Chapter 3
Transport Laxer

A note on the use of these ppt slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’ re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only

ask the following:
< If you use these slides (e.g., in a class) that you mention their source

(after all, we’ d like people to use our book!)

< If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

@AII material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking
A Top-Down Approach

KUROSE | ROSS

Computer
Networking: A Top
Down Approach

6t edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

Transport Layer 3-1

Chapter 3: Transport Layer

our goals:
<+ understand + learn about Internet
principles behind transport layer protocols:
transport layer = UDP: connectionless
services: transport
= multiplexing, = TCP: connection-oriented
demultiplexing reliable transport
" reliable data transfer * TCP congestion control

* flow control
" congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols
=

< provide logical communication
between app processes
running on different hosts

transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

= rcv side: reassembles
segments into messages, 3 transport

network

passes to app layer | Jota Ik

hysical
+ more than one transport
protocol available to apps

" Internet; TCP and UDP

J
0’0

Transport Layer 3-4

Transport vs. network layer

+ network layer: logical

, - household analogy:
communication 'y Kide AT .
ids in Ann s house sending
between hosts letters to |2 kids in Bill s
< transport layer: house:
Iogical + hosts = houses
communication + processes = kids |
between processes % app messages = letters in
" relies on, enhances envelopes
|) <+ transport protocol = Ann
network layer and Bill who demux to in-
services house siblings
» network-layer protocol =
postal service

Transport Layer 3-5

Internet transport-layer protocols

I. bl . d application
o re |.a e, In-oraer Qétta" S
dellvery (TCP) <& g : physic wrmw—
" congestion control — Ny]
hysical O
* flow control - 9, e
= connection setup N :
. ~ ;g network ©
+ unreliable, unordered = onysica |)
delivery: UDP [dete ik Y
. . e/ SiCall
= no-frills extension of T . e
“best-effort” IP 3 AL v [l tronsho
. . . d?]t;sihcr;ll(data link
% services not available: . physica

" delay guarantees
" bandwidth guarantees

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

MuItiQIexing/demuItiglexing

- multiplexing at sender:

handle data trom multiple — demultiplexing at receiver: —
sockets, add transport header use header info to deliver
(later used for demultiplexing) received segments to correct
socket
application
application application 2 | socket
,—m > .,_L@ Q process
transport netwark trarj{dport
network it netMork
- physi¢al ‘
- link Bl [{mk \
physical physical |

Transport Layer 3-8

How demultiplexing works

+ host receives |IP datagrams

= each datagram has source IP
address, destination [P
address

= each datagram carries one
transport-layer segment

= each segment has source,
destination port number
+ host uses IP addresses &
bort numbers to direct
segment to appropriate
socket

32 bits >

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

< recall: created socket has < recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify
= new DatagramSocket (12534); . .
= destination |IP address

" destination port #

« when host receives UDP IP datagrams with same
segment: dest. port #, but different

= checks destination port # — :ﬁg/rf,ﬁ lij:lcder?gl’ets

in segment : :
. & numbers will be directed
socket with that port #

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new

DatagramSocket
mySocket2 = new
DatagramSocket

(9157) ;

application

DatagramSocket
DatagramSocket mySocketl = new
(6428) ; DatagramSocket
(5775) ;

application

application

A tramsport e
tranmgport et wo m trangport
network "nk network
irk physica' |i‘](
phydical phygical \
& 55?-
source port: 6428 source port: ?
. dest port: 9157] dest port: ?
> < 57
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

% TCP socket identified <+ server host may support
by 4-tuple: many simultaneous TCP
= source IP address sockets:
" source port number " each socket identified by
= dest IP address its own 4-tuple
= dest port number « web servers have

different sockets for

< demux: receiver uses ,)
each connecting client

all four values to direct

segment to appropriate - non-pgrsistent HTTP will
socket have different socket for

each request

Transport Layer 3-12

Connection-oriented demux: examEIe

application
application - - - application
Ryws - CP2> (P
= 4 = ‘t an< port
tranlsport Hetwork trdnspo%
netivork - lirk network
I .
link = hygical link -
é ‘(phypical I server: P physical ! é
e address B o
host: IP source IP,port: B,80 AT host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
s dest IP,port: B,80
source IP,port: A,9157 -

dest IP, port: B,80_ source IPport: C,9157

dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets T
ransport Layer 3-13

Connection-oriented demux: examEIe

application

al 4 |

application

threaded server

tranlsport

netivork

lipk

q phykical

host: IP source IP,port: B,80
dest IP,port: A,9157

address A
.

