
1

Lifelong Machine Learning

November, 2016

Zhiyuan Chen and Bing Liu

czyuanacm@gamil.com, liub@cs.uic.edu

Draft : This is mainly an early draft of the book.

We also updated a few places after the publication, highlighted in yellow.

Zhiyuan Chen and Bing Liu. Lifelong Machine Learning.

Morgan & Claypool Publishers, Nov 2016.

Lifelong
Machine
Learning

Zhiyuan Chen
Bing Liu

Lifelong Machine Learning

Lifelong Machine Learning

Zhiyuan Chen
Google, Inc.

Bing Liu
University of Illinois at Chicago

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING #31

ABSTRACT
Lifelong machine learning (or lifelong learning) is an advanced machine learning paradigm

that learns continuously, accumulates the knowledge learned in previous tasks, and uses it

to help future learning. In the process, the learner becomes more and more knowledgeable

and effective at learning. This learning ability is one of the hallmarks of human intelligence.

However, the current dominant machine learning paradigm learns in isolation: given a

training dataset, it runs a machine learning algorithm on the dataset to produce a model. It

makes no attempt to retain the learned knowledge and use it in future learning. Although

this isolated learning paradigm has been very successful, it requires a large number of

training examples, and is only suitable for well-defined and narrow tasks. In comparison,

we humans can learn effectively with a few examples because we have accumulated so much

knowledge in the past which enables us to learn with little data or effort. Furthermore, we

are able to discover new problems in the usage process of the learned knowledge or model.

This enables us to learn more and more continually in a self-motivated manner. We can also

adapt our previous konwledge to solve unfamilar problems and learn in the process. Life-

long learning aims to achieve these capabilities. As statistical machine learning matures,

it is time to make a major effort to break the isolated learning tradition and to study

lifelong learning to bring machine learning to a new height. Applications such as intelligent

assistants, chatbots, and physical robots that interact with humans and systems in real-life

environments are also calling for such lifelong learning capabilities. Without the ability

to accumulate the learned knowledge and use it to learn more knowledge incrementally, a

system will probably never be truly intelligent. This book serves as an introductory text

and survey to lifelong learning.

KEYWORDS
lifelong machine learning; lifelong learning; learning with memory; cumulative

learning; multi-task learning; transfer learning; continual learning

v

Zhiyuan dedicates this book to his wife Vena Li and his parents.
Bing dedicates this book to his wife Yue He, his children

Shelley and Kate, and his parents.

vi

Contents

Preface . x

Acknowledgments . xiii

1 Introduction . 1

1.1 A Brief History of Lifelong Learning . 3

1.2 Definition of Lifelong Learning . 5

1.3 Lifelong Learning System Architecture . 9

1.4 Evaluation Methodology . 12

1.5 Role of Big Data in Lifelong Learning . 14

1.6 Outline of the Book . 15

2 Related Learning Paradigms . 16

2.1 Transfer Learning . 16

2.1.1 Structural Correspondence Learning . 17

2.1.2 Näıve Bayes Transfer Classifier . 18

2.1.3 Deep Learning in Transfer Learning . 19

2.1.4 Difference from Lifelong Learning . 20

2.2 Multi-Task Learning . 21

2.2.1 Task Relatedness in Multi-Task Learning . 21

2.2.2 GO-MTL: Multi-Task Learning using Latent Basis 22

2.2.3 Deep Learning in Multi-Task Learning . 24

2.2.4 Difference from Lifelong Learning . 26

2.3 Online Learning . 26

2.3.1 Difference from Lifelong Learning . 27

2.4 Reinforcement Learning . 27

2.4.1 Difference from Lifelong Learning . 28

2.5 Summary . 28

3 Lifelong Supervised Learning . 29

3.1 Definition and Overview . 30

3.2 Lifelong Memory-based Learning . 31

vii

3.2.1 Two Memory-based Learning Methods . 31

3.2.2 Learning a New Representation for Lifelong Learning 32

3.3 Lifelong Neural Networks . 33

3.3.1 MTL Net . 33

3.3.2 Lifelong EBNN . 34

3.4 Cumulative Learning in the Open World . 35

3.4.1 Training a Cumulative Learning Model . 37

3.4.2 Testing a Cumulative Learning Model . 39

3.4.3 Open World Learning for Unseen Class Detection 39

3.5 ELLA: An Efficient Lifelong Learning Algorithm . 42

3.5.1 Problem Setting . 42

3.5.2 Objective Function . 43

3.5.3 Dealing with the First Inefficiency . 44

3.5.4 Dealing with the Second Inefficiency . 46

3.5.5 Active Task Selection . 47

3.6 LSC: Lifelong Sentiment Classification . 48

3.6.1 Näıve Bayesian Text Classification . 48

3.6.2 Basic Ideas of LSC . 50

3.6.3 LSC Technique . 51

3.7 Summary and Evaluation Datasets . 53

4 Lifelong Unsupervised Learning . 55

4.1 Lifelong Topic Modeling . 55

4.2 LTM: A Lifelong Topic Model . 58

4.2.1 LTM Model . 59

4.2.2 Topic Knowledge Mining . 61

4.2.3 Incorporating Past Knowledge . 62

4.2.4 Conditional Distribution of Gibbs Sampler . 64

4.3 AMC: A Lifelong Topic Model for Small Data . 65

4.3.1 Overall Algorithm of AMC . 65

4.3.2 Mining Must-Link Knowledge . 67

4.3.3 Mining Cannot-Link Knowledge . 69

4.3.4 Extended Pólya Urn Model . 70

4.3.5 Sampling Distributions in Gibbs Sampler . 72

4.4 Lifelong Information Extraction . 74

4.4.1 Lifelong Learning through Recommendation 75

4.4.2 AER Algorithm . 76

viii

4.4.3 Knowledge Learning . 77

4.4.4 Recommendation Using Past Knowledge . 78

4.5 Lifelong-RL: Lifelong Relaxation Labeling . 80

4.5.1 Relaxation Labeling . 80

4.5.2 Lifelong Relaxation Labeling . 81

4.6 Summary and Evaluation Datasets . 81

5 Lifelong Semi-Supervised Learning for Information Extraction 83

5.1 NELL: A Never Ending Language Learner . 84

5.2 NELL Architecture . 86

5.3 Extractors and Learning in NELL . 86

5.4 Coupling Constraints in NELL . 89

5.5 Summary . 90

6 Lifelong Reinforcement Learning . 91

6.1 Lifelong Reinforcement Learning through Multiple Environments 92

6.1.1 Acquiring and Incorporating Bias . 93

6.2 Hierarchical Bayesian Lifelong Reinforcement Learning 94

6.2.1 Motivation . 94

6.2.2 Hierarchical Bayesian Approach . 95

6.2.3 MTRL Algorithm . 96

6.2.4 Updating Hierarchical Model Parameters . 97

6.2.5 Sampling an MDP . 97

6.3 PG-ELLA: Lifelong Policy Gradient Reinforcement Learning 100

6.3.1 Policy Gradient Reinforcement Learning . 100

6.3.2 Policy Gradient Lifelong Learning Setting . 101

6.3.3 Objective Function and Optimization . 102

6.3.4 Safe Policy Search for Lifelong Learning . 103

6.3.5 Cross-Domain Lifelong Reinforcement Learning 104

6.4 Summary and Evaluation Datasets . 105

7 Conclusion and Future Directions . 107

Bibliography . 113

Authors’ Biographies . 127

x

Preface

This book started with a tutorial on lifelong machine learning that we gave at the 24th

International Joint Conference on Artificial Intelligence (IJCAI) in 2015. At that time, we

had worked on the topic for a while and published several papers in ICML, KDD, and

ACL. When the publisher from Morgan & Claypool Publishers contacted us about the

possibility of developing a book on the topic, we were excited. We strongly believe that

lifelong machine learning (or simply lifelong learning) is very important for the future of

machine learning and artificial intelligence (AI). Our original research interest in the topic

stemmed from extensive application experiences in sentiment analysis (SA) in a startup

company several years ago. A typical SA project starts with a client who is interested in

consumer opinions expressed in social media about their products or services and those of

their competitors. There are two main analysis tasks that a SA system needs to do: (1)

discovering the entities (e.g., iPhone) and entity attributes/features (e.g., battery life) that

people talked about in an opinion document such as an online review and (2) determining

whether an opinion about an entity or entity attribute is positive, negative, or neutral [Liu,

2012, 2015]. For example, from the sentence “iPhone is really cool, but its battery life sucks,”

a SA system should discover that the author is (1) positive about iPhone but (2) negative

about iPhone’s battery life.

After working on many projects in many domains (which are types of products or

services) for clients, we realized that there is a great deal of sharing of information across

domains and projects. As we see more and more, new things get fewer and fewer. It is easy

to notice that sentiment words and expressions (such as good, bad, poor, terrible, and cost an

arm and a leg) are shared across domains. There is also a great deal of sharing of entities and

attributes. For example, every product has the attribute of price, most electronic products

have battery, and many of them also have screen. It is silly not to exploit such sharing

to significantly improve SA to make it much more accurate than discovering such sharing

but only working on each project and its data in isolation. The classic machine learning

paradigm learns exactly in isolation. Given a dataset, a learning algorithm simply runs on

the data to produce a model. The algorithm has no memory and thus is unable to use the

past learned knowledge. In order to exploit knowledge sharing, a SA system needs to retain

and accumulate the knowledge learned in the past and use it to help future learning and

problem solving, which is exactly what lifelong machine learning aims to do.

It is not hard to imagine that this sharing of information or knowledge across domains

and tasks is generally true in every field. It is particularly obvious in natural language

processing because the meanings of words and phrases are basically the same across domains

PREFACE xi

and tasks and so is the sentence syntax. No matter what subject matters we talk about,

we use the same language although one subject may use only a small subset of the words

and phrases in a language. If that is not the case, it is doubtful that a natural language

would have ever been developed by humans. Thus, lifelong machine learning is generally

applicable, not just restricted to sentiment analysis.

The goal of this book is to introduce this emerging machine learning paradigm and to

present a comprehensive survey and review of important research results and the latest ideas

in the area. We also want to propose a unified framework for the research area. Currently,

there are several research topics in machine learning that are closely related to lifelong

machine learning, most notably, multi-task learning and transfer learning, because they also

employ the idea of knowledge sharing and transfer. This book brings all these topics under

one roof and discusses their similarities and differences. We see lifelong machine learning as

an important extension to these related problems. Through this book, we would also like

to motivate and encourage researchers to work on lifelong machine learning. We believe

it represents a major future research direction for both machine learning and artificial

intelligence. Without the capability of retaining and accumulating the knowledge learned

in the past, making inference about it, and using the knowledge to help future learning and

problem solving, achieving general intelligence is quite unlikely.

