Continual and Interactive Learning after Model Deployment

Bing Liu
Department of Computer Science
University of Illinois at Chicago
Introduction

- Classic machine learning: Isolated single-task learning

- Key weaknesses
 - Closed-world assumption: nothing new/novel in application
 - No lifelong/continuous learning:
 - learning each task separately in isolation
 - No knowledge accumulation or transfer
 - No learning after deployment: model fixed after deployment
Self-driving cars need to learn continuously too

- Self-driving cars cannot reach human-level of driving with only rules and off-line training.
 - Impossible to cover all corner cases
 - Real-world is full of unknowns.
- Have to learn & adapt continuously in its interaction with humans and the environment by itself.
 - in the open world (changes & unknowns).

Chatbots should learn continually after deployment
(Chen & Liu, 2018, Liu, 2020)

- **Chatbot**: human users may say things a chatbot does not understand.
 - It must learn **new knowledge and new language expressions during chatting**.
 - E.g., asking the current or other users.
 - Humans learn a great deal in our daily conversations

- Chatbots **should not** solely rely on offline training initiated by engineers.
Definition of lifelong/continual learning

Continual Learning
- Class continual learning
- Task continual learning

Continuous learning after model deployment
- Continual learning to ground new language expressions
- Continual learning of factual knowledge

Summary
Classic definition of lifelong/continual learning

- Learn a sequence of tasks, $T_1, T_2, \ldots, T_N, \ldots$ incrementally. Each task t has a training dataset $D_t = \{x_{t,i}, y_{t,i}\}_{i=1}^{n_t}$.

- **Goal:** learn each new task T_{N+1} incrementally
 1. **without catastrophic forgetting:** Learning of the new task T_{N+1} should not result in degradation of accuracy for any of previous N tasks.
 2. **with knowledge transfer:** leveraging the knowledge learned from the previous tasks to learn the new task T_{N+1} better.

- **Assumption:** Once a task is learned its data is no longer accessible, at least a majority of it, and both the task T_{N+1} and its training data D_{N+1} are given by the user, and
Continual learning with learning after deployment

Orange lines:
Learning after model deployment
- Learning on the job
Characteristics of continual learning
(Chen and Liu, 2018, Liu, 2020)

- Continuous and incremental learning process (no forgetting)
- Knowledge accumulation in KB (long-term memory)
- Knowledge transfer/adaptation (across tasks)

- Learning after deployment (on the job). Self-supervision using the accumulated knowledge and interaction with humans & environment.

Main steps:
- Identify new tasks to learn (open-world learning or OOD detection)
- Acquire ground-truth training data (collecting training data interactively)
- Learn the tasks incrementally (continual learning)

Ke, Liu, and Huang. Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks. NeurIPS-2020
Closed-world assumption and open-world learning
(Fei et al, 2016; Shu et al., 2017, Hu et al., 2020)

- **Traditional machine learning:**
 - Training data: \(D^{train} = \{D_1, D_2, \ldots, D_t\} \) of classes \(Y^{train} = \{l_1, l_2, \ldots, l_t\} \).
 - Test data: \(D^{test}, Y^{test} \in \{l_1, l_2, \ldots, l_t\} \)

- **Closed-world assumption:** \(Y^{test} \subseteq Y^{train} \)
 - Classes appeared in testing must have been seen in training, **nothing new**.
 - A system that is **unable to identify anything new**, it cannot learn by itself.

- **Open-world learning:** \(Y^{test} - Y^{train} \neq \emptyset \)
 - Training data: \(D^{train} = \{D_1, D_2, \ldots, D_t\}, Y^{train} = \{l_1, l_2, \ldots, l_t\} \).
 - Test data: \(D^{test}, Y^{test} \in \{l_1, l_2, \ldots, l_t, L_0\} \)
Learning on the job (after model deployment)
(Liu, 2020, Chen and Liu, 2018)

- It is estimated that about 70% of our human knowledge comes from ‘on-the-job’ learning.
 - Only about 10% through formal training
 - The rest 20% through observation of others

- An AI agent should learn on the job too as
 - The world is too complex and constantly changing.
 - Have to learn continually and adapt
 - Without this capability, an AI agent is not truly intelligent.
Example 1 - a greeting bot in a hotel
(Chen and Liu, 2018)

- See an existing guest.
 - Bot: “Hello John, how are you today?”