source IP,port: A,9157
dest IP, port: B,80

source IP,port: C,5775

dest IP,port: B,80

dest IP,port: B,80

application
N
B tr.an_spla%
network
server: IP physical !' §
address B s
host: IP

address C

source IP,port: C,9157

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

+ no frills,” “bare bones” <+ UDP use:
Internet transport = streaming multimedia
protocol apps (loss tolerant, rate
+ “best effort” service, sensitive)
UDP segments may be: = DNS
" |ost = SNMP
" delivered out-of-order <+ reliable transfer over
to app UDP:

< connectionless:

" no handshaking
between UDP sender,
receiver

" each UDP segment
handled independently
of others

" add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-16

UDP: segment header

length, in bytes of

32 bits

source port #

length <~ | checksum

application
data

(payload)

UDP segment format

UDP segment,

including header

/7
0’0

— why is therea UDP? __

no connection
establishment (which can
add delay)

simple: no connection
state at sender, receiver

small header size

no congestion control:
UDP can blast away as
fast as desired

Transport Layer 3-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

sender: receiver:

% treat segment contents, » compute checksum of
including header fields, received segment
as sequence of |6-bit .

D)

» check if computed

integers
checksum equals checksum

< checksum: addition

(one’ s complement field value:

sum) of segment " NO - error detected

contents " YES - no error detected.
» sender puts checksum But maybe errors

value into UDP nonetheless? More later

checksum field

Transport Layer 3-18

Internet checksum: example

example: add two | 6-bit integers
11100110011 00110
110101010101 0101

wraparound (1)1 001 1 101110111011

sum

1011101110111 100
checksum 0100010001 O0O0O0OO0T11

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

Principles of reliable data transfer

<+ important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

application
layer

transport
layer

() provided service

« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of reliable data transfer

<+ important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

application
layer

transport
layer

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of reliable data transfer

<+ important in application, transport, link layers
= top-10 list of important networking topics!

senalngl receiver I
Process process
! 1

. rdt send()
L()relloble c:hcmnel)j =

application
layer

deliver data()

=

S5 reliable data reliable data

@ > fransfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt_ send ()i [packet | [packet| I rdt rev()

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt send() : called from above,

(e.g., by app.). Passed data

to

deliver to receiver upper layer

\ rdt send()

send [reliable data

side

fransfer protocol
(sending side]

deliver data () : called by
rdt to deliver data to upper

/

data Tdeliver_data ()

reliable data receive
fransfer protocol .
(receiving side) side

udt_send ()}

packet

packet Irdt_rcv ()

T—»()unrelicible channel)<T

udt send() : called by rdt,
to transfer packet over

unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-24

Reliable data transfer: getting started

y
we |l

+ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

<+ consider only unidirectional data transfer
" but control info will flow on both directions!

+ use finite state machines (FSM) to specify sender,
receiver

event causing state transition
actions taken on state transition

—_—

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-25

rdt!.0: reliable transfer over a reliable channel

+ underlying channel perfectly reliable

" no bit errors
" no loss of packets

% separate FSMs for sender, receiver:
= sender sends data into underlying channel
" receiver reads data from underlying channel

“2Aait for rdt_send(data)
call from

above

udt_send(packet)

sender

“Y\Wait for

packet = make_ pkt(data)

rdt_rcv(packet)

call from

extract (packet,data)
below

deliver_data(data)

receiver

Transport Layer 3-26

rdt2.0: channel with bit errors

<+ underlying channel may flip bits in packet
* checksum to detect bit errors

< the question: how to recover from errors:

»

How do humans recover from ‘errors
during conversation?

Transport Layer 3-27

rdt2.0: channel with bit errors

<+ underlying channel may flip bits in packet
* checksum to detect bit errors

< the question: how to recover from errors:

* acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

* negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

= sender retransmits pkt on receipt of NAK
% new mechanisms in rdt2.0 (beyond rdt1l.0):

" error detection

= feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Walit for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && iISACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Walit for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK((rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Walit for
call from
below

rdt_rcv(rcvpkt) && iISACK(rcvpkt)
=
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

t rcv(rcvpkt) &&
ISNAR e

-

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

udt_send(sndpkt)

. ~ ()
rdt_rcv(rcvpkt) && isACK(rcvpkt) Sa _
< Walit for
call from
below

A

rdt_rcv(rcvka &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

what happens if handling duplicates:
ACK/NAK corrupted? . . der retransmits

» sender doesn’ t know current pkt if ACK/NAK
what happened at corrupted
receiver!