Two main principles have guided the writing of this book. First, it should contain

strong motivations for conducting research in lifelong machine learning in order to en-

courage graduate students and researchers to work on lifelong machine learning problems.

Second, the writing should be accessible to practitioners and upper-level undergraduate

students who have basic knowledge of machine learning and data mining. Yet there should

be sufficient in-depth materials for graduate students who plan to pursue Ph.D. degrees in

the machine learning and/or data mining field.

This book is thus suitable for students, researchers, and practitioners who are inter-

ested in machine learning, data mining, natural language processing, or pattern recognition.

Lecturers can readily use the book in class for courses in any of these related fields. Lecture

slides are available online.

Zhiyuan Chen and Bing Liu

September 2016

xiii

Acknowledgments

We would like to thank our collaborators and students in our group: Geli Fei, Zhiqiang Gao,

Annice Kim, Doo Soon Kim, Huayi Li, Qian Liu, Sahisnu Mazumder, Arjun Mukherjee,

Nianzu Ma, Lei Shu, Shuai Wang, Yueshen Xu, and Yuanlin Zhang, for their contributions

of numerous research ideas over the years. We are especially grateful to the two expert

reviewers of the book, Eric Eaton and Matthew E. Taylor. Despite their busy schedules,

they read the first draft of the book very carefully and gave us so many excellent comments

and suggestions, which are not only insightful and comprehensive, but also detailed and

very constructive. Their suggestions have helped us improve the book tremendously.

On the publication side, we thank the editors of Synthesis Lectures on Artificial

Intelligence and Machine Learning, Ronald Brachman, William W. Cohen, and Peter Stone,

for initiating this project. The President and CEO of Morgan & Claypool Publishers,

Michael Morgan and his staff Samantha Draper have given us all kinds of help promptly

whenever requested, for which we are very grateful.

Our greatest gratitude go to our own families. Zhiyuan would like to thank his wife

Vena Li and his parents. Bing Liu would like to thank his wife Yue, his children Shelley

and Kate, and his parents. They have helped in so many ways.

The writing of this book was partially supported by two National Science Foundation

(NSF) grants IIS-1407927 and IIS-1650900, an NCI grant R01CA192240, and a gift from

Bosch. The content of the book is solely the responsibility of the authors and does not

necessarily represent the official views of the NSF, NCI, or Bosch. The Department of

Computer Science at the University of Illinois at Chicago provided computing resources

and a supportive environment for this project. Working in Google has given Zhiyuan a

broader perspective on machine learning.

Zhiyuan Chen and Bing Liu

September 2016

1

C H A P T E R 1

Introduction

Machine learning (ML) has been instrumental for the advances of both data analysis and

artificial intelligence (AI). The recent success of deep learning brings it to a new height.

ML algorithms have been used in almost all areas of computer science and many areas

of natural science, engineering, and social sciences. Practical applications are even more

widespread. It is safe to say that without effective ML algorithms, many industries would

not have flourished, e.g., Internet commerce and Web search.

The current dominant paradigm for machine learning is to run an ML algorithm on

a given dataset to generate a model. The model is then applied in real-life performance

tasks. This is true for both supervised learning and unsupervised learning. We call this

paradigm isolated learning because it does not consider any other related information or

the previously learned knowledge. The fundamental problem with this isolated learning

paradigm is that it does not retain and accumulate knowledge learned in the past and

use it in future learning. This is in contrast to our human learning. We humans never

learn in isolation. We always retain the knowledge learned in the past and use it to help

future learning and problem solving. That is why whenever we encounter a new situation

or problem, we may notice that many aspects of it are not really new because we have seen

them in the past in some other contexts. Without the ability to accumulate knowledge,

an ML algorithm typically needs a large number of training examples in order to learn

effectively. For supervised learning, labeling of training data is often done manually, which

is very labor-intensive and time-consuming. Since the world is too complex with too many

possible tasks, it is almost impossible to label a large number of examples for every possible

task or application for an ML algorithm to learn. To make matters worse, everything around

us also changes constantly, and the labeling thus needs to be done continuously, which is

a daunting task for humans. Even for unsupervised learning, collecting a large volume of

data may not be possible in many cases.

To solve the problem, researchers have proposed one-shot learning and zero-shot learn-

ing, which use only a small number of examples or even no example to learn. However, for

such techniques to work, the system must have a great deal of prior domain knowledge. The

question is where the knowledge comes from. In most cases, the knowledge is from human

users. This is clearly not an ideal solution for an intelligent system because it means that

the learner of the system still has to rely on humans and cannot learn by itself. It is more

desirable to learn and cumulate the required prior knowledge from the past tasks Chen

et al. [2014].

2 1. INTRODUCTION

In contrast, we human beings seem to learn quite differently. We accumulate and

maintain the knowledge learned from previous tasks and use it seamlessly in learning new

tasks and solving new problems. Over time we learn more and more and become more and

more knowledgeable, and more and more effective at learning. Lifelong Machine Learning

(LML) (or simply lifelong learning) aims to mimic this human learning process and capabil-

ity. This type of learning is quite natural because things around us are closely related and

interconnected. Knowledge learned about some subjects can help us understand and learn

some other subjects. For example, we humans do not need 1, 000 positive online reviews

and 1, 000 negative online reviews of movies as an ML algorithm would need in order to

build an accurate classifier to classify positive and negative reviews about a movie. In fact,

for this task, without a single training example, we can already perform the classification

task. How can that be? The reason is simple. It is because we have accumulated so much

knowledge in the past about the language expressions that people use to praise and criticize

things, although none of those praises or criticisms may be in the form of online reviews.

Interestingly, if we do not have such past knowledge, we humans are probably unable to

manually build a good classifier even with 1, 000 training positive reviews and 1, 000 train-

ing negative reviews without spending an enormous amount of time. For example, if you

have no knowledge of Arabic or Arabic sentiment expressions and someone gives you 2, 000

labeled training reviews in Arabic and asks you to build a classifier manually, most probably

you will not be able to do it without using a translator.

To make the case more general, we use natural language processing (NLP) as an

example. It is easy to see the importance of LML to NLP because of several reasons. First,

words and phrases have almost the same meaning in all domains and all tasks. Second,

sentences in every domain follows the same syntax or grammar. Third, almost all natural

language processing problems are closely related to each other, which means that they are

inter-connected and affect each other in some ways. The first two reasons ensure that the

knowledge learned can be used across domains and tasks due to the sharing of the same

expressions and meanings and the same syntax. That is why we humans do not need to

re-learn the language (or learn a new language) whenever we encounter a new application

domain. For example, assume we have never studied psychology, and we want to study

it now. We do not need to learn the language used in the psychology text except some

new concepts in the psychology domain because everything about the language itself is

the same as in any other domain or area. The third reason ensures that LML can be used

across different types of tasks. For example, a named entity recognition (NER) system has

learned that iPhone is a product or entity, and a data mining system has discovered that

every product has a price and the adjective “expensive” describes the price attribute of

an entity. Then, from the sentence “The picture quality of iPhone is great, but it is quite

expensive,” we can safely extract “picture quality” as a feature or attribute of iPhone,

and detect that “it” refers to iPhone not the picture quality with the help of those pieces

1.1. A BRIEF HISTORY OF LIFELONG LEARNING 3

of prior knowledge. Traditionally, these problems are solved separately in isolation, but

they are all related and can help each other because the results from one problem can be

useful to others. This situation is common for all NLP tasks. Note that we regard anything

from unknown to known as a piece of knowledge. Thus, a learned model is a piece of

knowledge and the results gained from applying the model are also knowledge, although

they are different kinds of knowledge. For example, iPhone being an entity and picture

quality being an attribute of iPhone are two pieces of knowledge.

Realizing and being able to exploit the sharing of words and expressions across do-

mains and the inter-connectedness of tasks is still insufficient. A large quantities of knowl-

edge is often needed in order to effectively help the new task learning because the knowledge

gained from one previous task may contain only a tiny bit or even no knowledge that is

applicable to the new task (unless the two tasks are extremely similar). Thus, it is im-

portant to learn from a large number of diverse domains to accumulate a large amount of

diverse knowledge over time. A future task can pick and choose the appropriate knowledge

to use to help its learning. As the world also changes constantly, the learning should thus

be continuous and lifelong, which is what we humans do.

Although we used NLP as an example, the general idea is true for any other area be-

cause again things in the world are related and inter-connected. There is probably nothing

that is completely unrelated to anything else. Thus knowledge learned in the past in some

domains can be applied in some other domains in similar contexts in the future. The classic

isolated learning paradigm is unable to perform such lifelong learning. Isolated learning

is only suitable for narrow and restricted tasks. It is probably not sufficient for building

an intelligent system that can learn continuously to achieve close to the human level of

intelligence. LML aims to make progress in this direction. With the popularity of inter-

active robots, intelligent personal assistants, and chatbots, LML is becoming increasingly

important because these systems have to interact with humans and/or other systems, learn

constantly in the process, and retain and accumulate the knowledge learned in the inter-

actions in the ever changing environments to enable them to learn more and learn better

over time and to function seamlessly.

1.1 A BRIEF HISTORY OF LIFELONG LEARNING

The concept of lifelong machine learning (LML) was proposed around 1995 in [Thrun and

Mitchell, 1995]. Since then it has been researched in four main areas. Here we give a brief

history of the LML research in each of these areas.

1. Lifelong Supervised Learning. Thrun [1996b] first studied lifelong concept learning,

where each previous or new task aims to recognize a particular concept or class us-

ing binary classification. Several LML techniques were proposed in the contexts of

memory-based learning and neutral networks. The neural network approach was im-

proved in [Silver and Mercer, 1996, 2002, Silver et al., 2015]. Fei et al. [2016] extended

4 1. INTRODUCTION

this form of LML to cumulative learning, which, on encountering a new class or con-

cept, builds a new multi-class classifier that can classify all the previous and the new

classes by efficiently updating the old classifier. It can also detect unseen classes,

which enables a limited form of self-motivated learning. Ruvolo and Eaton [2013b]

proposed an efficient lifelong learning algorithm to improve the multi-task learning

method in [Kumar et al., 2012]. Here the learning tasks are independent of each other.

Ruvolo and Eaton [2013a] considered ELLA in an active task selection setting. Chen

et al. [2015] further proposed an LML technique in the context of Näıve Bayesian

classification. A theoretical study of LML was done by Pentina and Lampert [2014]

in the PAC-learning framework.

2. Lifelong Unsupervised Learning. Papers in this area are mainly about lifelong topic

modeling and lifelong information extraction. Chen and Liu [2014a,b] and Wang et al.

