relationship between the user,
the software system, and the security objectives, when the
user intends to access a secured software system

access the SS. This methodology is preventing the user to
access the SS until the SS approves its security consistency
and correctness, ensuring loyalty of the user and preventing
unauthorized user from accessing the SS. To simplify the
scenario, when the user X requests to access the software
system Y. Then, Y must check its security using Assur-
ance A, which is the most significant security objective,
that is responsible for checking Y’s security correctness,
stability and workability. Then, A checks X’s identity using
authentication, grants authorization to X to access certain
information and makes data confidential and integral be-
tween X and Y. Otherwise, A rejects X. In the meantime,
A ensures that the communications between X and Y is
accountable, non-repudiative, and non-intrusive. Then, A
provides Y with information about the status of Y’s security.
Finally, Y processes the provided information from A and
decides whether to enable/disable X. When Y enables X to
access the SS, Y keeps monitoring A iteratively while X is
accessing Y. If A finds that one of the security objectives is
compromised, A raises a flag and alerts Y. Figure 1 shows the
relation between the user, the SS, and the security objectives.

We have introduced the most common objectives to ensure
secured SS on one hand. On the other hand, we seek to
clarify the possible attacks that compromise the SS secu-
rity by taking advantage of the vulnerabilities of the SS.
Technically, the attackers can target one or more security
objective to compromise the stability of the SS. Knowing
the common attacks and applying the appropriate security
prevents the SS from being attacked. The assurance objective
is responsible for assuring all security objectives of the SS
where attacking one of them is correspond to the assurance.
There are many examples of attacks against the weakness
of the SS. Among them are: fraud attacks, phishing attacks,
man in the middle, denial of service, worms, virus, spy-ware
attacks, spam-ware attacks, cookies attacks, replay attacks,
session attacks, hijack attacks, eavesdrop attacks, identity
attacks and malicious attacks. The common possible and
shared attacks are:

• Attack on authentication and authorization is the con-

cept of attempting to break into the SS using the weak-
ness of the authentication and authorization functions
that mislead the identity and become an unauthorized
user [3], [7], [10].

• Attack on confidentiality and integrity is the concept of
attempting to access, read, modify and delete certain
data [7], [11], [12].

• Attack on availability and accountability is the concept
of attempting to make the SS or particular part of
it unavailable to its users that leads the SS to be
unaccountable. The accountability might result from
every attack to the SS security objectives [7], [8].

• Attack on non-Repudiation and non-Intrusion is the
concept of attempting to access the users logs by
modifying and deleting the tracking data that misleads
the trust between X and Y [7], [9], [13]. Also, we
might consider the attack that takes advantage of newly
discovered attacks on other organizations and uses it
against other SS.

• Attack on assurance is the concept of attempting to
compromise different objectives in one attack [7].

4. Knowledge Based Security System
The Knowledge Based (KB) of security is a special kind of

database for Security Knowledge Management (SKM). SKM
provides the most of our knowledge and up-to-date of having
secured SS. SKM is the concept of systemically collecting,
organizing, retrieving, enabling, storing and identifying the
repository of security knowledge in an organization that can
be available to other organizations.

Our proposed KBSS is a system that categorizes, clusters,
monitors, alerts and controls the SKM by Security Expert
Team (SET), who are able to identify, collect, organize,
manage, retrieve, provide and store all aspects of security
functions and issues. KBSS uses heuristic and deterministic
based approach that helps in providing the SS with numerous
security functions and issues that can be beneficial to any
organization. This system collects its data by SET using
various resources such as security organizations’ knowledge,
security expert’s knowledge and heuristic and deterministic
security knowledge within the organization. KBSS keeps
monitoring the security updates that are released by SET.
Once there is a new released security, the KBSS starts
releasing its alert. Precisely, KBSS uses different inputs
and/or outputs behavior description. For example, in the
requirements engineering stage, KBSS uses various forms
for representing security behavior such as natural language,
user stories, or requirements specifications. In the analysis
and design stage, KBSS uses Unified Modeling Language
(UML) for representing the behavior description of security
and the same is applied to other stages. These inputs and/or
outputs can be inserted into the KBSS by SET, who are able
to find the security and provide the appropriate solution in
different stages of KBSS. Also, KBSS is the bridge between



Fig. 2: Diagram illustrates the interactions between the SET
and the SKM that controls the KBSS

the SET and the SKB, which holds all security knowledge
to various domain. Figure 2 depicts the KBSS interactions.