+ sender adds sequence
number to each pkt

» receiver discards (doesn’ t
deliver up) duplicate pkt

% can’ tjust retransmit:
possible duplicate

— stop and wait
sender sends one packet,

then waits for receiver
response

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
\Avgilifg: Wait for
rdt_rcv(rcvpkt) && NAK 1 Caalllb%,\tfm
(corrupt(rcvpkt) |
SNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

rdt2.1: discussion

sender:
+ seq # added to pkt

= two seq. # s (0,1) will
suffice. Why!?

<+ must check if received
ACK/NAK corrupted

< twice as many states

" state must
“remember” whether
“expected’ pkt should
have seq # of 0 or |

receiver:

< must check if received
packet is duplicate

= state indicates whether
0 or | is expected pkt
seq #
< nhote: receiver can not
know if its last
ACK/NAK received

OK at sender

Transport Layer 3-35

rdt2.2: a NAK-free protocol

L)

» same functionality as rdt2.1, using ACKs only

+ instead of NAK, receiver sends ACK for last pkt
received OK

" receiver must explicitly include seq # of pkt being ACKed

+ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

RN — Y
P, Wait for (_corrupt(rcvpkt) ||
...................... call 0 from ACK ISACK(revpkt.1))
.................................... above 0 udt_send(sndpkt)
... sender FSM

... fra gment rdt_rcv(rcvpkt)
..................................... && notcorrupt(rcvpkt)
ook ge T && isACK(rcvpkt,0)

(corrupt(revpkt) || —~— el A
has_seql(rcvpkt)) receiver FSM T

9 send(endnks fragment ...

~— — T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e
&& has_seqgl(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-37

rdt3.0: channels with errors and loss

new assumption:
underlying channel can

also lose packets
(data, ACKs)

= checksum, seq. #,
ACKs, retransmissions
will be of help ... but
not enough

approach: sender waits

“reasonable” amount of
time for ACK

< retransmits if no ACK

received in this time

+ if pkt (or ACK) just delayed

(not lost):

" retransmission will be
duplicate, but seq. # s
already handles this

" receiver must specify seq
of pkt being ACKed

% requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&
\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_sgnd(sndpkt) iISACK(rcvpkt,1))
rdt_rcv(rcvpkt) \ start_timer A
A o

V\Illacl)tffor timeout

call virom udt_send(sndpkt)
above :

start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-39

rdt3.0 in action

sender receiver
send pkt0 ktO
\\ Fcv pkto
ack send ackO
rcv ackO
send pktl \Wl\‘
rcv pktl
A)CK'/ send ack1
rcv ackl
send pkt0 ktO

My

rcv pktO
ack send ack0

(a) no loss

sender receiver
send pktO ktO
\\ rcv pkto
ack send ackO
rcv ackO
send pktl_ ktl
X
foss
timeout.-
resend pktl ktl

f o

rcv pktl

A}Ck'/ send ackl
rcv ackl
send pkt0 ktO

/

rcv pktO
ack send ackO

(b) packet loss

Transport Layer 3-40

rdt3.0 in action

sender receiver
send pktO ktO
\K‘ FrCv pkto
ack send ackO
rcv ackO
send pktl_ ktl

/

rcv pktl
ookl send ackl

loss
‘ t/meout_
resend pktl \K rcv pktl
e
rcv ackl
send pktO \NOP\‘
rcv pkt0

ack send ackO

(c) ACK loss

sender recelver
send pktO
\\ rcv pktO
send ack0
rcv ack0 /
send pktl_ \\
rcv pktl

send ackl
ackl
‘ t/meou
resend pktl rcv pktl
rcv ackl (detect du I|cate)

send pkt0 E 1kt0 send ac
rcv ackl rcv pkt0

send pkt0 send acko
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 3-41

Performance of rdt3.0

% rdt3.0 is correct, but performance stinks
+» e.g.. | Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000 bits .
= — = - = 8 microsecs
Dirans R 1P bits/sec
" U 4o Utilization — fraction of time sender busy sending
L/R .
U - 29 0.00027

sender BTT + L /R ~ 30.008

= if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

% network protocol limits use of physical resources!