- See a new guest - recognize he/she is new (OOD and create a new task)
 - Bot: “Welcome to our hotel! What is your name, sir?” (get class label)
 - Guest: “David” (got class label: David)
 - Bot learns to recognize David automatically (get training data)
 - take pictures of David
 - learn to recognize David (continual learning)

- See David next time.
 - Bot: “Hello David, how are you today?” (use the new knowledge)
Example 2 – a chatbot system
(Liu and Mei, 2020; Liu and Mazumder, 2021)

- **Session 1**
 - **User-1**: Hey, I visited Stockholm last week. The place is awesome!
 - **Chatbot**: Where is **Stockholm**?
 - **User-1**: Stockholm is the capital of Sweden.

- **Session 2**
 - **User-2**: I am planning a tour to Europe next month.
 - **Chatbot**: Are you visiting **Stockholm**? I heard it is a nice place.
Outline

- Definition of lifelong/continual learning
- **Continual Learning**
 - Class continual learning
 - Task continual learning
- Continuous learning after model deployment
 - Continual learning to ground new language expressions
 - Continual learning of factual knowledge
- **Summary**
Continual learning (of a sequence of tasks)

- All tasks are learned in a single neural network
 - Each task consists of a set of classes to be learned
 - Challenges: catastrophic forgetting and knowledge transfer

- Class continual learning (Class-CL)
 - produce a single model from all tasks
 - classify all classes during testing

- Task continual learning (Task-CL)
 - train a “separate” model for each task
 - task-id is provided during testing
Class-continual learning
(e.g., Hu et al. AAAI-2021)

- Main cause of catastrophic forgetting (CF):
 - discriminative features for an early task may not be discriminative for a new task
 - to learn the new task well, features learned need to be updated, causing CF

- **PCL (Per class Continual Learning)**
 - Each task can have one or more classes
 - PCL enables the learning algorithm to holistically consider the features of each class
 - Proposed a new regularization - *holistic regularization* (*h-reg*).

\[
\mathcal{L} = \mathbb{E}_{x \sim p_x^{C_i}} \left[- \log (S(f_{C_i}(x))) \right] + \lambda \cdot \mathbb{E}_{x \sim p_x^{C_i}} \left\| \nabla_x f_{C_i}(x) \right\|_2^n
\]

H-reg

PCL architecture and results

![Diagram of PCL architecture](image)

Dataset Performance

<table>
<thead>
<tr>
<th>Dataset</th>
<th>w/o PTF</th>
<th>EWC</th>
<th>LwF</th>
<th>IMM</th>
<th>PGMA</th>
<th>RPSnet</th>
<th>OWM</th>
<th>PCL-L2</th>
<th>PCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST (10 tasks)</td>
<td>no</td>
<td>9.91</td>
<td>19.96</td>
<td>29.16</td>
<td>71.36</td>
<td>40.29</td>
<td>94.46</td>
<td>83.85</td>
<td>97.00</td>
</tr>
<tr>
<td>EMNIST-47 (47 tasks)</td>
<td>no</td>
<td>2.13</td>
<td>4.59</td>
<td>18.69</td>
<td>10.13</td>
<td>10.08</td>
<td>77.45</td>
<td>51.38</td>
<td>80.05</td>
</tr>
<tr>
<td>CIFAR10 (10 tasks)</td>
<td>yes</td>
<td>10.21</td>
<td>19.39</td>
<td>51.22</td>
<td>56.22</td>
<td>55.54</td>
<td>83.03</td>
<td>77.95</td>
<td>84.93</td>
</tr>
<tr>
<td>CIFAR100 (100 tasks)</td>
<td>yes</td>
<td>2.93</td>
<td>6.25</td>
<td>12.58</td>
<td>12.37</td>
<td>4.13</td>
<td>63.26</td>
<td>54.83</td>
<td>63.61</td>
</tr>
<tr>
<td>20news (20 tasks)</td>
<td>no</td>
<td>4.98</td>
<td>5.61</td>
<td>5.00</td>
<td>11.37</td>
<td>8.32</td>
<td>52.02</td>
<td>49.01</td>
<td>54.37</td>
</tr>
<tr>
<td>DBPedia (14 tasks)</td>
<td>yes</td>
<td>7.14</td>
<td>7.14</td>
<td>7.14</td>
<td>66.40</td>
<td>50.58</td>
<td>95.37</td>
<td>68.12</td>
<td>96.23</td>
</tr>
<tr>
<td>CIFAR10 (10 tasks)</td>
<td>no</td>
<td>10.01</td>
<td>10.05</td>
<td>10.25</td>
<td>20.08</td>
<td>16.31</td>
<td>19.63</td>
<td>10.00</td>
<td>31.58</td>
</tr>
<tr>
<td>CIFAR100 (100 tasks)</td>
<td>no</td>
<td>1.03</td>
<td>2.13</td>
<td>1.21</td>
<td>1.86</td>
<td>1.96</td>
<td>3.67</td>
<td>1.87</td>
<td>5.58</td>
</tr>
<tr>
<td>DBPedia (14 tasks)</td>
<td>no</td>
<td>7.14</td>
<td>7.14</td>
<td>7.14</td>
<td>9.58</td>
<td>36.70</td>
<td>92.23</td>
<td>64.96</td>
<td>93.51</td>
</tr>
</tbody>
</table>
Task continual learning (e.g., Ke, Liu and Huang, 2020)