Technically, there are four main actors. Each one of
them depends heavily on his neighbor. The SET is an
assigned team in the organization. Its responsibility is to
collect, define, monitor, decide, and provide up-to-date se-
curity functions and issues with their appropriate solutions.
The SET uses their knowledge of expertise and accesses
the resources to collect security functions and issues, and
insert them into the SKB via KBSS. Also, it is responsible
for finding the appropriate solutions to security functions
and issues that are not being recognized by the security
organizations. Additionally, the resources can be classified
as Internet’s resources, security organizations’ resources,
Books’ and Publications’ resources, heuristic security within
the organizations’ resources and any valid security resources.
SKM is special kind of database that systemically collects,
organizes, retrieves, enables, stores and identifies the reposi-
tory of security knowledge in an organization to be available
to other organizations. SKM can be automatically accessing
the resources and do the same job as the SET but with
limited solutions. For example, the SET has the ability to
find an appropriate solution that has not been recognized
before where the SKM has not. We have to program the
SKM to be an expert and intelligent to do decision as
the SET. Keep in mind that the SET cannot access the
SKM directly, which needs KBSS. KBSS is the main actor
whose responsibility is to monitor, decide, and alert the
development organizations that adopting it in the SDLC.

Also, it is responsible for categorizing and clustering the
SKM and provides recommendations to the organization
with specific domain.

4.1 KBSS with SDLC
KBSS is trying to secure all well-known and expected

security functions and issues within SDLC. Those functions
and issues might be used as iterative and incremental ap-
proach toward SDLC. They can be simplified once they
get discovered. Also, they must be alerted and adopted
to the stage that the developer team has reached or just
alerted and postponed to the next iteration. We adopt the
KBSS in SDLC ideally with an Iterative and Incremental
Development Process (IIDP). We are taking advantage of
IIDP for adding security functions and issues with their
appropriate solutions.

Simply, you can consider our KBSS methodology as a
regular SS that keeps monitoring security functions and
issues with appropriate solution. Once we start developing
a SS, we must first add the domain of the SS to the
KBSS. The KBSS is going to keep tracking our devel-
opment processes with target concentration to the security
perspective. When the KBSS is initialized with a specific
domain, the KBSS is going to provide the developer with
the most current initial security functions and issues. They
might be represented as a natural language and provided
at the beginning of the development processes. The KBSS
will give appropriate security feedback highlighting issues
and required functionality incrementally throughout the life
cycle. As they are started at the requirements stage and
end up with the evaluation stage, the KBSS moves forward
iteratively and incrementally using IIDP compared to the
waterfall model that stops at the last stage. The methodology
adopts a checkpoint at every stage of the SDLC. Figure 3
shows the adaptation of the KBSS in SDLC.

Fig. 3: Diagram illustrates the application of the KBSS to
the Iterative and Incremental Development Process



Security updates are issued almost daily in response to
new threats, which exploit previously-unknown vulnerabili-
ties to attack SS. The newly-discovered vulnerabilities must
be corrected in order to ensure that SS are completely se-
cured. Many such updates could be issued while developing
a given SS, requiring that the SS be modified appropriately
in order for the SS to be secure. If a SS is developed
with KBSS, a so-called security guard (checkpoint) will be
evaluated at the end of each iteration of the SDLC. KBSS
is a partially automated toolset that continuously monitors
the security level of the SS under development after the
development team specifies the domain of the SS. Simply,
once we plan to develop a SS, the KBSS works as follows:

1) In the initial planning, we must add the domain of the
SS to be developed to the KBSS.

2) The KBSS evaluates the domain, puts its first security
checkpoint after the initial planning and extracts all
the prospective security functions and issues with their
appropriate solutions that might relate to the domain
of SS. Also, it defines all the possible well-known and
expected attacks and presents them to the developer
in natural language for consideration. Passively, the
KBSS automatically updates at discrete time intervals.
whenever it gets updated with new security functions
and issues, it starts alerting the developer of those
functions and issues. The developer will consider them
as an incremental and iteratively extension to the SS.
Also, this checkpoint contains some of the issues that
will be addressed in future stages of development. In
addition, we could use one of the available tools, if
there is any tool available, for converting the planning
story to requirement specifications such as natural
language to be used as requirements for this stage in
our KBSS.