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —js---------------omoeee o
last packet bit transmitted, t = L/ R 17

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,

packet, t=RTT + L/ R_'\
-

<

L/R .
U = 2%~ 0.00027

sender ~ RTT+L/R 30.008

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
» buffering at sender and/or receiver

data pczcke’r—»
f g /

J/ /
<+— ACK packets

data packets—» ‘p

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

% two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —je---------ccocooooo
last bit transmitted, t= L/ R 31~

first packet bit arrives
last packet bit arrives, send ACK

B last bit of 2"d packet arrives, send ACK
last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next,
packet, t = RTT+ L /R [=

| 3-packet pipelining increases
utilization by a factor of 3!

U 3L/R .0024

sender = ———T = ooos - 0.00081

Transport Layer 3-45

Pipelined protocols: overview

Go-back-N:

% sender can have up to
N unacked packets in
pipeline

% receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap

< sender has timer for
oldest unacked packet

= when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack ed packets in
pipeline

< rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

= when timer expires,
retransmit only that
unacked packet

Transport Layer 3-46

Go-Back-N: sender

+ k-bit seq # in pkt header
» “window’ of up to N, consecutive unack ed pkts allowed

send_base hextsegnum

dlready usable, not

ack’ed I yet sent

Y
TN Ty pe

« ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”~

" may receive duplicate ACKs (see receiver)

+ timer for oldest in-flight pkt

+ timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

If (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnumy])
if (base == nextsegnum)

start_timer
nextseqnum-++
}
A else
—_— T, refuse data(data
base=1 * — ()

.
‘e
.

nextsegnum=1 -

* timeout
start_timer
udt_send(sndpkt[base])
6‘ Q udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt
pHirevpk) udt_send(sndpkt[nextseqnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else

start_timer
- Transport Layer 3-48

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(revpkt)
-~ () && notcurrupt(rcvpkt)

A T~ a - && hassegnum(rcvpkt,expectedsegnum)
= -

expectedsegnum=1 A:-Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedseqnum
+ out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

* re-ACK pkt with highest in-order seq #

Transport Layer 3-49

GBN in action

sender window (N=4) sender receiver
01 2 3 YA send pktO
01 2 3 ZEXA: send ktl\ :
0123 YL send Ektz- receive pkt0, send ack0
01 2 3 XNE: send pkt3 T~Xloss receive pktl, send ackl
ait

(wait) receive pkt3, discard,
ofEEEE 678 rcv ack0, send pkt4 (re)send ackl
01EkEE¥ 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

Pkt 2 timeout

0 1EEEY 7 8 send pkt2
0 1EEEEF6 7 8 send pkt3 \ _
rcv pkt2, deliver, send ack2

0 1R 7 8 send pkt4 |

0 LEEYEE 7 8 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4

rcv pkt5, deliver, send ack5

Transport Layer 3-50

Selective repeat

<+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received

= sender timer for each unACKed pkt

< sender window

= N consecutive seq # s
" limits seq #s of sent, unACKed pkts

Transport Layer 3-51

Selective repeat: sender, receiver windows

send_base hextsegnum dlready Lsable. not
, ack’'ed yet sent
(000 RTOLTIRECEET =t e
t __ window size —4
N

(a) sender view of sequence numbers

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂl||||||||||||||]|]|] |ogecregaet [o

t _ window size—#4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-52

Selective repeat

— sender
data from above:

<+ if next available seq # in
window, send pkt

timeout(n):

+ resend pkt n, restart
timer

ACK(n) in [sendbase,sendbase+N]:
<+ mark pkt n as received

<+ if n smallest unACKed
pkt, advance window base
to next unACKed seq #

— receiver

Pl(t nin [rcvbase, rcvbase+N-1]
+ send ACK(n)
+ out-of-order: buffer

+ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t N IN [rcvbase-N,rcvbase-1]
+» ACK(n)

otherwise:

< ignore

Transport Layer 3-53

Selective repeat in action

sender window (N=4) sender recelver
01 2 3 YA send pktO
k) 5678 send pktl \ :
kt0, send ackO
01 2 3 XIS send pkt2- receive pKiy,
01 2 3 FXWA: send pkt3 T~Xoss receive pktl, send ackl
] wait
(wait) receive pkt3, buffer,
ofEEME 678 rcv ack0, send pkt4 send ack3
01EkEEI 78 rcv ackl, send pkt5 receive pkt4, buffer
send ack4
_record ack3 artived receive pkt5, buffer,
DKt 2 timeout | send ack>
0 1 EEYY6 7 8 send pkt2
Y2 345 SRS record ack4 arrived i
0 1EEREIS 7 8 record ack4 arrived I‘CIQI 3pkt|2(, 4de“|\(/er_ pktZéI K2
0 1 pEEEYs 7 8 pkt3, pkt4, pkt5; send ac

