Chapter 2
Application Layer

A note on the use of these ppt slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’ re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only

ask the following:

< If you use these slides (e.g., in a class) that you mention their source
(after all, we’ d like people to use our book!)

< If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

@AII material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking
A Top-Down Approach

KUROSE | ROSS

Computer
Networking: A Top
Down Approach

6th edition

Jim Kurose, Keith Ross

Addison-Wesley
March 2012

Application Layer 2-1

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming
2.2 Web and HTTP with UDP and TCP
2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-2

Chapter 2: application layer

our goals: + learn about protocols by
% conceptual, examining popular
implementation aspects application-level
of network application protocols
protocols = HTTP
" transport-layer = FTP
service models = SMTP/POP3 /IMAP
= client-server " DNS
paradigm + creating network
applications

" peer-to-peer
paradigm = socket API

Application Layer 2-3

Some network apps

<+ e-mail + voice over |P (e.g., Skype)
% web + real-time video

% text messaging conferencing

% remote login <+ social networking

+ P2P file sharing %+ search

+ multi-user network games %

% streaming stored video K

(YouTube, Hulu, Netflix)

Application Layer 2-4

Creating a network app

write programs that:
+ run on (different) end systems
% communicate over network

+ e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

< network-core devices do not
run user applications

<« applications on end systems
allows for rapid app
development, propagation

L)

transport
network
_data link |
physical

network
data link
physical

Application Layer 2-5

Application architectures

possible structure of applications:
% client-server
+ peer-to-peer (P2P)

Application Layer 2-6

Client-server architecture

Server.

<+ always-on host

+» permanent IP address
+ data centers for scaling

clients:
< communicate with server

may be intermittently
connected

< may have dynamic IP
addresses

+ do not communicate directly
with each other

J
0’0

Application Layer 2-7

P2P architecture

g

o0

no always-on server

arbitrary end systems
directly communicate

peers request service from
other peers, provide service
in return to other peers

" self scalability — new
peers bring new service
capacity, as well as new
service demands

peers are intermittently
connected and change |P
addresses

= complex management

peer-peer

Application Layer 2-8

Processes communicating

process: program running clients, servers
within a host client process: process that
<+ within same host, two initiates communication

processes communicate
using inter-process

communication (defined by
Of)

server process: process that
waits to be contacted

>

+ processes in different hosts
communicate by exchanging < aside: applications with P2P

MESSages architectures have client
processes & server
processes

L)

Application Layer 2-9

Sockets

<+ process sends/receives messages to/from its socket
+ socket analogous to door
= sending process shoves message out door

" sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

application

socket \

application

controlled by
app developer

controlled

by O
'\

Internet

A
v

Application Layer 2-10

Addressing processes

<+ to receive Messages,

process must have identifier

+ host device has unique 32-
bit IP address

% Q: does IP address of host
on which process runs
suffice for identifying the
process!

= A: no, many processes

can be running on same

host

4

o0

D)

>

)

identifier includes both IP
address and port numbers
associated with process on
host.

example port numbers:
= HTTP server: 80
= mail server: 25

to send HT TP message to
gaia.cs.umass.edu web
server:

= |P address: 128.119.245.12
= port number: 80

more shortly...

Application Layer 2-11

App-layer protocol defines

+ types of messages open protocols:

exchanged, + defined in RFCs

" e.g, request, response <+ allows for interoperability
* message syntax: +» e.g., HTTP, SMTP

" what fie!ds in messages proprietary protocols:
& how fields are

: < e.g., Skype
delineated & JKYP
« message semantics

" meaning of information
in fields

% rules for when and how
processes send & respond
to messages

Application Layer 2-12

WVhat transport service does an app heed?

data integrity

+ some apps (e.g., file transfer,
web transactions) require
100% reliable data transfer

+ other apps (e.g., audio) can
tolerate some loss

timing
% some apps (e.g., Internet
telephony, interactive

games) require low delay
to be “effective”

throughput

< some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

» other apps (" elastic apps”)
make use of whatever
throughput they get

L 4

security

< encryption, data integrity,

Application Layer 2-13

TransEort service reguirements: common apps

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail noloss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps yes, 100’ s
video:10kbps-5Mbps msec

stored audio/video

loss-tolerant

same as above

Interactive games loss-tolerant few kbps up yes, few secs
text messaging no loss elastic yes, 100’ s
msec
yes and no

Application Layer 2-14

Internet transport protocols services

A

TCP service:

\/
0’0

4

o0

L)

.0

L) 4

L)

>

o0

L)

reliable transport between
sending and receiving
process

flow control: sender won’ t
overwhelm receiver

congestion control: throttle
sender when network
overloaded

does not provide: timing,
minimum throughput
guarantee, security

connection-oriented: setup
required between client and
server processes

UDP service:

< unreliable data transfer
between sending and
receiving process

<« does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-15

Internet apps: aEelication, transport Erotocols

application underlying
application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary
(e.g., Skype) TCP or UDP

Application Layer 2-16

Securing TCP

TCP & UDP SSL is at app layer
% NO encryption + Apps use SSL libraries,
% cleartext passwds sent ~ Which “talk” to TCP
into socket traverse SSL socket API
nternet in cleartext .. cleartext passwds sent
SSL into socket traverse
+ provides encrypted Internet encrypted
TCP connection +» See Chapter 7

<+ data integrity

<+ end-point
authentication

Application Layer 2-17

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

= app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-18

Web and HT TP

First, a review...
+ web page consists of objects

+ object can be HTML file, |PEG image, Java applet,
audio file,...

