Bicycle-Sharing System Expansion: Station Re-Deployment through Crowd Planning

Jiawei Zhang1, Xiao Pan2, Moyin Li1, Philip S. Yu1,3

1University of Illinois at Chicago, Chicago, IL, USA
2Shijiazhuang Tiedao University, Shijiazhuang, Hebei, China
3Institute for Data Science, Tsinghua University, Beijing, China
Big cities need public bicycle-sharing systems to alleviate traffic congestion.

Amount of space required to transport the same number of passengers by car, bus, or bicycle.

(Des Moines, Iowa - August 2010)
Bicycle-sharing systems are launched in many big cities and keep expanding.
Problem Studied: Bicycle-sharing system expansion via crowdsourcing

Expansion Plan

Crowd Suggestions

Divvy

SUGGEST A LOCATION
Bicycle-sharing system expansion actions

• Actions performed in expansion
 • Stations
 • *add* new stations
 • *remove* existing stations,
 • *move* existing stations to a new place (remove it first, and add it again)
 • Bikes
 • *add* new bike docks
 • *remove* existing bike docks
Bicycle-sharing system expansion objective

- Prior to expansion: service provider determines the target expansion size (# stations K, # bikes C)
- Expansion objective
 - maximize the usage convenience for customers
 - minimize the cost involved in the expansion
Bicycle-sharing system expansion objective

- Prior to expansion: service provider determines the target expansion size (number of stations K, number of bikes C)

- Expansion objective
 - maximize the usage convenience for customers
 - minimize the cost involved in the expansion

Objective Optimization Function

$$\begin{align*}
S_F^* &= \arg \max_{S_F} \text{convenience}(S_F) - \beta \cdot \text{cost}(S_F) \\
\text{s.t. } |S_F| &= K, \sum_{s \in S_F} \text{capacity}(s) = C
\end{align*}$$

optimal stations and bikes after expansion
Proposed Method: CrowdPlanning

- CrowdPlanning: two-phase planning method

- **Step 1**: Station Planning (i.e., station location determination)
 - usage convenience
 - current station convenience: historical trips
 - future station convenience: crowd suggestions
 - cost in adding/removing/adjusting bike stations
Proposed Method: CrowdPlanning

• CrowdPlanning: two-phase planning method

• **Step 1: Station Planning (i.e., station location determination)**
 • usage convenience
 • current station convenience: historical trips
 • future station convenience: crowd suggestions
 • cost in adding/removing/adjusting bike stations

• **Step 2: Station Capacity Planning (i.e., bike assignment)**
 • usage convenience
 • current bike number: historical trips
 • future bike number: crowd suggestions
 • cost in adding/removing bikes from existing stations
Step 1: Station Planning

- Usage convenience based on crowd suggestions

\[
\text{convenience}_{c}(S_F) = \sum_{g_i \in G} y(g_i)
\]

\[
s.t. \; y(g_i) \geq y(g_j) \quad \text{if} \quad |\Gamma_{H}(g_i)| \geq |\Gamma_{H}(g_j)| \quad \forall g_i, g_j \in G
\]

\{0, 1\} has stations in the cell

crowd suggestions at the cell

service region grid cells
Step 1: Station Planning

- Usage convenience based on historical trip records
 - frequently used existing stations are more likely to be preserved in the expansion
Step 1: Station Planning

- Usage convenience based on historical trip records
 - frequently used existing stations are more likely to be preserved in the expansion
 - existing station preserving probability

\[P(g_i) = \frac{e^{k|\Gamma_T(g_i)|}}{1 + e^{k|\Gamma_T(g_i)|}} \]

\(P(g_i) \) is monotone

trips start/end at the cell
Step 1: Station Planning

- Usage convenience based on **historical trip records**
 - frequently used existing stations are more likely to be preserved in the expansion
 - existing station preserving probability

\[
P(g_i) = \frac{e^{k|\Gamma T(g_i)|}}{1 + e^{k|\Gamma T(g_i)|}}
\]

- historical trip usage based convenience

\[
\text{convenience}_u(S_F) = \sum_{g_i \in G} y(g_i) \cdot P(g_i)
\]
Step 1: Station Planning