Q. what happens when ackZ2 arrives?

Transport Layer 3-54

sender window receiver window

Selective repeat: (ferreceipy (after receipt
ofiEE]o 12

dilemma 012 0
0 1 2 kYW \D\
0123012 0123012

example: \-»0122

, 0123012
oo Se.q # S. 9, I’ 2’ 3 0112
<+ window size=3

—— will accept packet

) with seq number 0
& receiver sees no (a) no pmb'em

difference in two receiver can tsee sender side.
scenarios! receiver behavior identical in both cases!

. something’s (very) wrong!
+ duplicate data g's (very) wrong

accepted as new in 012 —DKO
(b) 012 —Rktl o]0 1 2
[F¥)3012 —pkt2 0 1K1 2
‘074 0 1 2EXEY2

Q: what relationship o
between seq # size timeout o [
. . retransmlt pkt0
and window size to [FEJz012 —0oKIO

will accept packet
with seq number 0

. . ?
avoid problem in (b)! (b) cops!

Transport Layer 3-55

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-56

TC P: Ove I"VieW RFCs: 793,1122,1323, 2018, 2581

% point-to-point:

" one sender, one receiver
<+ reliable, in-order byte

steam:
" no “message
boundaries

<+ pipelined:

" TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
in same connection

= MSS: maximum segment
size
< connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-57

TCP sesment structure

32 bits

A

URG: urgent data

(generally not used)™_ source port# | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

. sequence number
\olqlowledgement number

PSH: push data now
(generally not used) —|

head
en wg —I—JBSF receive window

7

bytes

Urg data pointer revr willing

RST, SYN, FIN:/

to accept

op/@(s (variable length)

connection estab
(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-58

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numberS'

"byte stream number of
first byte in segment’ s
data

acknowledgements:

"seq # of next byte
expected from other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn’ t say,
- up to implementor

source port # dest port #
sequence number
acknowledgement number
| | rwnd
checksum urg pointer
wmdow Size

N

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed but not usable
(“in- yet sent
flight”)

incoming segment to sender
dest port #

source port #
sequence number

[l acknowledgement number

A

rwnd

checksum

urg pointer

Transport Layer 3-59

TCP seq. numbers, ACKs

Host A Host B
l‘/ '\
m pe—
User @
type:s ~——
C Seq=42, ACK=79, data = ‘C’
host ACKs
/ receipt of
‘C’, echoes
Seq=79, ACK=43, data = ‘C’ >
host ACKs back ‘C
receipt
of echoed ~—~—___

C Seq=43, ACK:K

simple telnet scenario

Transport Layer 3-60

TCP round trip time, timeout

Q: how to set TCP
timeout value!?

+ longer than RTT
" but RTT varies
< too short: premature

timeout, unnecessary
retransmissions

<+ too long: slow reaction
to segment loss

Q: how to estimate RTT?

\/
0‘0

SampleRTT: measured
time from segment
transmission until ACK
receipt

" jgnore retransmissions

» SampleRTT will vary, want

estimated RTT “smoother’

" average several recent
measurements, not just
current SampleRTT

Transport Layer 3-61

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

+» exponential weighted moving average
<+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 +

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-62

TCP round trip time, timeout

« timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-fB) *DevRTT +
B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-63

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-64

TCP reliable data transfer

< [T CP creates rdt service
14 .
on top of IP" s unreliable
service

" pipelined segments —_— .
= cumulative acks let” s initially consider

= single retransmission simplified TCP sender:
timer " ignore duplicate acks

< retransmissions = ignore flow control,
triggered by' congestion control

" timeout events
= duplicate acks

Transport Layer 3-65

TCP sender events:

data rcvd from app:

% Ccreate segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

. start timer if not
already running
= think of timer as for

oldest unacked
segment

= expiration interval:
TimeOutInterval

4

D)

D)

timeout:

< retransmit segment
that caused timeout

% restart timer
ack revd:

<+ if ack acknowledges
previously unacked
segments

= update what is known
to be ACKed

® start timer if there are
still unacked segments

Transport Layer 3-66

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqNum
timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-67