+ web page consists of base HTML-file which
includes several referenced objects

+ each object is addressable by a URL e.g.,

www .someschool.edu/someDept/pic.gif

— ——

host name path name

Application Layer 2-19

HTTP overview

HTTP: hypertext
transfer protocol

+ Web’ s application layer
protocol

< client/server model

= client: browser that
requests, receives,
(using HTTP protocol)
and displays” Web
objects

= server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

iphone running
Safari browser

server
running
Apache Web
server

Application Layer 2-20

HTTP overview (continued)

uses TCP: HTTP is ‘stateless ~

« client initiates TCP <+ server maintains no
connection (creates inform.ation about
socket) to server, port 80 past client requests

« server accepts TCP
connection from client aside -

protocols that maintain
(11 ””
state are complex!

» past history (state) must be
maintained

% HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server views of “state” may be

(HTTP server) inconsistent, must be
<« TCP connection closed reconciled

< if server/client crashes, their

Application Layer 2-21

HT TP connections

non-persistent HTTP

% at most one object
sent over TCP
connection

= connection then
closed

+ downloading multiple
objects required
multiple connections

persistent HTTP

<+ multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 2-22

Non-persistent HT TP

suppose user enters URL: (contains text,
www . someSchool .edu/someDepartment/home.index referencesto 10
jpeg images)

la. HTTP client initiates TCP
connection to HTTP server

(process) at Ib. HTTP server at host
www.someSchool.edu on port www.someSchool.edu waiting
80 for TCP connection at port 80.
“accepts’ connection, notifying
2.HTTP client sends HTTP request client

message (containing URL) into
TCP connection socket. \i HTTP server receives request

Message indicates that client message, forms response

wants object message containing requested
someDepartment/home_indV object, and sends message into

its socket
time

Application Layer 2-23

Non-persistent HT TP (cont.)

/ 4. HTTP server closes TCP

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

time
6.Steps |-5 repeated for each of

|0 jpeg objects

connection.

Application Layer 2-24

Non-persistent HT TP: response time

RTT (definition): time for a

small packet to travel from
client to server and back

HTTP response time:
» one RTT to initiate TCP

L) 4

L) 4

L) 4

connection

one RTT for HTTP request

and first few bytes of HTTP
response to return

file transmission time

non-persistent HT TP
response time =

2RTT+ file transmission
time

initiate TCP |
connection ~ ¢
RTT,
request | |
file o
. time to
RTTS |] transmit
L -~ file
file ; :
received
time time

Application Layer 2-25

Persistent HT TP

non-persistent HTTP issues:

+ requires 2 RTTs per object

» OS overhead for each TCP
connection

+ browsers often open
parallel TCP connections
to fetch referenced objects

pers:stent HTTP:

+ server leaves connection
open after sending
response

« subsequent HTTP
messages between same
client/server sent over
open connection

- client sends requests as
soon as it encounters a
referenced object

- as little as one RTT for all
the referenced objects

>

L)

D)

>

L)

L)

Application Layer 2-26

HTTP request message

+ two types of HT TP messages: request, response

< HTTP request message:

= ASCIl (human-readable format)
carriage return character

: line-feed character
request line

(GET, POST, T GET /index.html HTTP/1.1\r\n
HEAD commands) [Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
head Accept: text/html,application/xhtml+xml\r\n
ea er Accept-Language: en-us,en;q=0.5\r\n

ines | accept-Encoding: gzip,deflate\r\n
Accept-Charset: IS0-8859-1,utf-8;g9=0.7\r\n
carriage return, Keep-Alive: 115\r\n
line feed at start Connection: keep-alive\r\n

of line indicates \rin
end of header lines

Application Layer 2-27

HTTP request message: general format

method [sp| URL |[sp| version |cr| If :ri?]qeuest
header field name value |cr | If N
header
lines
header field name value |cr| If
cr|If
entity body - body

Application Layer 2-28

Uploading form input

POST method:

% web page often includes
form input

» input is uploaded to
server in entity body

URL method:
« uses GET method

» input is uploaded in URL
field of request line:

www.somesite.com/animalsearch?monkeysé&banana

Application Layer 2-29

Method types

HTTP/I.0:
« GET

+ POST

+ HEAD

= asks server to leave
requested object out
of response

HTTP/I.1:

« GET, POST, HEAD
<« PUT

" uploads file in entity
body to path specified
in URL field

< DELETE

= deletes file specified in
the URL field

Application Layer 2-30

HTTP response message

status line

rotocol
(p \

status code
status phrase)

header
lines

data, e.g.
requested
HTML file

—

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02
GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=IS0-8859-
1\r\n

. \r\n

,/////»data data data data data

Application Layer 2-31

HTTP response status codes

« status code appears in 1st line in server-to-
client response message.