- Station deployment costs

\[
\text{cost}(g_i) = \begin{cases}
\text{cost}^+_s, & \text{if } \bar{y}(g_i) = 0, y(g_i) = 1; \\
\text{cost}^-_s, & \text{if } \bar{y}(g_i) = 1, y(g_i) = 0; \\
0, & \text{otherwise.}
\end{cases}
\]

- No station before expansion
- One station after expansion
- No changes, no cost
Step 1: Station Planning

- Station deployment costs
 - Station adding cost

\[
\text{cost}(g_i) = \begin{cases}
\text{cost}_s^+, & \text{if } \bar{y}(g_i) = 0, y(g_i) = 1; \\
\text{cost}_s^-, & \text{if } \bar{y}(g_i) = 1, y(g_i) = 0; \\
0, & \text{otherwise.}
\end{cases}
\]

- Overall station deployment cost

\[
\text{cost}(S_F) = \text{cost}(G) = \sum_{g_i \in G} \text{cost}(g_i) = \sum_{g_i \in G} \max\{y(g_i) - \bar{y}(g_i), 0\} \cdot \text{cost}_s^+ + \max\{\bar{y}(g_i) - y(g_i), 0\} \cdot \text{cost}_s^-.
\]
Step 1: Station Planning

- Station deployment objective function

\[
\gamma^* = \arg \max_{\gamma} \text{convenience}(S_F) - \beta \cdot \text{cost}(S_F)
\]

\[
= \arg \max_{\gamma} \sum_{g_i \in G} \left(y(g_i) + \alpha \cdot y(g_i) \cdot P(g_i) - \beta \cdot (\max\{y(g_i) - \bar{y}(g_i), 0\} \cdot \text{cost}_{s}^+ + \max\{\bar{y}(g_i) - y(g_i), 0\} \cdot \text{cost}_{s}^-) \right)
\]

\[
\sum_{g_k \in G} y(g_k) = K; y(g_k) \in \{0, 1\}, \forall g_k \in G.
\]

- Convenience terms
- Cost term
- Quantity constraint
Step 2: Bike Planning

• Bike assignment planning

 • more bikes assigned to stations with more suggestions
 \[c(g_i) \geq c(g_j) \] if \(|\Gamma_H(g_i)| \geq |\Gamma_H(g_j)|, \forall g_i, g_j \in \tilde{G} \),

 • more bikes assigned to stations with more historical usages
 \[c(g_i) \geq c(g_j), \text{ if } |\Gamma_T(g_i)| \geq |\Gamma_T(g_j)|, \forall g_i, g_j \in \tilde{G}. \]

 • construction cost should be as low as possible

 \[
 \text{cost}(g_i) = \begin{cases}
 \text{cost}_d^+ \cdot (c(g_i) - \bar{c}(g_i)), & \text{if } \bar{y}(g_i) = y(g_i) = 1, c(g_i) \geq \bar{c}(g_i); \\
 \text{cost}_d^- \cdot (\bar{c}(g_i) - c(g_i)), & \text{if } \bar{y}(g_i) = y(g_i) = 1, \bar{c}(g_i) \geq c(g_i); \\
 0, & \text{otherwise.}
 \end{cases}
 \]

 \[
 \text{cost}(\tilde{G}) = \sum_{g_i \in \tilde{G}} \text{cost}(g_i)
 = \sum_{g_i \in \tilde{G}} \bar{y}(g_i) \cdot y(g_i) \cdot (\text{cost}_d^+ \cdot \max\{c(g_i) - \bar{c}(g_i), 0\} + \text{cost}_d^- \cdot \max\{\bar{c}(g_i) - c(g_i), 0\}).
 \]
Step 2: Bike Planning