TCP: retransmission scenarios

Host A

g
3

4

le—— timeout —*

\
Seq=92, 8 bytes of data

—
ACK=100

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host B

o

==

Host A Host B
. / g

SendBase=92

/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACK=10/

ACK=120

/

e—— timeout —

Seq=92, 8
SendBase=100 bytes of data

SendBase=120

~

\

ACK=120

\

SendBase=120

premature timeout

Transport Layer 3-68

TCP: retransmission scenarios

Host A H

3
3

4

e—— timeout —*

0S
\

/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes%fdz

ACK=100
X
ACK=120

/

\

Seq=120, 15 bytes of data

\

cumulative ACK

J

B

Transport Layer 3-69

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-70

TCP fast retransmit

% time-out period often
relatively long:

* long delay before
resending lost packet

<+ detect lost segments
via duplicate ACKs.

= sender often sends
many segments back-
to-back

" if segment is lost, there

will likely be many
duplicate ACKs.

— TCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don’ t
wait for timeout

Transport Layer 3-71

TCP fast retransmit

Host A Host B
. / ' \
% V‘}/X

— Seq=92, 8 bytes of data

Seq= 100%%
\x

ACK=100

/ACK:].OO
TSeq=100, 20 bytes of data

A A

v v
fast retransmit after sender
receipt of triple duplicate ACK

Transport Layer 3-72

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-73

TCP flow control |

application
application may process
remove data from S
lic
TCP socket buffers FV | application
TCP socket 0S
receiver buffers
... Slower than TCP N
receiver is delivering —— ‘
(sender is sending) TCP
code
[] _
. IP
ﬂOW control code \
receiver controls sender, so T
’ 1 S
sender won' t overflow . IV .
. ’ . | !
receiver s buffer by transmitting from sender|
too much, too fast _
receiver protocol stack

Transport Layer 3-74

TCP flow control

/
0’0

receiver "advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RevBuffer size set via

socket options (typical default
is 4096 bytes)

" many operating systems
autoadjust RcvBuffer
sender Iimits amount of

unacked (in-flight”) data to
receiver s rwnd value

guarantees receive buffer
will not overflow

to application process

TI_\

T
RcvBuffer

T

rwnd

L

buffered data

free buffer space

1

TCP segment payloads

receiver-side buffering

Transport Layer 3-75

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-76

Connection Management

before exchanging data, sender/receiver “handshake™:

+ agree to establish connection (each knowing the other willing
to establish connection)

<« agree on connection parameters

application application

G

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

V{ network network
i
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-77

Agreeing to establish a connection

2-way handshake:

Let’ s talk -
__—®ESTAB

g

choose x

ESTAB &—

\req_conn(&

—8 ESTAB
acc_conn(x)

Q: will 2-way handshake
always work in
network!?

» variable delays

» retransmitted messages
(e.g. req_conn(x)) due to
message loss

% message reordering
4 11 13/ .
% can t see other side

Transport Layer 3-78

Agreeing to establish a connection

2-way handshake failure scenarios:

:" V/

>

choose x

retransmit
req_conn(x)

ESTAB

client™ ~

terminates

“Teq_conn(x)__

D

% ESTAB

acc_conn(x)

req_conn(x)

\

connection _
X completes

forgets x

ESTAB

half open connection!

(no client!)

&

2

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

\req_conn(&

acc_conn(x)

\data(x+ 1_)\..
N\

connection

1
client
terminates

~ 7 X completes

\
req_conn(x)

data(x+1)

A ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-79

TCP 3-way handshake

client state

LISTEN

SYNSENT

v

ESTAB

choose init seq num, x
send TCP SYN msg

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain

client-to-server data

§
e —

. 4

\

SYNbit=1, Seq=x

_—

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
/

\

ACKbit=1, ACKnum=y+1

\

choose init seq hum, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

ESTAB

Transport Layer 3-80

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A .
Socket clientSocket =
SYN(X) ! newSocket ("hostname", "port
rnb " ;
SYNACK(seq=y,ACKnum=x-+1) number”)
create new socket for SYN(seg=x)
communication back to client
| | SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-81

TCP: closing a connection

+ client, server each close their side of connection
* send TCP segment with FIN bit = |

% respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own FIN
<+ simultaneous FIN exchanges can be handled

Transport Layer 3-82

TCP: closing a connection

client state
ESTAB
clientSocket.close ()
FIN WAIT 1 can no longer
send but can
receive data
FIN"WAIT 2 wait for server
N o close
TIMED_ _WAIT —.
timed wait
for 2*max
segment lifetime
CLOSED J,

|
3

4

T Fibit=1
it=1, Seq=X\‘
/
ACKbit=1; ACKnum=x+1
—

/
‘—__lebk=1,seq=y
\

ACKbit=1; ACKnum=y+1

\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-83

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-84

Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
* long delays (queueing in router buffers)
<+ a top-10 problem!