< some sample codes:
200 OK

" request succeeded, requested object later in this msg

301 Moved Permanently

" requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

" request msg not understood by server

404 Not Found

" requested document not found on this server
505 HTTP Version Not Supported

Application Layer 2-32

Trying out HT TP (client side) for yourself

|. Telnet to your favorite Web server:

—_—

telnet cis.poly.edu 80 |opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
anything typed in sent

to port 80 at cis.poly.edu

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1 by typing this in (hit carriage
Host: cis.poly.edu return twice), you send
this minimal (but complete)

| GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HT TP request/response)
Application Layer 2-33

User-server state: cookies

. . example:
many Web sites use cookies
+ Susan always access Internet
four components: from PC
) cookie header line of .+ visits specific e-commerce
HTTP response site for first time
message < when initial HT TP requests
2) cookie header line in arrives at site, site creates:
next HT TP request = unique ID
message = entry in backend
3) cookie file kept on database for ID

user s host, managed
by user’ s browser

4) back-end database at
Web site

Application Layer 2-34

Cookies: keeping “state” (cont.)

client q

4

—

ebay 8734

usual http request msg

Amazon server

cookie file

usual http response
set-cookie: 1678

<
ebay 8734
amazon 1678

—

—

usual http request msg
cookie: 1678

creates ID

usual http response msg

one week later:

ebay 8734

—

amazon 1678

usual http request msg
cookie: 1678

usual http response msg

1678 for user create Packend
entry database
~
cookie- access
——— specific
action
access
cookie-
—_ > specific
action

Application Layer 2-35

Cookies (continued)

what cookies can be used cookies and privacy:

for: .

horizati < cookies permit sites to
authorization learn a lot about you
shopping carts

recommendations

user session state (Web
e-mail)

aside

)
0’0

K/
0’0

< you may supply name and
e-mail to sites

J
0’0

X/
0’0

how to keep ‘state :

< protocol endpoints: maintain state at
sender/receiver over multiple
transactions

< cookies: http messages carry state

Application Layer 2-36

Web caches (proxy server)

goal: satisfy client request without involving origin server

< user sets browser: Web
accesses via cache

«» browser sends all HTTP
requests to cache

" object in cache: cache
returns object

" else cache requests
object from origin
server, then returns
object to client

origin
server

origin
server

Application Layer 2-37

More about Web caching

% cache acts as both why Web caching?
client and server + reduce response time
requesting client .
= client to origin server + reduce traffic on an
. . .) .
» typically cache is institution s access link
installed by ISP % Internet dense with
. . 11 77
(university, company, caches: enables “poor
residential ISP) content providers to

effectively deliver
content (so too does

P2P file sharing)

Application Layer 2-38

Caching example:

assumptions:
avg object size: |00K bits origin
avg request rate from browsers to servers

consequences:

@
L X4

K/
L X4

@
L X4

origin servers:|5/sec
avg data rate to browsers: 1.50 Mbps

RTT from institutional router to any
origin server:2 sec

access link rate: 1.54 Mbps

1.54 Mbps
access link

LAN utilization: 15% problem!
access link utilization

total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

Application Layer 2-39

Caching example: fatter access link

assumptions:
» avg object size: |00K bits

avg request rate from browsers to Se?\r,lglrr;

origin servers:|5/sec

avg data rate to browsers: 1.50 Mbps

RTT from institutional router to any

origin server:2 sec

access link rate: IT54-Mbps |54 Mbps : S, 1ot bps
access link

consequences:
» LAN utilization: 5%
access link utilization = 99%=9 9%,

total delay = Internet delay + access
delay + LAN delay
= 2 sec +Tmi s + usecs

msecs

Cost: increased access link speed (not cheap!)

Application Layer 2-40

Caching example: install local cache

assumptions:
» avg object size: |00K bits

avg request rate from browsers to
origin servers:|5/sec

avg data rate to browsers: 1.50 Mbps

RTT from institutional router to any
origin server:2 sec

origin
servers

access link rate: 1.54 Mbps 1.54 Mbps
consequences: access link
LAN utilization: 15%

access link utilization = ?
total delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

Application Layer 2-41

Caching example: install local cache

Calculating access link
utilization, delay with cache:

<+ suppose cache hit rate is 0.4

= 40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

+ access link utilization:
= 60% of requests use access link
+ data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
= utilization = 0.9/1.54 = .58

< total delay

= = 0.6 * (delay from origin servers) +0.4
* (delay when satisfied at cache) =\ | web

= =0.6(2.01) + 0.4 (~msecs) i che
= =~ |.2 secs

" less than with 154 Mbps link (and
cheaper too!)