- Bike assignment planning
 - objective function

\[
\min_{\{c_{g_i}\}_{g_i \in \tilde{G}}} \sum_{g_i \in \tilde{G}} \bar{y}(g_i) \cdot y(g_i) \cdot (\text{cost}_d^+ \cdot \max\{c(g_i) - \bar{c}(g_i), 0\}) \\
+ \text{cost}_d^- \cdot \max\{\bar{c}(g_i) - c(g_i), 0\})
\]

s.t. \(c(g_i) \geq c(g_j), \text{ if } |\Gamma_H(g_i)| \geq |\Gamma_H(g_j)|, \forall g_i, g_j \in \tilde{G}, \)
\(c(g_i) \geq c(g_j), \text{ if } |\Gamma_T(g_i)| \geq |\Gamma_T(g_j)|, \forall g_i, g_j \in \tilde{G}, \)
\[\sum_{g_i \in \tilde{G}} c(g_i) = C; c(g_i) \in \mathbb{N}^+, \forall g_i \in \tilde{G}. \]
Chicago Divvy bicycle sharing system Dataset

- Divvy and crowd suggestion Datasets

<table>
<thead>
<tr>
<th>Table 1: The Divvy Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>datasets</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>2013 Q3-Q4</td>
</tr>
<tr>
<td>2014 Q1-Q2</td>
</tr>
<tr>
<td>2014 Q3-Q4</td>
</tr>
<tr>
<td>2015 Q1-Q2</td>
</tr>
<tr>
<td>2015 Q3-Q4</td>
</tr>
</tbody>
</table>

- 179,610 bike trips per month in the past two years

- Station number increases to 474 due to the system expansion at early 2015

<table>
<thead>
<tr>
<th>Table 2: Crowd Suggestion Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>datasets</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Crowd Suggestion</td>
</tr>
</tbody>
</table>
Chicago Divvy bicycle sharing system Dataset

- **Settings:**
 - stations after the expansion as the station redeployment ground truth.
 - Trips and suggestions received before the end of 2014 Q4 as the known information
Chicago Divvy bicycle sharing system Dataset

• Settings:
 • stations after the expansion as the station redeployment ground truth.
 • Trips and suggestions received before the end of 2014 Q4 as the known information

• Comparison Methods
 • CrowdPlanning: method proposed in this paper
 • CP-NoDens: no density constraints is considered
 • CP-NoCost: no construction cost is considered
 • IMILP: existing method for station deployment only, no capacity assignment
 • OSD: extension of existing method with construction costs
 • Random: random station and bike planning
Chicago Divvy bicycle sharing system Dataset

• Settings:
 • stations after the expansion as the station redeployment ground truth.
 • Trips and suggestions received before the end of 2014 Q4 as the known information

• Comparison Methods
 • *CrowdPlanning*: method proposed in this paper
 • *CP-NoDens*: no density constraints is considered
 • *CP-NoCost*: no construction cost is considered
 • *IMILP*: existing method for station deployment only, no capacity assignment
 • *OSD*: extension of existing method without construction costs
 • *Random*: random station and bike planning

• Evaluation Metrics:
 • Accuracy, Precision, Recall for station deployment
 • MSE, MAE, R2 for capacity assignment
Experiment Results

• Station Deployment Result

Figure 4: Station deployment result evaluated by Accuracy, Precision and Recall.

• Bike Capacity Assignment Result

Figure 5: Local station capacity assignment result evaluated by MSE, MAE and R^2.
Summary

- **Problem Studied**: bicycle-sharing system expansion with crowd planning
 - *station redeployment*: add new stations and remove/adjust existing stations
 - *station capacity assignment*: add/remove bikes from existing bike stations

- **Proposed Method**:
 - *convenience maximization*
 - convenience of *existing* stations/bikes based on historical trip records
 - convenience of *new* stations/bikes based on crowd suggestions
 - *cost minimization*
 - cost introduced in add/removing stations and bikes
Related Works: Bicycle Sharing Systems

Bicycle-Sharing System Analysis and Trip Prediction
MDM’ 16

Bicycle-Sharing System Expansion
SIGSPATIAL’ 16

Bicycle-Sharing System Trip Route Planning
IEEE CIC’ 16

......
More Opportunities
Bicycle-Sharing System Expansion: Station Re-Deployment through Crowd Planning

Q & A

Jiawei Zhang¹, Xiao Pan², Moyin Li¹, and Philip S. Yu¹
jzhan9@uic.edu· smallpx@gmail.com· mli60@uic.edu· psyu@cs.uic.edu