Transport Layer 3-85

Causes/costs of congestion: scenario |

original data: kin throughput: kout

% two senders, two \\ o
receivers Host A 4
- one router, infinite | unlimited shared

buffers q | output link buffers
. . ® > — ||
output link capacity: R 7 -
. .) y N
< No retransmission / ——————

N

R/24------------ . .
: i 8 i
| Q |
= | © |
i i
A R/2 Ain R/2
+» maximum per-connection < large delays as arrival rate, A,
throughput: R/2 approaches capacity

Transport Layer 3-86

Causes/costs of congestion: scenario 2

<« one router, finite buffers

+ sender retransmission of timed-out packet

= application-layer input = application-layer output: A;, =
Aout ,
" transport-layer input includes retransmissions : A, > A,

A : original data |
in g a——2

A': original data, plus
retransmitted data

— S mm

Ss=—— “EENRERR

finite shared output
link buffers

Transport Layer 3-87

Causes/costs of congestion: scenario 2

e R .
idealization: perfect ;
knowledge 5 |
<+ sender sends only when ~ |
router buffers available :

B—)\, : original data \
A
copy A'.: original data, plus out
retransmitted data
. ﬂ
A free buffer space!

— S mm

Ss=—— “EENRERR

finite shared output
link buffers

Transport Layer 3-88

Host B

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

<+ sender only resends if
packet known to be lost

B —), original data

copy |EH A': original data, plus

retransmitted data

no buffer space!
» 1]

~HENARNR

Host B

Transport Layer 3-89

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due

R/2 ""_____"'_____"'__:,_: ___________

when sending at R/2,

5 some/packets are
to full buffers < retrafsmissions but
. asymptotic goodput

% sender only resends if s TR (\,?,hy?)p

packet known to be lost ' ¥ T
in
A, - original data
I A<_‘_}‘out

A': original data, plus
retransmitted data

free buffer space!
DS e 4

~HENARNR

Transport Layer 3-90

Causes/costs of congestion: scenario 2

Realistic: duplicates

’0

» packets can be lost, dropped
at router due to full buffers

R/2

o
ut

+ sender times out prematurely, <
sending two copies, both of
which are delivered

— S mm

SSSS= “RIEREER

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

free buffer space!

R/2

Transport Layer 3-91

Causes/costs of congestion: scenario 2

Realistic: duplicates

<+ packets can be lost, dropped
at router due to full buffers

+ sender times out prematurely, <
sending two copies, both of
which are delivered

R/2

o
ut

“costs’ of congestion:

. 13 b4
+ more work (retrans) for given "goodput

__

R/2

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

+ unneeded retransmissions: link carries multiple copies of pkt

" decreasing goodput

Transport Layer 3-92

Causes/costs of congestion: scenario 3

Q: what happens as A._and .
increase !
A:asred) increases,all arriving

blue pkts at upper queue are
dropped, blue throughput = 0

< four senders
< multihop paths
< timeout/retransmit

Host A

L N
A, - original data Ut HostB

A’ original data, plus
retransmitted data

finite shared output
[

k buffers ‘ H

Host D

Transport Layer 3-93

Causes/costs of congestion: scenario 3

C/2

7\'OUt
>

’ |
xin C/2

11 7 o
another "cost of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-94

AEEroaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted =
control: congestion control:
+ no explicit feedback % routers provide
from network feedback to end systems
+ congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-95

Case study: ATM ABR congestion control

ABR: available bit rate:

14 . . 14/
» elastic service

» if sender’ s path
“underloaded”:

= sender should use
available bandwidth

» if sender’ s path
congested:

= sender throttled to
minimum guaranteed
rate

RM (resource management)

cells:

<+ sent by sender, interspersed

with data cells

+ bits in RM cell set by switches

(“network-assisted)

= N/ bit: no increase in rate
(mild congestion)