1.54 Mbps
access link

Application Layer 2-42

Conditional GET

client 4‘5 = server
» Goal: don’ t send object if e 2l
cache has up-to-date
cached version | HTTPrequest msg obiect
: . If-modified-since: <date> — J
" no object transmission not
delay — modified
= |ower link utilization — HTLi;ijlpgnse before
% cache: specify date of 304 Not Modified <date>
cached copy in HTTP
request =0 TTTTTTTTTmooSTmooooo--
If-modified-since:
<date> —1 HTTP request msg
+ server: response contains If-modified-since: <date> — object
no object if cached copy ___ Modified
i ub-to-date: HTTP response after
P - <7 HTTP/1.0 200 OK <date>
Modified

Application Layer 2-43

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

= app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-44

FTP: the file transfer protocol

*

file transfer

FTP |

client

interface

transfer file to/from remote host
client/server model

local file
system

FTP
server

remote file
system

= client: side that initiates transfer (either to/from remote)

" server: remote host
ftp: RFC 959
ftp server: port 21

Application Layer 2-45

FTP: separate control, data connections

FTP client contacts FTP server

at port 21, using TCP

client authorized over control

connection

client browses remote
directory, sends commands
over control connection

when server receives file
transfer command, server

opens 2" TCP data
connection (for file) to client

after transferring one file,
server closes data connection

TCP control connection,
server port 21

I TCP data connection,
FTP ——server port 20 FTP
client server

< server opens another TCP
data connection to transfer
another file

% control connection: “out of
V4
band

% FTP server maintains
(11 13/ .
state :current directory,
earlier authentication

Application Layer 2-46

FTP commands, responses

sample commands:
» sent as ASCII text over

control channel

< USER username
» PASS password

» LIST return list of file in

/7
0‘0

current directory

RETR filename
retrieves (gets) file

» STOR filename stores

(puts) file onto remote
host

sample return codes
» status code and phrase (as

in HTTP)

* 331 Username OK,

password required

» 125 data

connection
already open;
transfer starting

. 425 Can’ t open

data connection

» 452 Error writing

file

Application Layer 2-47

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

= app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-48

Electronic mail outgoing

—— message queue
O user mailbox

Three major components:
< user agents
<+ mail servers

<« simple mail transfer
protocol: SMTP

User Agent SMTP

+ a.ka. “mail reader”

« composing, editing, reading
mail messages

+ e.g., Outlook, Thunderbird,
iPhone mail client

- outgoing, incoming
messages stored on server

mail
server

00000

mail
server

00000

*

D)

L)

Application Layer 2-49

Electronic mail: mail servers

mail servers:

« mailbox contains incoming
messages for user

% message queue of outgoing
(to be sent) mail messages

% SMTP protocol between
mail servers to send email SMTP
messages

= client: sending mail
server

mail
server

00000

mail
server

= “server’: receiving mail LTI

server

Application Layer 2-50

Electronic Mail: SMTP [RFC 2821]

% uses TCP to reliably transfer email message from
client to server, port 25

direct transfer: sending server to receiving
server
% three phases of transfer

* handshaking (greeting)

* transfer of messages

" closure
» command/response interaction (like HTTP, FTP)
= commands: ASCII text
" response: status code and phrase

% messages must be in 7-bit ASCI

*

Application Layer 2-51

Scenario: Alice sends message to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice’s

message to message over the TCP
bob@someschool.edu connection
2) Alice’ s UA sends message 5) Bob’ s mail server places the
to her mail server; message message in Bob’ s mailbox
placed in message queue 6) Bob invokes his user agent
3) client side of SMTP opens to read message
TCP connection with Bob' s
mail server

mail _ ;ﬂ_‘-'.:;
server server 'L__.:‘ff »
[T 3) /@/W s
UOO O

Alice’ s mail server Bob’ s mail server

Application Layer 2-52

Sample SMTP interaction

noaQanaooaoooonaoanaonn 0 n

220 hamburger.edu

HELO crepes.fr

250 Hello crepes.fr, pleased to meet you
MAIL FROM: <alice@crepes.fr>

250 alice@crepes.fr... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bob@hamburger.edu ... Recipient ok
DATA

354 Enter mail, end with "." on a line by itself
Do you like ketchup?

How about pickles?

250 Message accepted for delivery

QUIT
221 hamburger.edu closing connection

Application Layer 2-53

Try SMTP interaction for yourself:

¢ telnet servername 25

+ see 220 reply from server
+ enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client (reader)

Application Layer 2-54

SMTP: final words

+ SMTP uses persistent comparison with HTTP:

connections

% SMTP requires message
(header & body) to be in
7-bit ASCII

» SMTP server uses
CRLFEF .CRLF to
determine end of message

« HTTP: pull
«» SMTP: push

< both have ASCII

command/response
interaction, status codes

«» HTTP: each object

encapsulated in its own
response msg

« SMTP: multiple objects

sent in multipart msg

Application Layer 2-55

Mail message format

SMTP: protocol for

ging g ., header blank

RFC 822: standard fcy) ine
message format:
+ header lines, e.g.,
= To:
" From:
= Subject:
different from SMTP MAIL
FROM, RCPT TO:
commands!