[2016] proposed several lifelong topic modeling techniques that mine knowledge from

topics produced from many previous tasks and use it to help generate better topics in

the new task. Liu et al. [2016] proposed an LML approach based on recommendation

for information extraction in the context of opinion mining. Shu et al. [2016] proposed

a lifelong relaxation labeling method to solve a unsupervised classification problem.

3. Lifelong Semi-Supervised Learning. The work in this area is represented by the NELL

(Never-Ending Language Learner) system [Carlson et al., 2010a, Mitchell et al., 2015],

which has been reading the Web continuously for information extraction since January

2010, and it has accumulated millions of entities and relations.

4. Lifelong Reinforcement Learning. Thrun and Mitchell [1995] first proposed some LML

algorithms for robot learning which tried to capture the invariant knowledge about

each individual task. Tanaka and Yamamura [1997] treated each environment as a

task for LML. Ring [1998] proposed a continual-learning agent that aims to gradually

solve complicated tasks by learning easy tasks first. Wilson et al. [2007] proposed

a hierarchical Bayesian lifelong reinforcement learning method in the framework of

Markov Decision Process (MDP). Fernández and Veloso [2013] worked on policy reuse

in a multi-task setting. A nonlinear feedback policy that generalizes across multiple

tasks is proposed in [Deisenroth et al., 2014]. Bou Ammar et al. [2014] proposed a

policy gradient efficient lifelong learning algorithm following the idea in ELLA [Ru-

volo and Eaton, 2013b]. This work was further enhanced with cross-domain lifelong

reinforcement learning [Bou Ammar et al., 2015a] and with constraints for safe lifelong

reinforcement learning [Bou Ammar et al., 2015c].

LML techniques working in other areas also exist. For example, Kapoor and Horvitz

[2009] studied predictive user modeling under LML and Kapoor and Horvitz [2009] worked

on managing and using user feedback with the help of LML. Silver et al. [2013] wrote a

1.2. DEFINITION OF LIFELONG LEARNING 5

survey of LML trying to encourage more researchers to work on LML. The survey was

presented at the AAAI 2013 Spring Symposium on Lifelong Machine Learning.

As we can see, although LML has been proposed for more than 20 years, research

in the area has not been extensive. There could be many reasons. Some of the reasons

may be as follows: First, the machine learning research for the past 20 years has focused

on statistical and algorithmic approaches. LML typically needs a systems approach that

combines multiple components and learning algorithms. Systems approaches to learning

were not in favor. This may partially explain that although the LML research has been

limited, closely related paradigms of transfer learning and multi-task learning have been

researched fairly extensively because they can be done in statistical and algorithmic fashion.

Second, much of the past machine learning research and applications focused on supervised

learning using structured data, which are not easy for LML because there is little to be

shared across tasks and domains. For example, the knowledge learned from a supervised

learning system on a loan application is hard to be used in a health or education application

because they do not have much in common. Also, most supervised learning algorithms

generate no additional knowledge other than the final model or classifier, which is difficult

to use as prior knowledge for another classification task even in similar domains. Third,

many effective machine learning methods such as SVM and deep learning cannot easily use

prior knowledge even if such knowledge exists. These classifiers are black boxes and hard to

decompose or interpret. They are generally more accurate with more training data. Fourth,

related areas such as transfer learning and multi-task learning were popular partly because

they typically need only two and just a few similar tasks and datasets and do not require

retention of explicit knowledge. LML, on the other hand, needs significantly more previous

tasks and data in order to learn and to accumulate a large amount of explicit knowledge

so that the new learning task can pick and choose the suitable knowledge to be used to

help the new learning. This is analogous to human learning. If one does not have much

knowledge, it is very hard for him/her to learn more knowledge. The more knowledge that

one has, the easier it is for him/her to learn even more. For example, it is close to impossible

for an elementary school pupil to learn graphical models. Even for an adult, if he has not

studied probability theory, it is also infeasible for him to learn graphical models either.

Considering these factors, we believe that one of the more promising areas for LML

is text mining or natural language processing (NLP) due to its extensive sharing of knowl-

edge across domains and tasks and inter-relatedness of NLP tasks as we discussed above.

The text data is also abundant. Lifelong supervised, unsupervised, semi-supervised, and

reinforcement learning can all be applied to text data.

1.2 DEFINITION OF LIFELONG LEARNING

The earlier definition of LML is as follows [Thrun, 1996b]: The system has performed N

tasks. When faced with the (N + 1)th task, it uses the knowledge gained from the N

6 1. INTRODUCTION

tasks to help the (N + 1)th task. Here we extend this definition by giving it more details,

mainly by adding an explicit knowledge base (KB) to stress the importance of knowledge

accumulation and meta-mining of additional higher-level knowledge from the knowledge

retained from previous learning. We will improve this early definition shortly.

Definition 1.1 Lifelong machine learning (LML) is a continuous learning process. At any

time point, the learner has performed a sequence of N learning tasks, T1, T2, . . . , TN . These

tasks, which are also called the previous tasks, have their corresponding datasets D1, D2,

. . . , DN . The tasks can be of different types and from different domains. When faced with

the (N + 1)th task TN+1 (which is called the new or current task) with its data DN+1, the

learner can leverage the past knowledge in the knowledge base (KB) to help learn TN+1.

The objective of LML is usually to optimize the performance on the new task TN+1, but

it can optimize on any task by treating the rest of the tasks as the previous tasks. KB

maintains the knowledge learned and accumulated from learning the previous tasks. After

the completion of learning TN+1, KB is updated with the knowledge (e.g., intermediate as

well as the final results) gained from learning TN+1. The updating can involve consistency

checking, reasoning, and meta-mining of additional higher-level knowledge.

Since this definition is quite general, some remarks are in order:

1. The definition shows three key characteristics of LML: (1) continuous learning, (2)

knowledge accumulation and maintenance in the knowledge base (KB), and (3) the

ability to use the past knowledge to help future learning. That is, the lifelong learner

learns a series of tasks, possibly never ending, and in the process, it becomes more

and more knowledgeable, and better at learning. These characteristics make LML

different from related learning paradigms such as transfer learning [Jiang, 2008, Pan

and Yang, 2010, Taylor and Stone, 2009] and multi-task learning [Caruana, 1997,

Chen et al., 2009, Lazaric and Ghavamzadeh, 2010], which do not have one or more

of these characteristics. We will discuss these related paradigms and their differences

from the LML paradigm in detail in Chapter 2.

2. The tasks do not have to be from the same domain. There is no unified definition of

a domain in the literature that is applicable to all areas. In most cases, the term is

used informally to mean a subject area where there are often multiple different tasks

of the same type or of different types (e.g., information extraction, coreference resolu-

tion, and entity linking). Some researchers even use domain and task interchangeably

because there is only one task from each domain in their study. We also use them in-

terchangeably in many cases in this book due to the same reason but will distinguish

them when needed.

3. The shift to the new task can happen abruptly or gradually. The tasks and their

data do not have to be provided by some external systems or human users. Ideally,

1.2. DEFINITION OF LIFELONG LEARNING 7

a lifelong learner can find its own learning tasks and training data in its interaction

with the environment by performing self-motivated learning. For example, a service

robot in a hotel may be trained to recognize the faces of a group of guests initially

in order to greet them, but in its interaction with the guests it may find a new guest

whom it does not recognize. It can then take some pictures and learn to recognize

him/her and associate him/her with a name obtained by asking the guest. In this

way, the robot can greet the new guest next time in a personalized manner.

4. The definition does not give details about knowledge or its representation in the

knowledge base (KB) because of our limited understanding. Current papers use only

one or two specific types of knowledge suitable for their proposed techniques. The

problem of knowledge representation is still an active research topic with few mature

results for practical use. The definition also does not specify how to maintain and

update the knowledge base. For a particular application, one can design a KB based

on the application need. We will discuss some possible components of the KB below.

5. The definition indicates that LML may require a systems approach that combines

multiple learning algorithms and different knowledge representation schemes. It is not

likely that a single learning algorithm is able to achieve the objective of LML.

6. There is still no generic LML system that is able to perform LML in all possible

domains for all possible types of tasks. In fact, we are far from that. That is, unlike

many machine learning algorithms such as SVM and deep learning, which can be

applied to any learning task as long as the data is represented in a specific format.

Current LML algorithms are still quite specific to some types of tasks and data.

We now discuss the improved definition of LML, which is mainly due to the work in Fei

et al. [2016], Shu et al. [2017a,b]

Definition 1.2 Lifelong machine learning (LML) is a continuous learning process. At any

time point, the learner has performed a sequence of N learning tasks, T1, T2, . . . , TN . These

tasks, which are also called the previous tasks, have their corresponding datasets D1, D2,

. . . , DN . The tasks can be of different types and from different domains. When faced with

the (N + 1)th task TN+1 (which is called the new or current task) with its data DN+1, the

learner can leverage the past knowledge in the knowledge base (KB) to help learn TN+1. Note

that the task can be given or discovered by the system itself (see below). The objective of

LML is usually to optimize the performance on the new task TN+1, but it can optimize on

any task by treating the rest of the tasks as the previous tasks. KB maintains the knowledge

learned and accumulated from learning the previous tasks. After the completion of learning

TN+1, KB is updated with the knowledge (e.g., intermediate as well as the final results)

gained from learning TN+1. The updating can involve consistency checking, reasoning, and

8 1. INTRODUCTION

meta-mining of additional higher-level knowledge. Furthermore, a LML learner should also

be able to:

1. learn and function in the open environment, where it not only can apply the learned

model or knowledge to solve problems but also discover new problems, which form

new tasks to be learned.

2. learn to improve the model performance in the application or testing of the learned

knowledge or model. This is like that after job training, we still learn on the job to

become better and better at doing the job.

Without these capabilities, a LML system will not be able to learn new knowledge or func-

tion in a dynamic open environment by itself. An AI system will never be truly intelligent.

By open environment , we mean that the application environment may contain novel ob-

jects that have not been learned before. For example, we want to build a greeting robot for

hotels. At any point in time, the robot has learned to recognize all existing hotel guests.

When it sees an existing guest, it can call his/her name and chat. At the same time, it

must also detect any new guests that it has not seen before. On seeing a new guest, it can

say hello, ask for his/her name, take many pictures, and learn to recognize the guest. Next

time when it sees the person again, it can call his/her name and chat like an old friend.

The real-world road environment for self-driving cars is another very typical dynamic and

open environment. We believe that without the lifelong learning capability, self-diving cars

are unlikely to work well in the real-life environment.