= Cl bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-96

Case study: ATM ABR congestion control

I RM cell H data cell

:z“ '/ﬂm!ﬁmn 3
A B B I K -

+» two-byte ER (explicit rate) field in RM cell

" congested switch may lower ER value in cell

= senders’ send rate thus max supportable rate on path
« EFCI bit in data cells: set to | in congested switch

" if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

Transport Layer 3-97

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-98

TCP congestion control: additive increase
multiplicative decrease
% approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 3-99

TCP Congestion Control: details

sender sequence number space
|¢—— cwnd —p]

last byte \ last byte
ACKed sent, not- gent

yet ACKed
(“in-
flight”)

< sender limits transmission:

TCP sending rate:
» roughly: send cwnd

bytes, wait RTT for
ACKS, then send

more bytes

2

cwnd
N bytes/sec
rate T ytes/

LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-100

TCP Slow Start

Host B

« when connection begins, E
Increase rate

exponentially until first T —Sfesegmen

loss event:
" initially cwnd = | MSS %’

" double cwnd every RTT

" done by incrementing
cwnd for every ACK OUT Segments

received
< summary: initial rate is
slow but ramps up
exponentially fast tirlne

daz
>

«—RTT—

Transport Layer 3-101

TCP: detecting, reacting to loss

%+ loss indicated by timeout:
* cwnd set to | MSS;

= window then grows exponentially (as in slow start)
to threshold, then grows linearly

+ loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

= cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-102

TCP: switching from slow start to CA

Q: when should the

exponential
increase switch to 149 TCP Reno
linear? . 127
S . 10—
A: when cwnd gets B lstvesn T
to 1/2 of its value &
before timeout. Se ssthresh
S , TCP Tahoe
|mD|ementation- Or—T—T T T T T T T T T T T T T 1
i ° o1 2 3 4 5 6 7 8 9 10111213 14 15

R Variable ssthresh Transmission round

<+ on loss event, ssthresh
is set to |1/2 of cwnd just
before loss event

Transport Layer 3-103

S

ummary: TCP Congestion Control

_ new ACF
duplicate ACK y cwnd = cwnd + MSS » (MSS/cwnd)

dupACKcount++ ~ NEWACK dupACKcount= 0

cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount=0

____________ A R
== -
[~ “,‘) timeout
(& €)V ssthresh = cwnd/2 _
=0 cwnd = 1 MSS duplicate ACK
<) timeout dupACKcount=0 dupACKcount++
% ssthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount=0 o ‘_
retransmit missing segment ((: = D
timeout ‘) =
ssthresh = cwnd/2 4. ~
cwnd =1 New ACK
dupACKcount =0 “wnd = ssihresh
dupACKcount == retransmit missing segment dﬁ\gRClZcSosun;iso dupACKcount ==
ssthresh= cwnd/2 ssthresh=cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

v

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-104

TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window Size (measured in bytes) Where loss occurs
= avg. window size (# in-flight bytes) is ¥4 W
" avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

N14444%4

Transport Layer 3-105

7

TCP Futures: TCP over “long, fat pipes

0’0

example: 1500 byte segments, 100ms RTT, want
|0 Gbps throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L
[Mathis 1997]:

0’0

0‘0

TCP throughput = 1.22 M35

RTT./L

=¥ to achieve |0 Gbps throughput, need a loss rate of L
= 21019 — a very small loss rate!

+ new versions of TCP for high-speed

Transport Layer 3-106

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

N/ bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 3-107

Why is TCP fair?

two competing sessions:
+ additive increase gives slope of |, as throughout increases

<« multiplicative decrease decreases throughput proportionally

Connection 2 throughput o

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Transport Layer 3-108

Fairness gmorez

Fairness and UDP Fairness, parallel TCP
» multimedia apps often connections
do not use TCP + application can open
= do not want rate multiple parallel
throttled by congestion connections between two

control

< instead use UDP:

» send audio/video at . .
constant rate, tolerate + e.g., link of rate R with 9

hosts
< web browsers do this

packet loss existing connections:
" new app asks for | TCP, gets rate
R/10

= new app asks for || TCPs, gets R/2

Transport Layer 3-109

Chapter 3: summary

< principles behind
transport layer services:
" multiplexing,
demultiplexing
" reliable data transfer
" flow control
" congestion control

< Instantiation,
implementation in the
Internet
= UDP
= TCP

next:

<+ leaving the
network “edge”
(application,
transport layers)

+ into the network
“core”

Transport Layer 3-110