» Body: the “message”
= ASCII characters only

Application Layer 2-56

Mail access protocols

mail access -
SMTP SMTP protocol e
(e.g., POP, i
||\/|AP) o
OO OO

sender’ s mail receiver’ s malil
server server

» SMTP: delivery/storage to receiver s server

<+ mail access protocol: retrieval from server

= POP: Post Office Protocol [RFC 1939]: authorization,
download

= |[MAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

= HTTP: gmail, Hotmail, Yahoo! Mail, etc.

Application Layer 2-57

POP3 protocol

authorization phase —
« client commands:
* user: declare username
" pass: password
% server responses
= +0K
= -ERR
transaction phase, client, —
+ list: list message numbers
% retr: retrieve message by
number
%+ dele: delete
+ quit

|m QNQOLnNnOQO LN NN o||? Q®nQ ?|

+OK POP3 server ready
user bob

+OK

pass hungry

+OK user successfully logged on

list
1 498
2 912

retr 1
<message 1 contents>

dele 1
retr 2
<message 1 contents>

dele 2
quit
+OK POP3 server signing off

Application Layer 2-58

POP3 (more) and IMAP

more about POP3

\/
0’0

previous example uses
POP3 “download and
delete” mode

= Bob cannot re-read e-
mail if he changes
client

POP3 “download-and-
keep”: copies of messages
on different clients

POP3 is stateless across
sessions

IMAP

R/
0‘0

o0

o0

keeps all messages in one
place: at server

allows user to organize
messages in folders

keeps user state across
sessions:

* names of folders and
mappings between
message |IDs and folder
name

Application Layer 2-59

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

= app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-60

DNS: domain name system

people: many identifiers: Domain Name System:
= SSN, name, passport # « distributed database
Internet hosts, routers: implemented in hierarchy of
* IP address (32 bit) - many name Servers
used for addressing <« application-layer protocol: hosts,
datagrams name servers communicate to

= “name”, e, resolve names (address/name

www.yahoo.com - translation)
used by humans = pote: core Internet function,

implemented as application-

Q: how to map between IP
layer protocol

address and name, and I g
i = complexity at network' s
vice versa ! plexity

Application Layer 2-61

DNS: services, structure

DNS services

%+ hostname to |IP address
translation
% host aliasing
= canonical, alias names
<« mail server aliasing
+ load distribution

" replicated Web
servers: many IP
addresses correspond
to one name

why not centralize DNS?

+ single point of failure

+ traffic volume

+ distant centralized database
< mMmaintenance

A: doesn 't scale!

Application Layer 2-62

DNS: a distributed, hierarchical database

Root DNS Servers

com DNS servers org DNS servers edu}\ls servers
/ \ poly.edu umass.edu
yahoo.com amazon.com pbs.org
DNS servers DNS servers DNS servers DNS serversDNS servers

client wants IP for www.amazon.com; [t approx:
+ client queries root server to find com DNS server
+ client queries .com DNS server to get amazon.com DNS server

+ client queries amazon.com DNS server to get |P address for
Www.amazon.com

Application Layer 2-63

DNS: root name servers

+ contacted by local name server that can not resolve name
% root name server:

= contacts authoritative name server if name mapping not known
" gets mapping
" returns mapping to local name server

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD k. RIPE London (17 other sites)
h. ARL Aberdeen, MD

j- Verisign, Dulles VA (69 other sites) i. Netnod, Stockholm (37 other sites)
e. NASA Mt View, CA _ - m. WIDE Tokyo

f. Internet Software C. (5 other sites)
Palo Alto, CA (and 48 other — |

sites) \

a. Verisign, Los Angeles CA
(5 other sites)
b. USC-ISI Marina del Rey, CA
I. ICANN Los Angeles, CA
(41 other sites)

13 root name
“servers”
worldwide

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-64

TLD, authoritative servers

top-level domain (TLD) servers:

= responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

= Network Solutions maintains servers for .com TLD
= Educause for .edu TLD

authoritative DNS servers:

= organization’ s own DNS server(s), providing
authoritative hostname to IP mappings for organization’ s
named hosts

" can be maintained by organization or service provider

Application Layer 2-65

Local DNS name server

+ does not strictly belong to hierarchy

% each ISP (residential ISP, company, university) has
one
= also called “default name server”

+ when host makes DNS query, query is sent to its
local DNS server

= has local cache of recent nhame-to-address translation
pairs (but may be out of date!)