3) At time of processing the analysis and design stage,
there is another security checkpoint for KBSS to
evaluate the requirements security and provide the
most recent security functions and issues with their
respective resolutions. Also, it defines all the possible
well-known and expected attacks that can be adopted
to this stage such as abuses cases. For example, for
accessing online banking system, the user must enter
a valid user name and password. Once we have another
user using the system from different machine, we must
detect that and start using another type of verification
such as security questions that previously set up by the
user. This scenario is an example of security function
and issue with its respective appropriate solution.
Mainly, KBSS is using UML to represent security
functions and issues at this stage. KBSS is an auto-
mated system that keeps updating him continuously.
When KBSS detects an update, it directly raises a
flag, alerts and contacts the developer team with that
respective update. The developer will consider it as

incremental and iterative feature to add to the SS. We
might adopt one of the available tools [14], [15] for
modeling the requirements in our KBSS. As a result,
when there are new security functions and issues arise,
KBSS will provide them to the developer team as
UML to be added directly as incremental feature to
the analysis and design stage.

4) At time of processing the implementation stage, there
is another security checkpoint for KBSS to evalu-
ate the analysis and design security and provide the
most current security functions and issues with their
respective appropriate solutions. Also, It defines all
the possible well-known and expected attacks that can
be adopted at this stage such as securing all objects
and classes of the codes we implemented. KBSS is
using algorithms or pseudo code to represent security
functions and issues at this stage. Also, we could use
one of the available tools [16], [17] that converting
UML to code in our KBSS to validate the security
releases issued at this stage.

5) At time of processing the testing stage, there is another
security checkpoint for the KBSS to evaluate the im-
plementation security and provide the most current se-
curity functions and issues with respected resolutions.
It defines all the possible well-known and expected
attacked that can be adopted such as buffer overflows,
SQL injections, and design flaws. The KBSS will
consider the black box testing, white box testing and
gray box testing as testing security solutions to the
developer team. The black box approach occurs when
we have no advanced knowledge of the infrastructure
to be tested. However, the white box approach happens
when we have advanced knowledge of the infrastruc-
ture to be tested. The gray box approach is a hybrid
between the two. Also, we could have the KBSS to
provide the developer team with some tips, advises
and techniques on testing and evaluating security at
the testing stage.

6) Then, at time of processing the deployment stage,
there is another security checkpoint for the KBSS to
evaluate the testing security and provide the most cur-
rent security functions and issues with their respective
appropriate solutions. It defines all the possible well-
known and expected attacks to the SS functionality
that can be adopted at this stage. Also, KBSS is
going to check if all the previous security functions
and issues with their respective resolutions have been
correctly applied. Otherwise, KBSS is going to flag,
alert, and contact the developer team with the missing
security functions and issues with their respective
resolutions in order to be applied before deploying the
SS.

7) Then, the first incremental released of the SS is
deploying with respect to all aspects of security con-



cerns. Also, the KBSS automatically keeps tracking
the updates with discrete time interval. When there
are updates, it starts alerting the developer with those
updates to be considered as incremental development
processes.

8) Finally, for any release for security functions and
issues to respective domain, we need to do step 2
to 6 repeatedly on one hand. On the other hand, we
are going to adopt some of the available tools that
are going to convert the planning stories security to
requirements specification such as a natural language.
Then, they are going to be modeled to UML and then
to implementation codes. Also, they are going to pro-
vide the developers with tips, advises, and techniques
on testing based on the provided UML. Finally, they
are going to be provided to the developer team as
incremental releases that are ready to use.

4.2 KBSS Objectives
The KBSS is successfully achieved to produce a secured

SS when adopts its methodology at all stages of the SDLC
ideally, as IIDP. Also, the KBSS is categorizes, clusters,
monitors, alerts and controls the SKM, that contains many
security functions and issues with their appropriate solutions
to different domains, using the knowledge of the SET. In
addition, the KBSS keeps tracking the security concerns
within the SDLC using IIDP model. The KBSS can be
incrementally added the security functions and issues with
their appropriate solutions to the SS development as being
developed and iteratively rework on the security concerns.
KBSS is automatically monitoring and alerting the develop-
ers with security functions and issues as soon as they are
released and discovered. Assuming the developers of the SS
have valid subscription to our KBSS and their domains are
registered in KBSS, KBSS is security solutions that can be
beneficial to organization and any other organizations, who
are planning to provide secured SS.

5. Conclusion
We have identified many major security objectives. To

have secured SS, the SS must adopt security objectives
correctly. We have realized that the attackers mostly target
the weakness of security objectives. KBSS can discover and
resolve the weakness of the security objectives. Moreover,
we have recommended KBSS that categorizes, clusters,
monitors, alerts and controls the SKM by the SET, who is
able to identify, collect, organize, manage, retrieve, provide
and store all aspects of security functions and issues. Addi-
tionally, we have offered evidential model of adopting the
KBSS with SDLC ideally with IIDP. The basic idea of the
adaptation is to have security checkpoints. Those security
checkpoints help feeding SS with the most current security
functions and issues with appropriate solutions.

