Design Patterns

Elements of Reusable
Object- Oriented S"o"

Frich Gamma
Richard Helm |
Ralph Johnson SRR
O h N VI 1SS | des _j_};‘;_;;;;;;;;;?:ﬁ‘z~w??’;';éi=ww:';“ ——

ghis

Foreword by Grady Booch

Contents

Preface

xi

Foreword xiii
Guide to Readers _ XV .
1 Introduction 1
11 WhatlsaDesignPattern? 2
1.2 Design Patterns in Smalltalk MVC 4
1.3 DésMbngesig}Pa.ttans.....‘.._.,,.,..,,........ 6
1.4 The Catalogof Design Patterns 8
15 OrganizingtheCatalog 9
1.6 How Design Patterns Solve Design Problems 11
1.7 HowtoSelecta DesignPattern vk mPE TS HY 28

1.8 HowtoUseaDesignPattern, T IRE I Ty 29

2 A Case Study: Designing a Document Editor 33
2.1 DesignProblems i 33
22 DocumentSHUCtre . . . v v v vt vt it vt i ittt e e e e 39

23 PORIEHOE » o 2 o 58 £ 4 58 § 60 b o mrmm ey ue sy 40
24 Embellishing the User Interface 43

2.5 Supporting Multiple Look-and-Feel Standards 47

2.6 Supporting Multiple Window Systems e ... 51
27 UserOperations0.......¢ 58

2.8 Spelling Checking and Hyphenation 64

20 DOMMOBIY : v « s s s Rs A s A E PR F P RA NE B B E HEE 8 K R A R4 76
Design Pattern Catalog | 79
3 Creational Patterns 81

Abstract Fackoryo o vawean e N e ‘s 5w BT

Builder« i it e e e e e e e e e 97

FactorgMethod v i rasrsansaisinnsecos abas 107

PESAOBIPE o o o i i 5 e wa bd 3 N BA S 5d M A S a6 uEad nssae . 117

BENElObI « 5 s o M EE NI R E BT EE B A B E EE BN P e R 127

Discussion of Creational Patterns oot v i v v ... 135
4 Structural Patterns 137

AABRDEEE « « v v o n o O 139

Bridge . . v v o i i e s s e st A e e . 151

Composite . .« covvsnrmss RS E R R R WS R R M EE A " 163

Poronlr o o5 56 s R A S5 21 B3 B I B L5 EFIBIRI S I EBRFR DS F 175

Facade : i s vswassamawans = s g 185

Phrweight . oo va v cw v wnmsenronoe e e e e e e 195

POy v i i i e i e e e e e e e e e e e e e e e e e e 207

Discussion of StructuralPatterns 219
5 Behavioral Patterns 221

ChainofResponsibility c v iu it nvasan, 223

Command . . -« &t it e 233

Interpreter o omoa R w ol R e o R T 243

BeratOr . oo a5 ms e v 5s SRR B N EE R AR A RS aE %R 257

Waliolor . o vu v% 85 S 12 EFFU I P I RS S I EFRAFE LT HE HE D R W § 273

MeEMETHD < v v s 5 s 55 w v 5 s 0§95 055 886858 8 E® 5% 88555 283

Observer v i o 293

2 &~ U 305

TEEAIOUS , . » o s s 5 d A Bd % d B AN E R A B N E R e 315

!CONTENTS ix

Teroplate Method « o » v v 4 1 s s s s s 0 mboeme s snmensns E A L 325,
R o 331
Discussion of Behavioral Patterns 345

6 Conclusion ’ ;,, 351
6.1 What to Expect from DesignPatterns - 351
62 ABrefHistory 355
6.3 The Pattern Community vxpwr v euans SDB
64 Anlnvitation T E L T T 358
6.5 AParting Thought P T 358

A Glossary 359

B Guide to Notation : 363
Bl CassDiagram:.... et e e .. 363
B2 ObjectDiagram S AR R AR A RS e ey
B.3 InteractionDiagram cse s aw e 06

/’

C Foundation Classes 369
e = 369
C2 Terator ittt .. 372
3 TIStHETaiOnr « o & v o ot v o v o o v v cmnammmvrssnssmnan .. 372
Gk B « v v s v v 20 w5 B R B % b 85§ G R Rk ke ddme e 373
CB Beck oo ¢ i v cnmuensys Wi e .. 374

Bibliography 373

Index _ | 383

1.3 Describing Design Patterns

How do we describe design patterns? Graphical notations, while important and useful,
aren’t sufficient. They simply capture the end product of the design process, as rela-
tionships between classes and objects. To reuse the design, we must also record the
decisions, alternatives, and trade-offs that led to it. Concrete examples are important
too, because they help you see the design in action.

We describe design patterns using a consistent format. Each pattern is divided into
sections according to the following template. The template lends a uniform structure
to the information, making design patterns easier to learn, compare, and use.