= acts as proxy, forwards query into hierarch
proxy query Y

Application Layer 2-66

DNS name

resolution example

% host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:

< contacted server
replies with name of
server to contact

< “I don’ t know this
name, but ask this
144
server

root DNS server

, /8
3

TLD DNS server

4 B

‘ 5

t

local DNS server
dns.poly.edu

1| | s =

7 6

N / _
g authoritative DNS server
e ——— dns.cs.umass.edu

requesting host v

cis.poly.edu
gaia.cs.umass.edu

Application Layer 2-67

DNS name

resolution example 5

recursive gquery:

» puts burden of name
resolution on
contacted name
server

< heavy load at upper
levels of hierarchy?

root DNS server

=i TLD DNS
| server
t
local DNS server
dns.poly.edu 5|} 4

/ ‘
g authoritative DNS server
e ——— dns.cs.umass.edu

requesting host o

cis.poly.edu
gaia.cs.umass.edu

Application Layer 2-68

DNS: caching, updating records

% once (any) name server learns mapping, it caches
mapping
" cache entries timeout (disappear) after some time (TTL)
= TLD servers typically cached in local name servers

* thus root name servers not often visited

+ cached entries may be out-of-date (best effort
name-to-address translation!)

= if name host changes |IP address, may not be known
Internet-wide until all TTLs expire

< update/notify mechanisms proposed |IETF standard
= RFC 2136

Application Layer 2-69

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

= name is hosthame

= value is IP address

type=NS

" name is domain (e.g.,
foo.com)
» value is hosthame of

authoritative name
server for this domain

type =CNAME

name IS alias name for some
“canonical” (the real) name

= www.ibm.com is really

servereast.backup2.ibm.com

" value is canonical name

type=MX

= value is name of mailserver
associated with name

Application Layer 2-70

DNS protocol, messages

% query and reply messages, both with same message
format

<+—— 2 bytes > < 2 bytes ——

msg header //identification /flags

< identification: | 6 bit # for # jons # answer RRs
g:ni;y;;“eply to query uses # authority RRs | # additional RRs

< flags: questions (variable # of questions)

= query or reply

= recursion desired answers (variable # of RRs)

= recursion available
= reply is authoritative authority (variable # of RRs)

additional info (variable # of RRs)

Application Layer 2-71

DNS protocol, messages

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions # answer RRs

authority RRs | # additional RRs

questions (variable # of questions)

answers (variable # of RRs)

authority (variable # of RRS)

additional info (variable # of RRs)

Application Layer 2-72

Inserting records into DNS

11 « 7
«» example: new startup Network Utopia

+ register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)

= provide names, IP addresses of authoritative name server
(primary and secondary)

" registrar inserts two RRs into .com TLD server:
(networkutopia.com, dnsl.networkutopia.com, NS)

(dnsl.networkutopia.com, 212.212.212.1, A)

% create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Application Layer 2-73

Attacking DNS

DDoS attacks

+ Bombard root servers
with traffic
= Not successful to date
= Traffic Filtering

= Local DNS servers
cache IPs of TLD

servers, allowing root
server bypass

<+ Bombard TLD servers

* Potentially more
dangerous

Redirect attacks
+» Man-in-middle

" |ntercept queries
+» DNS poisoning

* Send bogus relies to
DNS server, which
caches

Exploit DNS for DDoS

+ Send queries with
spoofed source
address: target IP

+ Requires amplification

Application Layer 2-74

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

= app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-75

Pure P2P architecture

« no always-on server

» arbitrary end systems
directly communicate

% peers are intermittently
connected and change IP
addresses

examples:

= file distribution
(BitTorrent)

= Streaming (KanKan)
* VolP (Skype)

Application Layer 2-76

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers!?

" peer upload/download capacity is limited resource

u.: server upload
capacity

d,;: peer i download
capacity

network (with abundant - ' =D
) =

bandwidth) U, \

u;: peer i upload
capacity

Application Layer 2-77

File distribution time: client-server

< server transmission: must
sequentially send (upload) N E
file copies:

= time to send one copy: F/u ,
= time to send N copies: NF/u *g,

< client: each client must
download file copy
= d_., = min client download rate
" min client download time: F/d ..

time to distribute F

| to N clients using Dc-s > max{NF/uS,,F/dmm}
client-server approach /

/

increases linearly in N

Application Layer 2-78

File distribution time: P2P

< Server transmission: must
upload at least one copy

= time to send one copy: F/u

< client: each client must
download file copy

" min client download time: F/d .

< clients: as aggregate must download NF bits

= max upload rate (limting max download rate) is u, + 2u.

time to distribute F
toN clients using D > Max{F/ug ,F/dy ,NF/(u, + Zuy)}
P2P approach /

/
Increases linearly in N ... /
... but so does this, as each peer brings service capacity

Application Layer 2-79

Client-server vs. P2P: example

client upload rate = u, F/u=1 hour, u,=10u, d.;, 2 U,

3.5

= P2P
-o— Client-Server

3

2.5

2

1.5

1

Minimum Distribution Time

0.5

Application Layer 2-80

P2P file distribution: BitTorrent

< file divided into 256Kb chunks
< peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file
B9 ¢
1 N — f’\

Alice arrives ...