There are currently two main LML approaches at the high level based on the type of

past knowledge that they exploit to learn the new task. We distinguish two kinds of past

or shared knowledge (note that only shared knowledge can be used cross tasks):

1. Global knowledge: Many existing LML methods assume that there is a global latent

structure among tasks that are shared by all tasks [Bou Ammar et al., 2014, Ruvolo

and Eaton, 2013b, Tanaka and Yamamura, 1997, Thrun, 1996b, Wilson et al., 2007]

(Sections 3.2, 3.5, 6.1, 6.2, and 6.3). This global structure can be learned and leveraged

in the new task learning. These approaches mainly grew out of multi-task learning.

2. Local knowledge: Many other methods do not assume such a global latent structure

among tasks [Chen and Liu, 2014a,b, Chen et al., 2015, Fei et al., 2016, Liu et al.,

2016, Shu et al., 2016] (Sections 3.4, 3.6, 4.2, 4.3, 4.4, and 4.5). Instead, during the

learning of a new task they pick and choose the pieces of knowledge learned from

previous tasks to use based on the need of the specific task. This means that different

tasks may use different pieces of knowledge learned from different previous tasks.

We call such pieces of knowledge the local knowledge because they are local to their

individual previous tasks.

1.3. LIFELONG LEARNING SYSTEM ARCHITECTURE 9

	

	

	

	

	

	

	

	

	

	

	

	

Figure 1.1: The classic machine learning paradigm.

We can also distinguish two types of tasks.

1. Independent tasks: Every task Ti is independent of the other tasks. This means that

each task can be learned independently, although due to their similarities and sharing

of some latent structures or knowledge, learning Ti can leverage the knowledge gained

from previous tasks. Most existing LML methods except that in [Fei et al., 2016]

(Section 3.4) use independent tasks.

2. Dependent tasks: Each task Ti has some dependence on some other tasks. For example,

Fei et al. [2016] (Section 3.4) proposed a specific setting where each new supervised

learning task adds a new class to the previous classification problem, and needs to

build a new multi-class classifier which can classify data from all previous and current

classes. The authors of the paper called this problem cumulative learning.

1.3 LIFELONG LEARNING SYSTEM ARCHITECTURE

Before presenting the LML system architecture, we first give the architecture of the classic

machine learning paradigm, which is given in Figure 1.1, where there is only a single task

T with its data D. The learned model is used in its intended application.

From Definition 1.1 and the associated marks, we can see a general process of LML

and also an LML system architecture. Figure 1.2 illustrates the architecture and the process.

Below, we first describe the key components of the system and then discuss the LML process.

We note that this general architecture is for illustration purposes. Not all existing systems

use all the components or sub-components. In fact, most current systems are much simpler.

1. Knowledge Base (KB): It mainly stores the previously learned knowledge. It has

a few sub-components:

10 1. INTRODUCTION

Knowlege-Based
Learner

Knowledge Base
(KB)

Output

Retained
Knowledge

Past
Knowledge

T1, T2, . . . , TN , TN+1, . . .

Previously Learned Tasks Future Learning Tasks

Task Manager New Task

DN+1

Figure 1.2: The lifelong machine learning system architecture.

(a) Past Information Store (PIS): It stores the information resulted from the past

learning, including the resulting models, patterns, or other forms of outcome. PIS

may also involve sub-stores for information such as (1) the original data used in

each previous task, (2) intermediate results from each previous task, and (3) the

final model or patterns learned from each previous task. As for what information

or knowledge should be retained, it depends on the learning task and the learning

algorithm. For a particular system, the user needs to decide what to retain in

order to help future learning.

(b) Meta-Knowledge Miner (MKM). It performs meta-mining of the knowledge in

the PIS and in the meta-knowledge store (see below). We call this meta-mining

because it mines higher-level knowledge from the saved knowledge. The resulting

1.3. LIFELONG LEARNING SYSTEM ARCHITECTURE 11

knowledge is stored in the Meta-Knowledge Store. Here multiple mining algo-

rithms may be used to produce different types of results.

(c) Meta-Knowledge Store (MKS): It stores the knowledge mined or consolidated

from PIS (Past Information Store) and also from MKS itself. Some suitable

knowledge representation schemes are needed for each application.

(d) Knowledge Reasoner (KR): It makes inference based on the knowledge in MKB

and PIS to generate more knowledge. Most current systems do not have this

sub-component. However, with the advance of LML, this component will become

increasingly important.

Since the current LML research is still in its infancy, as indicated above, none of the

existing systems has all these sub-components.

2. Knowledge-Based Learner (KBL): For LML, it is necessary for the learner to

be able to use prior knowledge in learning. We call such a learner a knowledge-based

learner, which can leverage the knowledge in the KB to learn the new task. This

component may have two sub-components: (1) Task knowledge miner (TKM), which

makes use of the raw knowledge or information in the KB to mine or identify knowl-

edge that is appropriate for the current task. This is needed because in some cases,

KBL cannot use the raw knowledge in the KB directly but needs some task specific

and more general knowledge mined from the KB [Chen and Liu, 2014a,b]. (2) The

learner that can make use of the mined knowledge in learning.

3. Output: This is the learning result for the user, which can be a prediction model or

classifier in supervised learning, clusters or topics in unsupervised learning, etc. Note

that the Output node can be replaced with two nodes as in Figure 1.3.

4. Task Manager (TM): It receives and manages the tasks that arrive in the system,

and handles the task shift and presents the new learning task to the KBL to start the

LML process.

Enhanced LML Architecture: With the enhanced LML Definition 1.2, the LML archi-

tecture becomes that in Figure 1.4. It now can discover new problems from the application

process which form new tasks to be learned (upper right corner) Fei et al. [2016], Shu et al.

[2017b]. It also can improve the model performance during the application process (lower

right corner) Shu et al. [2017a].

Lifelong Learning Process: A typical lifelong learning process starts with the Task

Manager assigning a new task to the KBL. KBL then works with the help of the past

knowledge stored in the KB to produce the output (e.g., a model) to the user and also send

the information or knowledge that needs to be retained for future use to the KB.

LML is highly challenging because what knowledge to retain, how to use previous

knowledge, and how to maintain the KB are all difficult problems. Below, we highlight two

12 1. INTRODUCTION

	

	

	

	

	

	

	

	

Figure 1.3: Replacing the Output node with the Model and Application nodes.

hidden but fundamental challenges of LML based on our experiences with several projects.

We will describe how the existing research deals with these challenges throughout the book.

1. Correctness of knowledge: Incorrect knowledge is detrimental to the new learning.

LML can be regarded as a continuous bootstrapping process. Errors can propagate

from previous tasks to subsequent tasks to generate more and more errors. But we

humans seem to have a good idea of what is correct or what is wrong.

2. Applicability of knowledge. Although a piece of knowledge may be correct in the con-

text of some previous tasks, it may not be applicable to the current task. Application of

inappropriate knowledge has the same negative consequence as the above case. Again,

we humans are quite good at recognizing the right context for a piece of knowledge.

1.4 EVALUATION METHODOLOGY

Unlike the classic isolated learning where the evaluation of a learning algorithm is based on

training and testing using data from the same task domain, LML needs a different evaluation

methodology because it involves a sequence of tasks and we want to see improvements in

the learning of later tasks. Experimental evaluation of an LML algorithm in the current

research is commonly done using the following steps:

1. Run on the data from the previous tasks: We first run the algorithm on the data from

a set of previous tasks, one at a time in a given sequence, and retain the knowledge

1.4. EVALUATION METHODOLOGY 13

	

	

Figure 1.4: The enhanced LML system architecture.

gained in the knowledge base (KB). Clearly, there can be multiple variations or ver-

sions of the algorithm (e.g., with different types of knowledge used and more or less

knowledge used) which can be experimented with.

2. Run on the data from the new task: We then run the algorithm on the new task data

by leveraging the knowledge in the KB.

3. Run baseline algorithms: For comparison, we run some baseline algorithms. There are

usually two kinds of baselines. The first kind of baselines are algorithms that perform

isolated learning on the new data without using any past knowledge. The second kind

of baselines are existing LML algorithms.

4. Analyze the results: This step compares the results from steps 2 and 3 and analyzes the

results to make some observations, e.g., to show the results from the LML algorithm

in step 2 is superior to those from the baselines in step 3.

There are several additional considerations in carrying out an LML experimental evaluation.

1. A large number of tasks: A large number of tasks and datasets are needed to evaluate

an LML algorithm. This is because the knowledge gained from a few tasks may not

be able to improve the learning of the new task much as each task may only provide

14 1. INTRODUCTION

a very small amount of knowledge that is useful to the new task (unless all the tasks

are very similar) and the data in the new task is often quite small.

2. Task sequence: The sequence of the tasks to be learned can be significant, meaning

that different task sequences can generate different results. This is so because LML

algorithms typically do not guarantee optimal solutions for all previous tasks. To

take the sequence issue into consideration in the experiment, one can try several

random sequences of tasks and generate results for the sequences. The results can then

be averaged for comparison purposes. Existing papers mainly use only one random

sequence in their experiments.

3. Progressive experiments: Since more previous tasks should generate more knowledge

than fewer previous tasks, and more knowledge in turn should enable an LML algo-

rithm to produce better results for the new task, it is thus desirable to show how the

algorithm behaves on the new task as the number of previous tasks increases.

Finally, we note that it is not our intention to cover all possible kinds of evaluations

in the current research on LML. Our purpose is simply to introduce the common evaluation

methodology of an LML algorithm. In evaluating a specific algorithm, the researcher has

to consider the special characteristics of the algorithm (such as its assumptions and usage

settings) and the related research in order to design a set of good experiments.

1.5 ROLE OF BIG DATA IN LIFELONG LEARNING

In social sciences such as education, cognitive science, and philosophy, it is common knowl-

edge that like the “Matthew effect” of the rich get richer, the more you know the more

you can learn. The more you know, the easier it is for you to learn something new. If we

do not know anything, it is very hard to learn anything new. These are intuitive as each

one of us must have experienced this in our lives. For example, it is probably impossi-

ble to teach a person how to solve differential equations if the person has only primary

school education. It is also important to learn from a wide range of domains, which gives

us a wider vocabulary and a wide range of knowledge to be incorporated in learning and

problem solving so that it is easier for us to learn in diverse domains. These should be

the same for computer systems. To learn and accumulate a large quantity of knowledge,

the system needs a large volume of diverse data. Fortunately, such big datasets are now

readily available, which should allow a computer system to learn and acquire a broad range

of knowledge continuously to become more and more knowledgeable, and more and more

effective at learning and problem solving. This is the goal of lifelong learning.