- Existing research mainly focused on overcoming CF.
- Some works also addressed knowledge transfer
 - Leveraged the past knowledge to help learn the new task when tasks are similar and have shared knowledge.
- Our goal: Achieve both Forgetting Avoidance and Knowledge Transfer at the same time
- CAT (Continual learning with forgetting Avoidance and knowledge Transfer)
 - learn a mixed sequence of similar and dissimilar tasks
 - achieve both objectives.
Main idea of CAT

- For dissimilar tasks, **Task Masks** are trained to block all used/important neurons of the tasks.
- Encourage **knowledge transfer** among similar tasks by training attention.
 - **Forward** knowledge transfer (past knowledge helps new task)
 - **Backward** knowledge transfer (new data helps improve old tasks)
- Automatically detect task similarity

\[
\mathbb{E}_{(\mathcal{X}^{(t)}, \mathcal{Y}^{(t)})} [\mathcal{L}(f_{k \rightarrow t}(\mathcal{X}^{(t)}; \theta_{k \rightarrow t}), \mathcal{Y}^{(t)})] > \mathbb{E}_{(\mathcal{X}^{(t)}, \mathcal{Y}^{(t)})} [\mathcal{L}(f_{\emptyset}(\mathcal{X}^{(t)}; \theta_{\emptyset}), \mathcal{Y}^{(t)})]
\]
Model and results

- In all 4 mixed datasets, CAT outperforms all baselines
Outline

- Definition of lifelong/continual learning
- Continual Learning
 - Class continual learning
 - Task continual learning
- Continuous learning after model deployment
 - Continual learning to ground new language expressions
 - Continual learning of factual knowledge
- Summary
Learning to ground NL commands on the job
(Mazumder et al., 2020)

- Task-oriented chatbots like virtual assistants (e.g., Siri, Alexa, etc) are Natural Language (command) Interfaces (NLI)
 - allow users to issue natural language (NL) commands to be mapped to some actions for execution by the underlying application.

- Existing approaches to building such chatbots:
 - Train an end-to-end deep learning model.
 - Semantic parsing -> logical forms -> translated to executable actions

- We discuss CML (Command Matching and Learning)
An application-independent approach to building task-oriented chatbots with interactive continual learning.

- Based on natural language to natural language matching (NL2NL)
- CML automatically builds NLIs for any API-driven applications.

To build a new NLI (or add a new skill to an existing NLI),

- The application developer only needs to write a set S_i of seed commands (SCs) in NL to represent each action i.
 - SCs in S_i are just like paraphrased NL commands from users to invoke i, but the objects to be acted upon in each SC are replaced with variables, the arguments of i.
- An interactive learning mechanism to enable CML to continually learn new (paraphrased) SCs from users.
An example

- **Microsoft Paint tool**: The API action
  ```
  drawCircle(X1, X2)
  ```
 - drawing a circle having color X1 at coordinate X2.