... obtains list

of peers from tracker ‘/

... and begins exchanging < ~

file chunks with peers in torrent | V//%\
2 o

Application Layer 2-81

P2P file distribution: BitTorrent

< peer joining torrent: E
= has no chunks, but will -
™

accumulate them over time ##-&
from other peers

" registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors™)

+ while downloading, peer uploads chunks to other peers
<+ peer may change peers with whom it exchanges chunks
% churn: peers may come and go

+ once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Application Layer 2-82

BitTorrent: requesting, sending file chunks

requesting chunks: sending chunks: tit-for-tat

% at any given time, different « Alice sends chunks to those
peers have different subsets four peers currently sending her
of file chunks chunks at highest rate

& periodically, Alice asks each = other peers are choked by Alice
peer for list of chunks that (do not receive chunks from her)

= re-evaluate top 4 everyl0 secs

< every 30 secs: randomly select
another peer, starts sending
chunks
= “optimistically unchoke” this peer
* newly chosen peer may join top 4

they have

+ Alice requests missing
chunks from peers, rarest
first

.0

Application Layer 2-83

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

| b higher upload rate: find better
q trading partners, get file faster !

Application Layer 2-84

Distributed Hash Table (DHT)

% DHT: a distributed P2P database

< database has (key, value) pairs; examples:
= key: ss number; value: human name

" key: movie title; value: IP address

< Distribute the (key, value) pairs over the
(millions of peers)

< a peer queries DHT with key
* DHT returns values that match the key

< peers can also insert (key, value) pairs

Application 2-85

Q: how to assign keys to peers!?

< central issue:

= assigning (key, value) pairs to peers.
< basic idea:

= convert each key to an integer

= Assign integer to each peer

= put (key,value) pair in the peer that is closest
to the key

Application 2-86

DHT identifiers

< assign integer identifier to each peer in range
[0,2"-1] for some n.

= each identifier represented by n bits.

< require each key to be an integer in same range

< to get integer key, hash original key
= e.g., key = hash(“Led Zeppelin IV")

= this is why its is referred to as a distributed “hash ~
table

Application 2-87

Assign keys to peers

< rule: assign key to the peer that has the
closest ID.

< convention in lecture: closest is the
immediate successor of the key.

+ e.g., n=4; peers: 1,3,4,5,8,10,12,14;
" key = 13, then successor peer = |4

" key = |5, then successor peer = |

Application 2-88

Circular DHT (1)

1

15

12

10
8

< each peer only aware of immediate successor and
predecessor.

11 77
< overlay network

Application 2-89

Circular DHT (1)

O(N) messages
on avgerage to resolve 0001
query, when there
are N peers

Who' s responsible
for key 1110 ?

1111

0100

110
0101

Define closest
as closest 1010
successor

1000

Application 2-90

Circular DHT with shortcuts

1 Who’ s responsible
3 for key 1110?

15

12

10
8
< each peer keeps track of IP addresses of predecessor,
successor, short cuts.
reduced from 6 to 2 messages.

possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

D)

/
0’0

/
0’0

Application 2-91

Peer churn

; handling peer churn:

<peers may come and go (churn)

<each peer knows address of its
15 3 tWO successors
<»each peer periodically pings its
4 two successors to check aliveness
12 <+if immediate successor leaves,

5 choose next successor as hew
immediate successor

10
8

example: peer 5 abruptly leaves

<peer 4 detects peer 5 departure; makes 8 its immediate
successor; asks 8 who its immediate successor is; makes
8" s immediate successor its second successor.

<+what if peer |3 wants to join!?

Application 2-92

Chapter 2: outline

2.1 principles of network 2.6 P2P applications

applications 2.7 socket programming

" app architectures with UDP and TCP
" app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
= SMTP, POP3, IMAP

2.5 DNS

Application Layer 2-93

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

application

socket \

application

controlled by
app developer

controlled
by OS

o

Application Layer 2-94

Internet

A
v

Socket programming

Two socket types for two transport services:
= UDP: unreliable datagram
= TCP: reliable, byte stream-oriented

Application Example:

. Client reads a line of characters (data) from its
keyboard and sends the data to the server.

2. The server receives the data and converts
characters to uppercase.

3. The server sends the modified data to the client.

4. The client receives the modified data and displays
the line on its screen.

Application Layer 2-95

Socket programming with UDP

UDP: no “connection’ between client & server
+ no handshaking before sending data

+ sender explicitly attaches |IP destination address and
port # to each packet

» rcvr extracts sender |IP address and port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
s UDP provides unreliable transfer of groups of bytes
(“datagrams”) between client and server

Application Layer 2-96

Client/server socket interaction: UDP

(C/C++ System calls shown in green)

server (running on serverIP) client
create socket:
create socket, port= x: clientSocket = (socket(2))
serverSocket = socket(AF_INET,SOCK_DGRAM)
socket(AF_INET,SOCK_DGRAM)
(socket(2)) | (bind(2)) Create datagram with server IP and
;am/ port=x; send datagram via
read datagram f clientSocket (sendto(2))
serverSocket