1.6. OUTLINE OF THE BOOK 15

1.6 OUTLINE OF THE BOOK

This book surveys and introduces this important and emerging field. Although the body of

literature is not particularly large, related papers have been published in a large number of

conferences and journals. There is also a large number of papers that do not exhibit all the

characteristics of LML, but are related to some extent. It is thus hard, if not impossible,

to cover all of the important work in the field. This book should not be taken to be an

exhaustive account of everything in the field.

The book is organized as follows. In Chapter 2, we discuss some related machine

learning paradigms to set the background. We will see that these paradigms are different

from LML because they lack one or more of the key characteristics of LML. However,

all these paradigms involve some forms of knowledge sharing or transfer across tasks or

even can be made continuous learning in some cases. Thus, we regard LML as a more

advanced paradigm that extends these related paradigms in the progression to make ML

more intelligent and closer to human learning.

In Chapter 3, we focus on discussing existing research on supervised LML, where we

will give fairly detailed descriptions of earlier and more recent supervised LML methods. In

Chapter 4, we present unsupervised LML, where we focus on two lifelong topic models, a

lifelong information extraction method, and a lifelong relaxation labeling method. Chapter 5

focuses on lifelong semi-supervised learning, where we give an overview of the NELL system

(Never-Ending Language Learner). Lifelong reinforcement learning is covered in Chapter 6.

In Chapter 7, we conclude the book and discuss some challenges and future directions of

the lifelong learning research.

16

C H A P T E R 2

Related Learning Paradigms

As described in the introduction chapter, lifelong machine learning (LML) (or simply life-

long learning) has three key characteristics: continuous learning process, explicit knowledge

retention and accumulation, and the use of previously learned knowledge to help new learn-

ing tasks. There are several machine learning paradigms that have related characteristics.

This chapter discusses the most related ones, i.e., transfer learning or domain adaption,

multi-task learning, online learning, and reinforcement learning. The first two paradigms

are more closely related to LML because they both involve some kind of knowledge transfer

across domains or tasks, but they don’t learn continuously and don’t retain or accumulate

learned knowledge explicitly. Online learning and reinforcement learning involves contin-

uous learning processes but they focus on the same learning task with a time dimension.

These differences will become clearer after we review some representative techniques for

each of these related learning paradigms.

2.1 TRANSFER LEARNING

Transfer learning is a popular topic of research in machine learning and data mining. It

is also commonly known as domain adaptation in natural language processing. It usually

involves two domains: a source domain and a target domain. Although there can be more

than one source domain, in almost all existing research only one source domain is used.

The source domain normally has a large amount of labeled training data while the target

domain has little or no labeled training data. The goal of transfer learning is to use the

labeled data in the source domain to help learning in the target domain (see three excellent

surveys of the area [Jiang, 2008, Pan and Yang, 2010, Taylor and Stone, 2009]). Note that

in the literature, some researchers also use the terms source task and target task rather than

source domain and target domain, but by far, the latter terminologies are more commonly

used as the source and the target tasks are often from different domains or quite different

distributions [Pan and Yang, 2010].

There are many types of knowledge that can be transferred from the source domain

to the target domain to help learning in the target domain. For example, Bickel et al. [2007],

Dai et al. [2007b,c], Jiang and Zhai [2007], Liao et al. [2005], and Sugiyama et al. [2008]

directly treated certain parts of data instances in the source domain as the knowledge with

instance reweighing and importance sampling and transfer it over to the target domain.

Ando and Zhang [2005], Blitzer et al. [2006, 2007], Dai et al. [2007a], Daume III [2007], and

2.1. TRANSFER LEARNING 17

Wang and Mahadevan [2008] used features from the source domain to generate new feature

representations for the target domain. Bonilla et al. [2008], Gao et al. [2008], Lawrence and

Platt [2004], and Schwaighofer et al. [2004] transferred learning parameters from the source

domain to the target domain. To give a flavor of transfer learning, we briefly discuss some

existing transfer learning methods below.

2.1.1 STRUCTURAL CORRESPONDENCE LEARNING

One of the popular transfer learning techniques is the Structural Correspondence Learning

(SCL) proposed in [Blitzer et al., 2006, 2007]. This method is mainly used in text classi-

fication. The algorithm works as follows: given labeled data from the source domain and

unlabeled data from both the source and target domains, SCL tries to find a set of pivot

features that have the same characteristics or behaviors in both domains. If a non-pivot

feature is correlated with many of the same pivot features across different domains, this

feature is likely to behave similarly across different domains. For example, if a word w co-

occurs very frequently with the same set of pivot words in both domains, then w is likely

to behave the same (e.g., holding the same semantic meaning) across domains.

To implement the above idea, SCL first chooses a set of m features which occur

frequently in both domains and are also good predictors of the source label (in their paper

these were the features with the highest mutual information with the source label). These

pivot features represent the shared feature space of the two domains. SCL then computes

the correlations of each pivot feature with other non-pivot features in both domains. This

produces a correlation matrix W where row i is a vector of correlation values of non-pivot

features with the ith pivot feature. Intuitively, positive values indicate that those non-pivot

features are positively correlated with the ith pivot feature in the source domain or in the

target domain. This establishes a feature correspondence between the two domains. After

that, singular value decomposition (SVD) is employed to compute a low-dimensional linear

approximation θ (the top k left singular vectors, transposed) of W. The final set of features

for training and for testing is the original set of features x combined with θx which produces

k real-valued features. The classifier built using the combined features and the labeled data

in the source domain should work in both the source and the target domains.

Pan et al. [2010] proposed a method similar to SCL at the high level. The algorithm

works in the setting where there are only labeled examples in the source domain and

unlabeled examples in the target domain. It bridges the gap between the domains by using

a spectral feature alignment (SFA) algorithm to align domain-specific words from different

domains into some unified clusters, with domain independent words as the bridge. Domain-

independent words are like pivot words above and can be selected similarly.

18 2. RELATED LEARNING PARADIGMS

2.1.2 NAÏVE BAYES TRANSFER CLASSIFIER

Many transfer learning methods have been proposed in the context of Näıve Bayesian

classification [Chen et al., 2013a, Dai et al., 2007b, Do and Ng, 2005, Rigutini et al., 2005].

Here we briefly describe the work in [Dai et al., 2007b] to give a favor of such methods.

Dai et al. [2007b] proposed a method called Näıve Bayes Transfer Classifier (NBTC).

Let the labeled data from the source domain be Dl with the distribution Dl, and the

unlabeled data from the target domain be Du with the distribution Du. Dl may not be the

same as Du. A two-step approach is employed in NBTC:

1. build an initial Näıve Bayesian classifier using the labeled data Dl under Dl from the

source domain.

2. run an EM (Expectation-Maximization) algorithm together with the target unlabeled

data to find a local optimal model under the target domain distribution Du.

The objective function of NBTC is as follows, which aims to find a local optimum of

the Maximum a Posteriori (MAP) hypothesis under Du:

hMAP = argmax
h

PDu(h)× PDu(Dl,Du|h) . (2.1)

This equation considers the probability of the source domain labeled data and the tar-

get domain unlabeled data under the hypothesis h. The labeled data provides the super-

vised information while estimating the probability of the unlabeled data under Du ensures

that the model fits for Du. Based on the Bayes’ rule, NBTC maximizes the log-likelihood

l(h|Dl,Du) = logPDu
(h|Dl,Du),

l(h|Dl,Du) ∝ logPDu(h)

+
∑
d∈Dl

log
∑
c∈C

PDu(d|c, h)× PDu(c|h)

+
∑
d∈Du

log
∑
c∈C

PDu(d|c, h)× PDu(c|h) ,

(2.2)

where C is the set of classes and d ∈ Dl is a document in Dl. To optimize it, Dai et al.

[2007b] applied the EM algorithm as follows:

• E-Step:

PDu(c|d) ∝ PDu(c)
∏
w∈d

PDu(w|c) (2.3)

• M-Step:

PDu(c) ∝
∑

i∈{l,u}

PDu(Di)× PDu(c|Di) (2.4)

2.1. TRANSFER LEARNING 19

PDu(w|c) ∝
∑

i∈{l,u}

PDu(Di)× PDu(c|Di)× PDu(w|c,Di) , (2.5)

where w ∈ d represents a word in document d. PDu(c|Di) and PDu(w|c,Di) can be rewritten

via the Näıve Bayesian classification formulation (see [Dai et al., 2007b] for more details).

The above E-step and M-step are repeated to reach a local optimal solution.

Chen et al. [2013a] proposed two EM-type algorithms called FS-EM (Feature Selec-

tion EM) and Co-Class (Co-Classification). FS-EM uses feature selection as the mechanism

to transfer knowledge from the source domain to the target domain in each EM iteration.

Co-Class further adds the idea of co-training [Blum and Mitchell, 1998] to deal with the

imbalance of the shared positive and negative features. It builds two Näıve Bayesian clas-

sifiers, one on labeled data, and the other on the unlabeled data with predicted labels. An

earlier work for cross-language text classification also used a similar idea in the context

of Näıve Bayesian classification [Rigutini et al., 2005], which transfers knowledge from the

labeled data in English to the unlabeled data in Italian.

2.1.3 DEEP LEARNING IN TRANSFER LEARNING

In recent years, deep learning or deep neural network has emerged as a major learning

method and has achieved very promising results [Bengio, 2009]. It has been used by several

researchers for transfer learning.

For example, instead of using the traditional raw input as features which may not

generalize well across domains, Glorot et al. [2011] proposed to use the low-dimensional

features learned using deep learning to help prediction in the new domain. In particular,

Stacked Denoising Auto-encoder of [Vincent et al., 2008] was employed in [Glorot et al.,

2011]. In an auto-encoder, there are typically two functions: an encoder function h() and a

decoder function g(). The reconstruction of input x is given by r(x) = g(h(x)). To train an

auto-encoder, the objective function is to minimize the reconstruction error loss(x, r(x)).

Then, auto-encoders can be trained and stacked together as a hierarchical network. In

this network, the auto-encoder at level i takes the output of the (i− 1)th auto-encoder

as input. Level 0 takes the raw input. In denoising an auto-encoder, the input vector x is

stochastically corrupted into another vector x̂ and the objective function is to minimize a

denoising reconstruction error loss loss(x, r(x̂)). In [Glorot et al., 2011], the model is learned

in a greedy layer-wise fashion using stochastic gradient descent. The first layer uses logistic

sigmoid to transform the raw input. For the upper layers, the softplus activation function,

log(1 + exp(x), is used. After learning the auto-encoders, a linear SVM with squared hinge

loss is trained on the labeled data from the source domain and tested on the target domain.