- Let an SC be “draw an X1 circle at X2” for this API,
 - where X1 and X2 are variables representing the arguments of the API.

- **User command**: “draw a blue circle at (20, 40)”
 - It can be matched or grounded to this SC, where the grounded API arguments are X1 = ‘blue’ and X2 = (20, 40).
CML has three components

- **SC (seed command) specification**
 - to enable the application developer to specify a set of SCs for each of their APIs

- **Command grounding module**
 - ground a user command C to an action SC by matching C with the correct SC (whose associated action API is then executed)

- **Interactive learner**
 - It interacts with end-users to learn new SCs and paraphrases of API argument values.
Table 2: Action SC specifications for Blocks-World application and some example NL commands from user for each API. (*) denotes that the variable do not take part in command reduction (Utility Constraints), which is automatically detected and marked by CML (see Sec 3.2) (X denotes input).

<table>
<thead>
<tr>
<th>Action API Function</th>
<th>AID</th>
<th>Action SCs (’;’ separated)</th>
<th>Variable: Argument Type</th>
<th>Example commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddBlock (X1)</td>
<td>1</td>
<td>add a block at X1; insert a block at X1</td>
<td>X1: ‘location’ (*)</td>
<td>add a block at (2, 3); put a block at (2, 3)</td>
</tr>
<tr>
<td>Remove (X1)</td>
<td>2</td>
<td>remove X1</td>
<td>X1: ‘block_set’</td>
<td>delete blue block; take away blue block</td>
</tr>
<tr>
<td>Move (X1, X2)</td>
<td>3</td>
<td>move X1 to X2; shift X1 to X2</td>
<td>X1: ‘block_set’, X2: ‘location’ (*)</td>
<td>move blue block to the left of cube; shift green cube to (4, 5)</td>
</tr>
<tr>
<td>MoveByUnits (X1, X2, X3)</td>
<td>4</td>
<td>move X1 along X2 by X3 units</td>
<td>X1: ‘block_set’, X2: ‘direction’, X3: ‘number’</td>
<td>move blue block left by 2 units; shift green cube down by 3 units</td>
</tr>
<tr>
<td>UpdateColor (X1, X2)</td>
<td>5</td>
<td>change color of X1 to X2; color X1 with X2</td>
<td>X1:’block_set’, X2: ‘color’ (*)</td>
<td>color A red; change color of B to blue</td>
</tr>
<tr>
<td>UpdateShape (X1, X2)</td>
<td>6</td>
<td>change shape of X1 to X2</td>
<td>X1:‘block_set’, X2: ‘shape’ (*)</td>
<td>set the shape of A to cube; make B square</td>
</tr>
<tr>
<td>Rename (X1, X2)</td>
<td>7</td>
<td>rename block X1 to X2</td>
<td>X1: ‘block_set’, X2: ‘name’ (*)</td>
<td>Name the block at (4, 5) as C; rename A to D</td>
</tr>
</tbody>
</table>
Command grounding module (CGM)

- **Rephraser and Tagger (R):**
 - Given the user command C, R rephrases C and tags each word or phrase in the rephrased C with either ‘O’ (i.e., not an argument type) or one of the possible argument types of the action SCs.

- **SC Matcher (M):**
 - Given the rephrased and tagged command C and the set T of (action or utility) SCs, Matcher M computes a match score \(f(t, C) \) for each \(t \) in T and returns the top ranked SC.
 - This work uses an information retrieval (IR) based unsupervised matching model for \(M \).
Command grounding module (contd.)