Pattern Name and Classification

The pattern’s name conveys the essence of the pattern succinctly. A good name
is vital, because it will become part of your design vocabulary. The pattern’s
classification reflects the scheme we introduce in Section 1.5.

Intent

A short statement that answers the following questions: What does the design
pattern do? What is its rationale and intent? What particular design issue or
problem does it address?

Also Known As
Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a desien problem and how the class and object structures

in the pattern solve the problem. The scenario will help you understand the more ~
abstract description of the pattern that follows.

Applicability

What are the situations in which the design pattern can be applied? What are
examples of poor designs that the pattern can address? How can you recogmze
these situations?

Structure

A graphical representation of the classes in the pattern using a notation based
on the Object Modeling Technique (OMT) [RBP*+91]. We also use interaction di-
agrams [JCJO92, Boo%4] to illustrate sequences of requests and collaborations
between objects. Appendix B describes these notations in detail.

Participants
The classes and/or objects participating in the design pattern and their responsi-

§ B3 SR
DITIEST

Collaborations
How the participants collaborate to carry out their responsibilities.
Consequences '

How does the pattern suppart its objectives? What are the trade-offs and results
of using the pattern? What aspect of system structure does it let you vary inde-
pendently? .

'Implementation'

What pitfalls, hints, or techniques should you be aware of when implementing
the pattern? Are there language-specific issues?

Sample Code

Code fragments that illustrate how you might implement the pattern in C++ or
Smalltalk.

Known Uses

Examples of the pattern found in real systems. We include at least two examples
from different domains.

Related Patterns

What design patterns are closely related to this one? What are the important
differences? With which other patterns should this one be used?

Creational Patterns

Abstract Factory (87) Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.

Builder (97) Separate the construction of a complex object from its representation so
that the same construction process can create different representations.

Factory Method (107) Define an interface for creating an object, but let subclasses de-
cide which class to instantiate. Factory Method lets a class defer instantiation to
subclasses. '

Prototype (117) Specify the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype.

Singleton (127) Ensure a class only has one instance, and provide a global point of
access to it.

Structural Patterns

Adapter (139) Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because of incompat-
ible interfaces.

Bridge (151) Decouple an abstraction from its implementation so that the two can vary
independently.

Composite (163) Compose objects into tree structures to represent part-whole hierar-
chies. Composite lets clients treat individual objects and compositions of objects
uniformly.

Decorator (175) Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.

Facade (185) Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Flyweight (195) Use sharing to support large numbers of fine-grained objects effi-
ciently.

Proxy (207) Provide a surrogate or placeholder for another object to control access to
if.

- Behavioral Patterns

Chain of Responsibility (223) Avoid coupling the sender of a request o its receiver by
giving more than one object a chance to handle the request. Chain the receiving
objects and pass the request along the chain until an object handles it. .

Command (233) Encapsulate a request as an object, thereby letting you ;’fiarameter
ize clients with different requests, queue or log requests, and support undoable
operations. , ”

Interpreter(243) Given a language, define a represention for its grammar along with
an interpreter that uses the representation to interpret sentences in the language.

Iterator (257) Provide a way to access the elements of an aggregate objec%sieqﬁentially
without exposing its underlying representation. -

Mediator (273) Define an object that encapsulates how a set of Objects interact. Me-
diator promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently.

Memento (283) Without violating encapsulation, capture and eéxternalize an object’s
internal state so that the object can be restored to this state later.

Observer (293) Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

State (305) Allow an object to alter its behavior when its internal state changes. The

object will appear to change its class.

Strategy (315) Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients that
use it

Template Method (325) Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method lets subclasses redefine certain steps
of an algorithm without changing the algorithm’s structure.

Visitor (331) Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the classes of
the elements on which it operates.

Design Pattern Relationships

et Memento Proxy
saving state k Ad
- e o \dapter
Builder Qm?mm , g
k \ Herator avoiding | Bridge |
composites \)
enumerating
chiltiren
adding E — COmposed - :
rasponsibilittes et / using Command |
o objects
_ /—* Composite
Decorator sharing \ B} e
i composites b dafining defining
mgg%ons thQIFS&fS the chain
W defining | .
Flyweight oot R \\. Visitor
changing skin
versus guts
' adding -
sharing Interpreter — operations Chain of Responsibility
stralegies / \ 00 0 bee—e—
/ j sharing J
terminal _
Strategy sharing ~ Symbols .
states Mediator
\ ;ompfzx
. ependency _
' managemeént Obsertfe.ﬂl:‘m
defining Stateﬁ
step SR .
T — Template Method """ Often uses
Prototype ~—
configure factory _ e Factory Method
d?ff&mfiﬂi’ﬁf implement using
Abstract Factory
instance
e Facade
single
/ instance
Singleton