Yosinski et al. [2014] studied the transferability of features in each layer of a deep

neural network. They argued that the lowest level or the raw input layer is very general as it

is independent of the task and the network. In contrast, the features from the highest level

depend on the task and cost function, and thus are specific. For example, in a supervised

20 2. RELATED LEARNING PARADIGMS

learning task, each output unit corresponds to a particular class. From the lowest level to

the highest level, there is a transfer from generality to specificity. To experiment the trans-

ferability of features in each layer in a deep neural network, they trained a neural network

from the source domain and copy the first n layers to the neural network for the target

domain. The remaining layers in the target neural network are randomly initialized. They

showed that transferred features in the neural network from the source domain are indeed

helpful to the target domain learning. Also in the transfer learning setting, Bengio [2012]

focused on unsupervised pre-training of representations and discussed potential challenges

of deep learning for transfer learning.

2.1.4 DIFFERENCE FROM LIFELONG LEARNING

Transfer learning is different from lifelong learning in the following aspects. We want to

note that since the literature on transfer learning is extensive, the differences described here

may not be applicable to every individual transfer learning paper.

1. Transfer learning is not concerned with continuous learning or knowledge accumula-

tion. Its transfer of information or knowledge from the source domain to the target

domain is only one-time. It does not retain the transferred knowledge or information

for future use. LML, on the other hand, represents continuous learning. Knowledge

retention and accumulation are essential for LML as they not only enable the sys-

tem to become more and more knowledgeable, but also allow it to learn additional

knowledge more accurately and easily in the future.

2. Transfer learning is unidirectional. It transfers knowledge only from the source domain

to the target domain, but not the other way around because the target domain has

little or no training data. However, in LML, the learning result from the new domain

or task can be used to improve learning in previous domains or tasks if needed.

3. Transfer learning typically involves with only two domains, a source domain and a

target domain (although in some cases there are more than one source domain). It

assumes that the source domain is very similar to the target domain; otherwise the

results can be detrimental. The two similar domains are usually selected by human

users. LML, on the other hand, normally considers a large (possibly infinite) num-

ber of tasks/domains. In solving a new problem, the learner can pick and choose the

appropriate past knowledge to be used in current learning. It does not have the as-

sumption made by transfer learning. That is, in LML, if there is useful knowledge from

the past, use it. If not, just learn using the current domain data. However, since LML

typically involves a large number of past domains, the system has a large amount of

past knowledge. The new learning task is very likely to find some pieces of the past

knowledge useful.

2.2. MULTI-TASK LEARNING 21

2.2 MULTI-TASK LEARNING

Multi-task learning learns multiple related tasks simultaneously, aiming at achieving a

better performance by using the relevant information shared by multiple tasks [Caruana,

1997, Chen et al., 2009, Li et al., 2009]. The rationale is to introduce inductive bias in

the joint hypothesis space of all tasks by exploiting the task relatedness structure. It also

prevents overfitting in the individual task and thus has a better generalization ability. Note

that unlike that in transfer learning, we mostly use the term multiple tasks rather than

multiple domains as much of the existing research in the area is based on multiple similar

tasks from the same domain of application. We now define multi-task learning, which is

also referred to as batch multi-task learning.

Definition 2.1 Multi-task Learning (MTL) is concerned with learning multiple tasks

T = {1, 2, . . . , N} simultaneously Each task t ∈ T has its training data Dt. The goal is

to maximize the performance across all tasks.

Since most existing works on multi-task learning focused on supervised learning, here

we discuss only multi-task supervised learning. Let each task t have the training data

Dt = {(xti, yti) : i = 1, . . . , nt}, where nt is the number of training instances in Dt. Dt is

defined by a hidden (or latent) true mapping f̂ t(x) from an instance space X t ⊆ Rd to a

set of labels Yt (yti ∈ Yt) (or Yt = R for regression). d is the feature/pattern dimension.

We want to learn a mapping function f t(x) for each task t so that f t(x) ≈ f̂ t(x). Formally,

given a loss function L, multi-task learning minimizes the following objective function:

N∑
t=1

nt∑
i=1

L
(
f(xti), y

t
i

)
. (2.6)

In contrast to this batch multi-task learning, online multi-task learning aims to learn

the tasks sequentially and accumulate knowledge over time and leverage the knowledge to

help subsequent learning (or to improve some previous learning task). Online multi-task

learning is thus lifelong learning.

2.2.1 TASK RELATEDNESS IN MULTI-TASK LEARNING

Multi-task learning assumes that tasks are closely related. There are different assumptions

in terms of task relatedness, which lead to different modeling approaches.

Evgeniou and Pontil [2004] assumed that all data for the tasks come from the same

space and all the task models are close to a global model. Under this assumption, they mod-

eled the relation between tasks using a task coupling parameter with regularization. Baxter

[2000] and Ben-David and Schuller [2003] assumed that the tasks share a common under-

lying representation, e.g., using a common set of learned features. Some other works used

22 2. RELATED LEARNING PARADIGMS

probabilistic approaches assuming that the parameters share a common prior [Daumé III,

2009, Lee et al., 2007, Yu et al., 2005].

Task parameters can also lie in a low dimensional subspace, which is shared across

tasks [Argyriou et al., 2008]. Instead of assuming all tasks sharing the full space, Argyriou

et al. [2008] assumed that they share a low rank of the original space. However, the low

rank assumption does not distinguish tasks. When some unrelated tasks are considered,

the performance can deteriorate. To address this issue, some papers assumed that there

are disjoint groups of tasks and applied clustering to group tasks [Jacob et al., 2009, Xue

et al., 2007]. The tasks within a cluster are considered close to each other. On the other

hand, Yu et al. [2007] and Chen et al. [2011] assumed that there is a group of related tasks

while the unrelated tasks are a small number of outliers. Gong et al. [2012] assumed that

the related tasks share a common set of features while the outlier tasks do not. [Kang

et al., 2011] incorporated grouping structures using regularization. However, each group’s

subspace does not overlap, meaning that the possible sharing structure between tasks from

different groups is ignored.

Recently, Kumar et al. [2012] assumed that the parameter vector of each task is a

linear combination of a finite number of underlying basis or latent components. Instead

of using the assumption of disjoint task groups [Jacob et al., 2009, Xue et al., 2007], they

assumed that the tasks in different groups can overlap with each other in one or more bases.

Based on this idea, they proposed a multi-task learning model called GO-MTL. We detail

it in the next subsection. Maurer et al. [2013] proposed to use sparse coding and dictionary

learning in multi-task learning. Extending GO-MTL, Ruvolo and Eaton [2013b] proposed

the Efficient Lifelong Learning Algorithm (ELLA) that dramatically improves the efficiency

and makes it an online multi-task learning method, which is regarded as a lifelong learning

method as it satisfies the LML definition. We will introduce ELLA in Section 3.5.

2.2.2 GO-MTL: MULTI-TASK LEARNING USING LATENT BASIS

GO-MTL (Grouping and Overlap in Multi-Task Learning) [Kumar et al., 2012] takes a

parametric approach to model building in which the model or the prediction function

f t(x) = f t(x;θt) for each task t is governed by the task-specific parameter vector θt ∈ Rd,
where d is the dimension of the data. Given N tasks, GO-MTL assumes that there are k

(< N) latent basis model components among the models of the multiple tasks. Each basis

model component l is represented by a vector of size d. The k basis model components are

represented by a d× k matrix L = (l1, . . . , lk). The parameter vector θt of the model for

each task t is assumed to be a linear combination of a subset of k basis model components

and the weight vector st, i.e., θt = Lst, and st is assumed to be sparse. Considering all the

tasks, we have:

Θ
d×N

= L
d×k
× S
k×N

, (2.7)

2.2. MULTI-TASK LEARNING 23

where Θ = [θ1,θ2, . . . ,θN] and S = [s1, s2, . . . , sN].

The idea is that each task can be represented by some of the basis model components.

This mechanism takes into consideration of both related and unrelated tasks. A pair of re-

lated tasks will lead to the overlapping of their linear weight vectors (s) while two unrelated

tasks can be distinguished via their little linear weight vector overlapping. Thus GO-MTL

does not assume disjointed groups of tasks like [Jacob et al., 2009, Xue et al., 2007]. As

discussed above, the disadvantage of disjoint groups is that the tasks from different groups

will not have interactions with each other. However, it is possible that although the tasks

are in different groups, they may be negatively correlated or they still share some informa-

tion, both of which can be useful for multi-task learning. The partial overlap among tasks

is thus allowed in GO-MTL, which is flexible in dealing with sophisticated task relatedness

without strong assumptions.

Objective Function

Given the training data Dt for each task t, the objective function is to minimize the pre-

dictive loss over all tasks while encouraging the sharing of structures between the tasks,

which is defined as follows:

N∑
t=1

nt∑
i=1

L
(
f(xti; Lst), yti

)
+ µ ‖S‖1 + λ ‖L‖2F , (2.8)

where L is the empirical loss function, (xti, y
t
i) is the ith labeled instance in the training data

for task t. The function f is f(xti; Lst) = θtxti = (Lst)Txti. ‖ · ‖1 is the L1 norm, which is

controlled by µ as a convex approximation to the true vector sparsity. ‖L‖2F is the Frobenius

norm of matrix L and λ is the regularization coefficient for matrix L.

Alternating Optimization

If the loss function L is convex, the objective function in Equation 2.8 is convex in L

for a fixed S, and convex in S for a fixed L, but they are not jointly convex. Thus, the

alternating optimization strategy is adopted to achieve a local minimum. For a fixed L, the

optimization function for st becomes:

st = argmin
s

nt∑
i=1

L
(
f(xti; Ls), yti

)
+ µ ‖s‖1 . (2.9)

On the other hand, for a fixed S, the optimization function for L is:

argmin
L

N∑
t=1

nt∑
i=1

L
(
f(xti; Lst), yti

)
+ λ ‖L‖2F . (2.10)

24 2. RELATED LEARNING PARADIGMS

For optimization of Equation 2.9, the two-metric projection method in [Gafni and Bertsekas,

1984, Schmidt et al., 2007] was used in [Kumar et al., 2012]. Equation 2.10 has a closed

form solution for squared loss function which is commonly used in regression problems.

For classification problems, logistic loss and the Newton-Raphson method were used in

optimization in [Kumar et al., 2012].

To initialize L, each individual task’s parameters are learned independently using

their own data, which are stacked as columns in a weight matrix. The top-k left singular

vectors of this weight matrix is used as the initial L. The reason for this is that the singular

vectors are the directions that capture the maximum variances of the task parameters.

2.2.3 DEEP LEARNING IN MULTI-TASK LEARNING

In recent years, deep neural network (DNN) has also been applied to multi-task learning.

For example, Liu et al. [2015b] proposed a multi-task DNN for learning representations

across multiple tasks. They considered two types of tasks, query classification and Web

search ranking.