(recvirom(2))1

write reply to —

serverSocket — read'datagram from

specifying (sendto(2)) clientSocket (recvfrom(2))
client address,

port number close

clientSocket (close(2))

(See also ip(7), udp(7)) Application 2-7

Example app: UDP client

Python UDPClient
include Python’s socket

i » from socket import *
ibrary

serverName = ‘hostname’
serverPort = 12000

g(raerier UDPsocketfor______, clientSocket = socket(socket. AF_INET,

get user keyboard socket.SOCK_DGRAM)

Input > message = raw_input('Input lowercase sentence:’)
Attach server name, port to)
message; send into socket—— ClientSocket.sendto(message,(serverName, serverPort))

read reply characters from —» modifledMessage, serverAddress =
socket into string

clientSocket.recvirom(2048)
print out received string — Print modifiedMessage

and close socket _
clientSocket.close()

Application Layer 2-98

ExamEIe app: UDP server

Python UDPServer

from socket import *
serverPort = 12000

create UDP socket » serverSocket = socket(AF_INET, SOCK_DGRAM)
bind socket to local port - "
umber 19000 —» serverSocket.bind((", serverPort))
print “The server is ready to receive”
loop forever » While 1:
Read from UDP socketinto | message, clientAddress = serverSocket.recvfrom(2048)
message, getting client’s -
address (client IP and port) modifiedMessage = message.upper()

send upper case string — ServerSocket.sendto(modifiedMessage, clientAddress)
back to this client

Application Layer 2-99

Socket programming with TCP

client must contact server + when contacted by client,
+ server process must first be server TCP creates new socket
running for server process to

» server must have created communicate with that

socket (door) that particular client |
welcomes client’ s contact = allows server to talk with

multiple clients
" source port numbers used
« Creating TCP socket, to distinguish clients

specifying IP address, port (more in Chap 3)
number of server process

- when client creates socket: application viewpoint:

client TCP establishes TCP provides reliable, in-order

connection to server TCP byte-stream transfer (" pipe”)
between client and server

client contacts server by:

>

L)

D)

Application Layer 2-100

Client/server socket interaction: TCP

(C/C++ System calls shown in green)
server (running on hostid) client

create socket,

port=x, for incoming
request:

serverSocket = socket()

(socket(2)) 1 (bind(2), listen(2))

wait for incoming TCP create socket, (socket (2)’
connection request<—CO—n fecton S_etu_p = connect to hostid, port=x conn ect(2))
(accept(2))connectlonSocket = clientSocket = socket()

serverSocket.accept()

A 4

_d> l f send request using

read request from / clientSocket

(recv(2))| connectionSocket (send(2))
-

write reply to —_ |
(send(2)) connectionSocket _, read reply from
1 clientSocket (recv(2))
close

(close(2)) connectionsocket close l
clientSocket (close(2))

(See also ip(7), tcp(7))

Application Layer 2-101

Example app:TCP client

Python TCPClient

from socket import *
serverName = 'servername’

create TCP socket for serverPort = 12000

server, remote port 12000, clientSocket = socket(AF _INETCSOCK_STREAM
clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)
Noneedtoattach server______, clientSocket.send(sentence)
name, port

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

Application Layer 2-102

Example app: TCP server

Python TCPServer

from socket import *

serverPort = 12000

serverSocket = socket(AF _INET,SOCK_STREAM)
serverSocket.bind((",serverPort))
serverSocket.listen(1)

print ‘The server is ready to receive’

loop forever » while 1:

serverwaitsonaccept) ____, connectionSocket, addr = serverSocket.accept()
for incoming requests, new

socket created on return

create TCP welcoming
socket

v

server begins listening for
incoming TCP requests

»sentence = connectionSocket.recv(1024)

read bytes from socket (but

not address as in UDP) capitalizedSentence = sentence.upper()
close connection to this —— connectionSocket.send(capitalizedSentence)
client (but not welcoming .
socket) connectionSocket.close()

Application Layer 2-103

Chapter 2: summary

our study of network apps now complete!

< application architectures

= client-server
= P2P

< application service

requirements:
= reliability, bandwidth, delay

» Internet transport service

model

= connhection-oriented,
reliable: TCP

" unreliable, datagrams: UDP

< specific protocols:
= HTTP
= FTP
= SMTP,POP, IMAP
= DNS
= P2P:BitTorrent, DHT

< socket programming: TCP,
UDP sockets

Application Layer 2-104

Chapter 2: summary

most importantly: learned about protocols!

+ typical request/reply important themes:

message exchange:

= client requests info or
service

" server responds with
data, status code

% message formats:

* headers: fields giving
info about data

» data: info being -
communicated

\/
0.0

o

4

>

L (4

L)

4

L4

o,

control vs. data msgs

" in-band, out-of-band
centralized vs. decentralized
stateless vs. stateful

reliable vs. unreliable msg
transfer

“complexity at network
edge”

Application Layer 2-105