In future work, we plan to use Bayesian Probabilistic
System (BPS) for organizing KBSS. BPS helps ensuring the
possibilities of what part of the system will be most likely
to be attacked. Ideally, adding most of the knowledge of
our common cyber-attacks against cyber-protects in BPS will
help to provide connections between domains, the common
cyber-attacks, and cyber-protects. The BPS will find the risk
of possible attacks to specific domain.

References
[1] J. Wang, H. Wang, M. Gup, and M. Xia, “Security Metrics for Software

Systems,” in 47th Annual Southeast Regional Conference (ACM-SE 47),
Article 47, ACM 2009.

[2] G. McGraw, “Building Security in Software Security,” in IEEE Security
and Privacy Journal, vol. 2, no. 2, pp. 80–83, IEEE 2004.

[3] J. Viega, “Building Security Requirements with CLASP,” in Workshop
on Software Engineering for Secure Systems-Building Trustworthy
Application, ACM 2005.

[4] N. Mead and T. Stehney, “Security Quality Requirements Engineering
(SQUARE) Methodology,” in Workshop on Software Engineering for
Secure Systems-Building Trustworthy Application, ACM 2005.

[5] J. Romero-Mariona, H. Ziv, and D. Richardson, “Later Stages support
for Security Requirements,” in Richard Tapia Celebration of Diversity
in Computing Conference: Intellect, Initiative, Insight, and Innovations,
pp. 103–107, ACM 2009.

[6] M. Vetterling and G. Wimmel, “Secure Systems Development Based on
the Common Criteria: The PalME Project,” in Special Interest Group
on Software Engineering, pp. 129–138, ACM 2002.

[7] L. Ma and J. Tsai, “Attacks and Countermeasures in Software Sys-
tem Security,” in Handbook of Software Engineering and Knowledge
Engineering, Volume III, 2005.

[8] A. Yumerefendi and J. Chase, “Trust but Verify: Accountability for
Network Services,” in 11th Workshop on ACM SIGOPS European
Workshop, Article 37, ACM, 2004.

[9] M. Hwang, L. Li, and C. Lee, “A Key Authentication Scheme with
Non-Repudiation,” in SIGOPS Operating Systems Review, vol. 38, no.
3, pp. 75–78, ACM 2004.

[10] D. Mellado, J. Rodriguez, E. Fernandez-Mendine, and M. Piattini,
“Automated Support for Security Requirements Engineering in Soft-
ware Product Line Domain Engineering,” in International Conference
on Availability, Reliability and Security, pp. 16–19, IEEE 2009.

[11] L. Corman, “Data Integrity and Security of the Corporate Data Base:
The Dilemma of End User Computing,” in SIGMIS Database, vol. 19,
no. 3–4, pp. 1-5, ACM 1988.

[12] P. Bennison and P. Lasher, “Data Security Issues Relating to End of
Life Equipment,” in International Symposium on Electronics and the
Environment Conference Record, pp. 317–320, IEEE 2004.

[13] Z. Li, A. Das, J. Zhou, “Theoretical Basis for Intrusion Detection,”
in Sixth Annual IEEE SMC on Information Assurance Workshop, pp.
184–192, IEEE 2005.

[14] K. Subramanian, D. Liu, B. Far, A. Eberlein, “UCDA: Use Case
Driven Development Assistant Tool for Class Model Generation,” in
16th International Conference on Software Engineering and Knowledge
Engineering, pp. 324–329, Banff, Alberta, Canada 2004.

[15] R. Gaizauskas, H.M. Harmain, “CM-Builder: An Automated NL-
Based CASE Tool,” in 15th International Conference on Automated
Software Engineering, pp. 45–53, IEEE 2000.

[16] F. Do Nascimento, M. Oliveira, M. Wehrmeister, C. Pereira, F. Wag-
ner, “MDA-based Approach for Embedded Software Generation from
a UML/MOF Repository,” in 19th Annual Symposium on Integrated
Circuits and Systems Design, pp.143–148, ACM 2006.

[17] W. Harrison, C. Barton, M. Raghavachari, “Mapping UML Designs
to Java,” in 15th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, pp. 178–187,
ACM 2000.