• For query classification, the model classifies whether a query belongs to a particular

domain or not. In this work, the authors considered four domains (“Restaurant,”

“Hotel,” “Flight,” and “Nightlife”). A query can belong to multiple domains. These

four domains are framed as four query classification tasks. The training data for

query classification consists of pairs of query and label (yt = {0, 1} where t denotes a

particular task or domain).

• For Web search ranking, given a query, the model ranks the documents by their

relevance to the query. It is assumed that in the training data, there is at least one

relevant document for each query.

In their proposed multi-task DNN model, the lower neural network layers are shared

across multiple tasks while the top layers are task-dependent.

The Input Layer (l1) is the word hash layer in which each word is hashed as a bag

of n-grams of letters. For example, word deep is hashed as a bag of letter-trigrams {#-d-e,

d-e-e, e-e-p, e-p-#} where # denotes the boundary. This method can hash the variations

of the same word into the space close to each other, e.g., politics and politician.

Semantic-Representation Layer (l2) maps l1 into a 300 dimensional vector by:

l2 = f(W1 · l1) , (2.11)

where W1 is the weight matrix and f is defined as:

f(x) =
1− e−2x

1 + e−2x
. (2.12)

This layer is shared across multiple tasks.

2.2. MULTI-TASK LEARNING 25

Task-Specific Layer (l3) for each task converts the 300 dimensional vector to a 128

dimensional vector that is task dependent for each task, using the following:

l3 = f(Wt
2 · l2) , (2.13)

where t denotes a particular task and Wt
2 is another weight matrix. For a query classification

task, the probability of a query belonging to a domain is obtained from l3 using a sigmoid

function g(z) = 1
1+e−z . For Web search ranking, the cosine similarity is used to compare

layer l3 of the query and each document. To learn the neural network, the mini-batch-based

stochastic gradient descent (SGD) is used, which is an iterative algorithm. In each iteration,

a task t is first randomly picked. Then a labeled instance from t is sampled and this labeled

instance is used to update the neural network via SGD.

In [Collobert and Weston, 2008, Collobert et al., 2011], the authors proposed a unified

neural network architecture for performing multiple natural language processing tasks,

including part-of-speech tagging, chucking, name entity recognition, semantic role labeling,

language modeling, and semantically related words (or synonyms) discovering. They built

a deep neural network for all tasks jointly using weight-sharing. In the neural network, the

first layer is for textual features of each word. The second layer extracts features from a

sentence, treating the sentence as a sequence rather than a bag of words. The sequence is

the input of the second layer. Long-distance dependencies between words in a sentence is

captured by Time-Delay Neural Networks (TDNNs) [Waibel et al., 1989], which can model

the effects between words outside a fixed window.

A classic TDNN layer converts a sequence x to another sequence o as follows:

oi =
n−i∑
j=1−i

Lj · xi+j , (2.14)

where i denotes the time at which the ith word in the sentence is seen in TDNN (i.e.,

xi), n is the number of words in the sentence or the length of the sequence. Lj are the

parameters of the layer. Similar to [Liu et al., 2015b], stochastic gradient descent is used to

train the model, which repeatedly selects a task and one of its training examples to update

the neural network.

Along a similar line, Huang et al. [2013a] applied deep neural network to multilingual

data. They proposed a model called shared-hidden-layer multilingual DNN (SHL-MDNN),

in which the hidden layers are shared across multiple languages. Furthermore, Zhang et al.

[2014] applied deep multi-task learning to the problem of facial landmark detection by co-

modeling the correlated tasks such as head pose estimation and facial attribute inference.

There are also other applications of deep multi-task learning models to problems such as

name error detection in speech recognition [Cheng et al., 2015], multi-label learning [Huang

et al., 2013b], phoneme recognition [Seltzer and Droppo, 2013], and so on.

26 2. RELATED LEARNING PARADIGMS

2.2.4 DIFFERENCE FROM LIFELONG LEARNING

The similarity of (batch) multi-task learning and lifelong learning is that they both aim to

use some shared information across tasks to help learning. The difference is that multi-task

learning is still working in the traditional paradigm. Instead of optimizing a single task, it

optimizes several tasks simultaneously. If we regard the several tasks as one bigger task,

it reduces to the traditional optimization which is actually the case in most optimization

formulations of MTL. It does not accumulate any knowledge over time and it does not use

the concept of continuous learning, which are the key characteristics of LML. Although

one can argue that MTL can jointly optimize all tasks whenever a new task is added, it

is quite difficult to optimize all tasks in the world simultaneously in a single process as

they are too numerous and diverse. Some local and distributed optimizations are needed.

Global optimization is also not efficient in terms of both the time and resources. Thus, it

is important to retain knowledge to enable incremental learning of multiple tasks with the

help of knowledge learned in the past from previous tasks. That is why we regard online

or incremental multi-task learning as lifelong learning.

2.3 ONLINE LEARNING

Online learning (also known as incremental learning) is a learning paradigm where the

training data points arrive in a sequential order. When a new data point arrives, the existing

model is quickly updated to produce the best model so far. Its goal is thus the same as

classic learning, i.e., to optimize the performance on the given learning task. It is normally

used when it is computationally infeasible to train over the entire dataset or the practical

applications cannot wait until a large amount of training data is collected. This is in contrast

with the classic batch learning where all training data is available at the beginning.

In online learning, if whenever a new data point arrives re-training using all the

available data is performed, it will be too expensive. Furthermore, during re-training, the

model being used is already out of date. Thus, online learning methods are typically memory

and run-time efficient due to the latency requirement in a real-world scenario.

There are a large number of existing online learning algorithms. For example, Kivinen

et al. [2004] proposed some online learning algorithms for kernel-based learning like SVM.

By extending the classic stochastic gradient descent, they developed computationally effi-

cient online learning algorithms for classification, regression and novelty detection. Related

online kernel classifiers were also studied in [Bordes et al., 2005].

Rather than using the traditional table data, Herbster et al. [2005] studied online

learning on graphs. Their objective is to learn a function defined on a graph from a set of

labeled vertices. One application of their problem is to predict users’ preferences towards

products in a social network. Ma et al. [2009] worked on the problem of detecting malicious

Web sites using lexical and host-based features and URLs in an online setting. Mairal et al.

[2009, 2010] proposed some online dictionary learning approaches for sparse coding, which

2.4. REINFORCEMENT LEARNING 27

model data vectors as sparse linear combinations of some basic elements. Hoffman et al.

[2010] also proposed an online variational Bayes algorithm for topic modeling.

Much of the online learning research focuses on one domain/task. Dredze and Cram-

mer [2008] developed a multi-domain online learning method, which is based on param-

eter combination of multiple classifiers. In their setting, the model receives a new in-

stance/example as well as its domain.

2.3.1 DIFFERENCE FROM LIFELONG LEARNING

Although online learning deals with future data in streaming or in a sequential order, its

objective is very different from lifelong machine learning. Online learning still performs

the same learning task over time. Its objective is to learn more efficiently with the data

arriving incrementally. Lifelong learning, on the other hand, aims to learn from a sequence

of different tasks, retain the knowledge learned so far, and use the knowledge to help future

task learning. Online learning does not do any of these.

2.4 REINFORCEMENT LEARNING

Reinforcement Learning [Kaelbling et al., 1996, Sutton and Barto, 1998] is the problem

where an agent learns actions through trial and error interactions with a dynamic environ-

ment. In each interaction step, the agent receives input that contains the current state of

the environment. The agent chooses an action from a set of possible actions. The action

changes the state of the environment. Then, the agent gets a value of this state transition,

which can be reward or penalty. This process repeats as the agent learns a trajectory of

actions to optimize its objective. The goal of reinforcement learning is to learn an optimal

policy that maps states to actions that maximizes the long run sum of rewards. Details

about various types of reinforcement learning tasks can be found in [Busoniu et al., 2010,

Szepesvári, 2010, Wiering and Van Otterlo, 2012].

Transfer learning and multi-task learning have also been applied to reinforcement

learning. For example, Banerjee and Stone [2007] demonstrated that feature-based value

function transfer learning learns optimal policies faster than without knowledge transfer.

Taylor et al. [2008] proposed a method to transfer data instances from the source to the

target in a model-based reinforcement learning setting. A rule transfer method was also

proposed for reinforcement learning [Taylor and Stone, 2007]. An excellent survey of transfer

learning applied to reinforcement learning can be found in [Taylor and Stone, 2009].

Mehta et al. [2008] worked on multiple tasks sharing the same transition dynamics

but different reward functions. Instead of fully observable experiments, Li et al. [2009] pro-

posed a model-free multi-task reinforcement learning model for multiple partially observable

stochastic environments. They proposed an off-policy batch algorithm to learn parameters

in a regionalized policy representation. Lazaric and Ghavamzadeh [2010] assumed that in

the multi-task reinforcement learning, only a small number of samples can be generated for

28 2. RELATED LEARNING PARADIGMS

any given policy in each task. They grouped the tasks using similar structures and learn

them jointly. They also assumed that tasks share structures via value functions which are

sampled from a common prior.

Horde, an architecture for learning knowledge in reinforcement learning, was proposed

in [Sutton et al., 2011]. Its knowledge is represented by a large number of approximate value

functions. The reinforcement learning agent is decomposed into many sub-agents. The value

function is approximated by the expected return for a trajectory of states and actions. The

trajectory is obtained according to the policy of each sub-agent. The intuition is that each

sub-agent is responsible for learning some partial information about interactions with the

environment. The sub-agents can also use each other’s results to achieve their own goals.

The final decision of the agent is made by all sub-agents together. However, Sutton et al.

[2011] focused on the same environment, which is related to but also different from lifelong

learning. Along the lines of Horde, Modayil et al. [2014] modeled a generalization of the

value function in reinforcement learning.

2.4.1 DIFFERENCE FROM LIFELONG LEARNING

A reinforcement learning agent learns by trial and error in its interactions with the en-

vironment which gives feedback or rewards to the agent. The learning is limited to one

task and one environment. There is no concept of accumulating knowledge to help future

learning tasks. Transfer and multi-task reinforcement learning paradigms have similar dif-

ferences from lifelong learning as supervised transfer and multi-task learning discussed in

Section 2.1.4 and Section 2.2.4.

2.5 SUMMARY

In this Chapter, we gave an overview of the main machine learning paradigms that are

closely related to lifelong machine learning (LML) and described their differences from LML.

In summary, we can regard LML as a generalization of or extension to these paradigms. The

key characteristics of LML are the continuous learning process, knowledge accumulation in

the knowledge base (KB), and the use of the past knowledge to help future learning. The

related machine learning paradigms do not have one or more of these characteristics. In a

nutshell, LML essentially tries to mimic the human learning process in order to overcome

the limitations of the current isolated learning paradigm. Although we still do not under-

stand the human learning process, that should not prevent us from making progresses in

machine learning that exhibit some characteristics of human learning. From the next chap-

ter, we review various existing LML research directions and representative algorithms and

techniques.