Figure 1: Working of CGM on a user command for Blocks-World. AID denotes the API IDs (see Tables 2 and 3).
Continual interactive learning

- If CML does not understand a user commend C.
- CML learns a new SC from the user command C through interactive dialogue
- It also learns new paraphrased argument values from in C to improve repheaser R over time.

```
Algorithm 2 Interactive Knowledge Learning

Input: $C'$: Reduced user command by Algorithm 1; $T$: action and utility SC Store; $Q$: Question Template Store; $M$: SC Matcher;

1: $r_i \leftarrow \text{Verify_Pred_SC}(Q, C')$ \{ $r_i$ is user’s response \}
2: if $r_1 = “no”$ then
3: $r_2 \leftarrow \text{ShowSC_List}(C_{rnk})$ \{ $C_{rnk}$ is the action SC rank list returned by $M$ \}
4: end if
5: for all variable $x_i$ in $r_2$ do
6: $r_{expr} \leftarrow \text{Ask_Ref_Expr}(x_i, C)$
7: $r_{prop} \leftarrow \text{Ask_Ref_Prop}(r_{expr})$
8: $r_{val} \leftarrow \text{Choose_Prop_Val}(r_{prop}, r_{expr})$
9: $r_{para} \leftarrow \text{Ask_Para_Expr}(r_{val}, r_{expr})$
10: Update $R$ with all $(r_{val}, r_{para})$ pairs
11: end for
12: Rephrase $C'$ to get a new SC and update $\mathcal{T}$
```
Experiment results

BERT-JISF: joint intent detection and slot filling - fine-tunes a pre-trained BERT model to solve NLU (Chen et al, 2019).

- **A-acc**: action intent prediction
- **Arg-F1**: argument F1

Datasets
- **BW**: blocks-world
- **WPD**: Webpage design
- **FB**: flight booking

<table>
<thead>
<tr>
<th>Models</th>
<th>BW</th>
<th>WPD</th>
<th>FB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A-acc</td>
<td>Arg-F1</td>
<td>A-acc</td>
</tr>
<tr>
<td>BERT-JISF</td>
<td>49.70</td>
<td>59.23</td>
<td>57.87</td>
</tr>
<tr>
<td>CML-jac</td>
<td>68.93</td>
<td>79.35</td>
<td>74.04</td>
</tr>
<tr>
<td>CML-vsm</td>
<td>68.93</td>
<td>79.35</td>
<td>74.46</td>
</tr>
<tr>
<td>CML-embed</td>
<td>68.63</td>
<td>79.94</td>
<td>68.93</td>
</tr>
<tr>
<td>CML-vsm (-R)</td>
<td>64.79</td>
<td>77.42</td>
<td>68.08</td>
</tr>
<tr>
<td>CML-vsm (-U)</td>
<td>14.49</td>
<td>14.49</td>
<td>11.48</td>
</tr>
<tr>
<td>CML-jac + SCL</td>
<td>69.82</td>
<td>81.34</td>
<td>76.17</td>
</tr>
<tr>
<td>CML-vsm + SCL</td>
<td>70.11</td>
<td>80.09</td>
<td>77.02</td>
</tr>
<tr>
<td>CML-jac + SCL + APL</td>
<td>72.78</td>
<td>81.43</td>
<td>80.0</td>
</tr>
<tr>
<td>CML-vsm + SCL + APL</td>
<td>73.07</td>
<td>80.16</td>
<td>80.85</td>
</tr>
</tbody>
</table>

Table 5: Performance comparison of CML variants and BERT-JISF. Here, CML-vsm(-U) and CML-vsm results are the same for FB as utility APIs are absent in FB specifications.
Outline

- Definition of lifelong/continual learning
- Continual Learning
 - Class continual learning
 - Task continual learning
- **Continuous learning after model deployment**
 - Continual learning to ground new language expressions
 - Continual learning of factual knowledge
- Summary
Continuous knowledge learning in dialogues
(Mazumder et al. 2019)

- Dialogue systems are increasingly using knowledge bases (KBs) storing factual knowledge to help generate responses.
 - KBs are inherently incomplete and remain fixed,
 - which limit dialogue systems’ conversation capability

- **CILK**: Continuous and Interactive Learning of Knowledge
 - to continuously and interactively learn and infer new knowledge during conversations
Knowledge learning in conversation

Humans Learn and Leverage Knowledge in a Lifelong Manner!

Session 1

USER1: Hey, I visited Stockholm last week. The place is awesome!
USER2: Where is Stockholm?
USER1: Stockholm is the capital of Sweden.

Session 2

USER3: Hey, I am planning for a Europe tour soon.
USER2: Are you visiting Stockholm? I heard the place has lot of attractions.

Knowledge learning happens in a multi-user environment
Opportunities to learn in conversations

1. Extracting knowledge directly from user utterances. E.g.,
 - User: Obama was born in Hawaii.
 - Agent extracts: (Obama, BornIn, Hawaii) – expressed in triples \((h, r, t)\)

2. Asking user questions & expecting correct answers, e.g.,
 - Agent: Where was Obama born?
 - User: Hawaii \(\Rightarrow\) (Obama, BornIn, Hawaii)

3. When the agent cannot answer user questions, it asks the user for some supporting facts and then infers the answers.
 - We focus on this setting (which covers 1 and 2)
Two types of queries or questions

- **Wh-question**
 - E.g., Where was Obama born?
 - (Obama, bornIn, s?)

- **Fact verification question**
 - Was Obama born in Hawaii?
 - (Obama, bornIn? Hawaii)
Components for knowledge learning

Knowledge Base \mathcal{K}

Stores acquired Facts (Triples)

KB: Collection of Triples

$\mathcal{T} = \{ (h, r, t) \mid h, t \in E, r \in R \}$

- Triple
- Entity Set
- Relation Set

Inference Module \mathcal{M}

Infers new Knowledge to answer user’s query

Interaction Module \mathcal{I}

Interacts with user to acquire Facts

- decides whether to ask or not, and formulates questions to ask the user for supporting facts

- Performs inference over the acquired Facts and existing KB

Mazumder, Liu, Wang, and Ma. Lifelong and Interactive Learning of Factual Knowledge in Dialogues. SIGDIAL-2019
Assumptions

- **Focus on** developing the **core interactive knowledge learning framework**
 - Do not build all peripheral components (like fact or relation extraction, entity linking, etc.) which are assumed to be available for use.

- We also assume that **the user has good intentions**
 - User answers questions with **100% conformity** about the veracity of his/her facts (cross-verification can be used to deal with wrong knowledge)

- User is **NOT omniscient**
 - We do not assume that the user can answer all questions as opposed to the teacher-student setup - the teacher is assumed to know everything.
(1) When the user asks a Wh-question

- Given a user query / question \((h, r, ?)\) [or \((?, r, t)\)], our goal is two-fold:
 1. **Answering** the user query or **rejecting** the query to remain unanswered if the correct answer is believed to not exist in the KB
 2. **learning / acquiring** some knowledge (supporting facts) from the user to help the answering task.

- We further distinguish two types of queries:
 1. **Closed-world Queries**: \(h\) (or \(t\)) and \(r\) are known to the KB
 2. **Open-world Queries**: Either one or both \(h\) (or \(t\)) and \(r\) are unknown

↓ Proposed Soln.

an engine for **Continuous and Interactive Learning of Knowledge (CILK)**

Mazumder, Liu, Wang, and Ma. Lifelong and Interactive Learning of Factual Knowledge in Dialogues. SIGDIAL-2019
Interactive knowledge learning in dialogue: example
(Mazumder et al. 2019)

USER: (Boston, LocatedInCountry, ?) “In what Country is Boston located?” [Query]

CILK: I do not know what “located in Country” means? Can you provide me an example? [Ask for Clue]

USER: (London, LocatedInCountry, UK). “London is located in UK.” [SF1]

CILK: Got it. Can you tell me a fact about “Boston”? [Ask for Entity Fact]

USER: (Harvard University, UniversityLocatedIn, Boston). “Harvard university is located in Boston.” [SF2]

CILK: (Boston, LocatedInCountry, USA) “Boston is located in USA.” [Answer]
(2) When the user asks a fact-verification question

- Learn new knowledge interactively from user when the system is unable to answer a user’s factual verification (yes/no) question.

USER: (Obama, CitizenOf?, USA) “Is Obama a citizen of USA?”
IKAI: I do not know what “CitizenOf” means? Can you provide me an example?

USER: (David Cameron, CitizenOf, UK). “David Cameron is a citizen of UK.”
IKAI: Got it. Can you tell me how “Obama” and “Honolulu” are related?

USER: (Obama, BornIn, Honolulu). “Obama was born in Honolulu.”
IKAI: Got it. Can you tell also me how “Honolulu” and “Hawaii” are related?

USER: (Honolulu, CapitalOfState, Hawaii). “Honolulu is the state capital of Hawaii.”

IKAI: (Obama, CitizenOf?, USA) holds. “Yes, Obama is a US citizen.”
The IKAI approach

- **User question (h, r? s)**

- **Step 1 - Interactive acquisition of supporting facts:**
 - If r is unknown, IKAI asks the user to provide a clue [an example triple r]
 - If s or t is unknown, IKAI asks the user to provide a link/relation to connect the unknown entity s or t with an automatically selected existing entity

- **Step 2 - Knowledge inference (Infer the query answer):**
 - Uses a path-ranking algorithm C-PR (Mazumder and Liu 2017) to build a predictive model (Predictor) to predict whether (s, r?, t) is true.
 - Enumerate relation paths between two entities (s, t) in a KB (encoded as a multi-relation graph) and use those paths as features to train the predictor.

Finite State Machine: Interaction Module (\mathcal{I})

$$(S, A, S_0, S_F, \Delta)$$

- States
- Actions
- Initial states
- Final states
- $\Delta: (S, A) \rightarrow S$
- Transition Function

<table>
<thead>
<tr>
<th>SB</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QERS</td>
<td>Query entities and relation searched</td>
<td>Whether the query source (s) and target (t) entities and query relation (r) have been searched in KB.</td>
</tr>
<tr>
<td>SEF</td>
<td>Source Entity Found</td>
<td>Whether the source entity (s) has been found in KB.</td>
</tr>
<tr>
<td>TEF</td>
<td>Target Entity Found</td>
<td>Whether the target entity (t) has been found in KB.</td>
</tr>
<tr>
<td>QRF</td>
<td>Query Relation Found</td>
<td>Whether the query relation (r) has been found in KB.</td>
</tr>
<tr>
<td>CLUE</td>
<td>Clue bit set</td>
<td>Whether the triple (to be processed) is a clue from user.</td>
</tr>
<tr>
<td>ILO</td>
<td>Interaction Limit Over</td>
<td>Whether the interaction limit is over for the query.</td>
</tr>
<tr>
<td>PFE</td>
<td>Path Feature Extracted</td>
<td>Whether path feature extraction has been done.</td>
</tr>
<tr>
<td>CPF</td>
<td>Complete Path Found</td>
<td>Whether the extracted path features are complete.</td>
</tr>
<tr>
<td>INFI</td>
<td>Inference Invoked</td>
<td>Whether inference module has been invoked.</td>
</tr>
</tbody>
</table>

State Transition Conditions (S_i for current state bits S_i)

<table>
<thead>
<tr>
<th>Action Id</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>Search source (s), target (t) entities and query relation (r) in KB.</td>
</tr>
<tr>
<td>a_1</td>
<td>Ask user to provide an clue/example for query relation r.</td>
</tr>
<tr>
<td>a_2</td>
<td>Ask user to provide a missing link for path feature completion.</td>
</tr>
<tr>
<td>a_3</td>
<td>Ask user to provide a connecting link to add a new entity to the KB.</td>
</tr>
<tr>
<td>a_4</td>
<td>Extract path features between source (s) and target (t) entities using C-PR.</td>
</tr>
<tr>
<td>a_5</td>
<td>Invoke prediction model for inference.</td>
</tr>
</tbody>
</table>

@Allen Institute for AI (AI2), June 18, 2021
Working of IKAI’ FSM in a given Session

Outline

- Definition of lifelong/continual learning
- Continual Learning
 - Class continual learning
 - Task continual learning
- Continuous learning after model deployment
 - Continual learning to ground new language expressions
 - Continual learning of factual knowledge
- Summary
Summary

- **Classic ML**: isolated, closed-world, single-task learning
- **AI agents must** learn continuously in the open world on the job or after deployment (Liu, 2020, Mazumder et al. 2020)
 - **Discover new tasks**: open-world novelty (OOD) detection
 - **Obtain ground-truth data**: via *self-supervised interactions* with humans and the environment.
 - **Continual learning**: learning the new task incrementally and online
- **Current techniques are still in their infancy**.
 - All tasks are very challenging.
 - Continual learning is still not ready for applications