29

C H A P T E R 3

Lifelong Supervised Learning

This chapter presents existing techniques for lifelong supervised learning. We first use an

example to show why the sharing of information across tasks is useful and how such shar-

ing makes lifelong machine learning (LML) work. The example is about product review

sentiment classification. The task is to build a classifier to classify a product review as

expressing a positive or negative opinion. In the classic setting, we first label a large num-

ber of positive opinion reviews and negative opinion reviews and then run a classification

algorithm such as SVM to build a classifier. In the LML setting, we assume that we have

learned from many previous tasks (which may be from different domains). A task here has

a set of reviews of a particular kind of product (a domain), e.g., camera, cellphone, or car.

Let us use the naive Bayesian (NB) classification technique for classifier building. In NB

classification, we mainly need the conditional probability of each word w given each class y

(positive or negative), P (w|y). When we have a task from a new domain D, the question is

whether we need training data from D at all. It is well-known that the classifier built in one

domain works poorly in another domain because words and language constructs used for

expressing opinions in different domains can be quite different [Liu, 2012]. To make matters

worse, the same word may express or indicate positive opinion in one domain but negative

opinion in another. The answer to the question is no in some cases, but yes in some others.

The reason for the no answer is that we can simply append all training data from the

past domains and build a classifier (probably the simplest LML method). This classifier can

do wonders for some new domain tasks. It can classify dramatically better than the classifier

trained using a modest number of training examples from the new domain D alone. This

is because sentiment classification is mainly determined by words that express positive

or negative opinions, called sentiment words. For example, good, great, and beautiful are

positive sentiment words, and bad, poor, and terrible are negative sentiment words. These

words are shared across domains and tasks, but in a particular domain only a small subset of

them is used. After seeing the training data from a large number of domains, it is quite clear

what words are likely to indicate positive or negative opinions. This means that the system

already knows those positive and negative sentiment words and thus can do classification

well without any in-domain training reviews from D. To some extent, this is similar to

our human case. We don’t need a single training positive or negative review to be able to

classify reviews into positive and negative classes because we have accumulated so much

knowledge in the past about how people praise and criticize things in natural language.

Clearly, using one or two past domains for LML is not sufficient because sentiment words

30 3. LIFELONG SUPERVISED LEARNING

used in these domains may be limited and may not even be useful to the new domain.

Many non-sentiment words may be regarded as sentiment words incorrectly. Thus, big and

diverse data holds a key for LML.

Of course, this simple method does not always work. That is the reason for the

yes answer above (i.e., requiring some in-domain training data). The reason is that for

some domains the sentiment words identified from the past domains can be wrong. For

example, the word “toy” usually indicates a negative opinion in a review as people often

say that “this camera is a toy” and “this laptop is a toy.” However, when we classify

reviews about children’s toys, the word ”toy” does not indicate any sentiment. We thus

need some in-domain training data from D in order to detect such words to overwrite the

past knowledge about the words. In fact, this is to solve the problem of applicability of

knowledge in Section 1.3. With the correction, a lifelong learner can do much better. We

will discuss the technique in detail in Section 3.6. In this case, the knowledge base (KB) of

LML stores the conditional probability P (w|y) for each previous task.

This chapter reviews those representative techniques of lifelong supervised learning.

Most of the techniques can perform well with a small number of training examples.

3.1 DEFINITION AND OVERVIEW

We first present the definition of lifelong supervised learning based on the general definition

of LML in Chapter 1. We then give a brief overview of the existing work.

Definition 3.1 Lifelong supervised learning is a continuous learning process where the

learner has performed a sequence of N supervised learning tasks, T1, T2, . . . , TN , and

retained the learned knowledge in a knowledge base (KB). When a new task TN+1 arrives,

the learner leverages the past knowledge in the KB to help learn a new model fN+1 from

TN+1’s training data DN+1 After learning TN+1, the KB is also updated with the learned

knowledge from TN+1.

Lifelong supervised learning started with the paper by Thrun [1996b], which proposed

several earlier LML methods in the context of memory-based learning and neutral networks.

We will review them in Sections 3.2 and 3.3. The neural network approach was improved in

[Silver and Mercer, 1996, 2002, Silver et al., 2015]. In these papers, each new task focuses

on learning one new concept or class. The goal of LML is to leverage the past data to help

build a binary classifier to identify instances of this new class. In [Fei et al., 2016], a special

form of LML called cumulative learning was proposed. Similar to the above works, each

new task is represented with a new class of data that needs to be learned. However, unlike

the above works, the system only maintains a single multi-class classification model at any

time. When a new class arrives, the model is updated in order to classify all the past classes

and the new class. It thus learns cumulatively. Fei et al. [2016] also proposed a similarity

3.2. LIFELONG MEMORY-BASED LEARNING 31

space-based learning method to detect new classes that have not been seen in training

(see Section 3.4). Ruvolo and Eaton [2013b] proposed the ELLA algorithm to improve the

multi-task learning method GO-MTL [Kumar et al., 2012] to make it a lifelong learning

method. Chen et al. [2015] further proposed a technique in the context of Näıve Bayesian

classification. A theoretical study was also done by Pentina and Lampert [2014] in the

PAC-learning framework. It provided a PAC-Bayesian generalization bound that quantifies

the relation between the expected loss on a new task to the average loss on existing tasks

for lifelong learning. In particular, they modeled the prior knowledge as a random variable

and obtained its optimal value by minimizing the expected loss on a new task. Such loss

can be transferred from the average loss on existing tasks via the bound. They showed

two realizations of the bound on the transfer of parameters [Evgeniou and Pontil, 2004]

and the transfer of low-dimensional representations [Ruvolo and Eaton, 2013b]. In this

following sections, we present the main existing techniques of lifelong supervised learning. In

presenting each technique, we also map the components of the technique to the components

of the general LML architecture in Section 1.3.

3.2 LIFELONG MEMORY-BASED LEARNING

In Thrun [1996b], a lifelong supervised learning technique was proposed for two memory-

based learning methods: k-nearest neighbors and Shepard’s method. We discuss them below.

3.2.1 TWO MEMORY-BASED LEARNING METHODS

K-Nearest Neighbors (KNN) [Altman, 1992] is a widely used machine learning algo-

rithm. Given a testing instance x, the algorithm finds K examples in the training data

〈xi, yi〉 ∈ D whose feature vectors xi are nearest to x according to some distance metric

such as the Euclidean distance. The predicted output is the mean value 1
K

∑
yi of these

nearest neighbors.

Shepard’s method [Shepard, 1968] is another commonly used memory-based learning

method. Instead of only using K examples as in KNN, this method uses all the training

examples in D and weights each example according to the inverse distance to the test

instance x, as shown below:

s(x) =

 ∑
〈xi,yi〉∈D

yi
‖x− xi‖+ ε

×
 ∑
〈xi,yi〉∈D

1

‖x− xi‖+ ε

−1 , (3.1)

where ε > 0 is a small constant to avoid the denominator being zero. Neither KNN nor

Shepard’s method can use the previous task data with different distributions or distinct

class labels to help its classification.

32 3. LIFELONG SUPERVISED LEARNING

3.2.2 LEARNING A NEW REPRESENTATION FOR LIFELONG LEARNING

Thrun [1996b] proposed to learn a new representation to bridge the gap among tasks for the

above two memory-based methods to achieve lifelong learning, which was shown to improve

the predictive performance especially when the number of labeled examples is small.

The interest of the paper is concept learning. Its goal is to learn a function f : I →
{0, 1} where f(x) = 1 means that x ∈ I belongs to a target concept (e.g., cat or dog); other-

wise x does not belong to the concept. For example, fdog(x) = 1 means that x is an instance

of the concept dog. Let the data from the previous N tasks be Dp = {D1,D2, ...,DN}. Each

past task data Di ∈ Dp is associated with an unknown classification function fi. Dp is called

the support set in [Thrun, 1996b]. The goal is to learn the function fN+1 for the current

new task data DN+1 with the help of the support set.

To bridge the difference among different tasks and to be able to exploit the shared

information in the past data (the support set), the paper proposed to learn a new repre-

sentation of the data, i.e., to learn a space transformation function g : I → I ′ to map the

original input feature vectors in I to a new space I ′. The new space I ′ then serves as the

input space for KNN or the Shepard’s method. The intuition is that positive examples of a

concept (with y = 1) should have similar new representations while a positive example and a

negative example of a concept (y = 1 and y = 0) should have very different representations.

This idea can be formulated as an energy function E for g:

E =
∑
Di∈Dp

∑
〈x,y=1〉∈Di

 ∑
〈x′,y′=1〉∈Di

‖g(x)− g(x′)‖ −
∑

〈x′,y′=0〉∈Di

‖g(x)− g(x′)‖

 . (3.2)

The optimal function g∗ is achieved by minimizing the energy function E, which forces the

distance between pairs of positive examples of the concept (〈x, y = 1〉 and 〈x′, y′ = 1〉) to

be small, and the distance between a positive example and a negative example of a concept

(〈x, y = 1〉 and 〈x′, y′ = 0〉) to be large. In the implementation of [Thrun, 1996b], g was

realized with a neural network and trained with the support set using Back-Propagation.

Given the mapping function g∗, rather than performing memory-based learning in

the original space 〈xi, yi〉 ∈ DN+1, xi is first transformed to the new space using g∗ to

〈g∗(xi), yi〉 before applying KNN or the Shepard’s method.

To map aspects of this technique to the components of the general LML architecture

of Section 1.3, we can see that the part of the technique that computes the mapping

function g∗ (the shared knowledge from the past) and transforms the data from the original

space to the new space is basically the knowledge-based learner of Section 1.3. The

knowledge base stores only the data from previous tasks. The technique does not deal

with the correctness or applicability of the shared knowledge g∗ (Section 1.3).

Since this approach does not retain any knowledge learned in the past but only

accumulates the past data, it is thus inefficient if the number of previous tasks is large

3.3. LIFELONG NEURAL NETWORKS 33

…

Task 1

INPUTS

…

Task 2

INPUTS

…

Task 3

INPUTS

…

Task 1

INPUTS

Task 2 Task 3

Figure 3.1: The top neural networks are trained independently for each task, and the bottom

neural network is MTL net Caruana [1997].

because the whole optimization needs to be re-done using all the past data (the support

set) whenever a new task arrives. In [Thrun, 1996b], an alternative method to the above

energy-function-based approach was also proposed, which learns a distance function based

on the support set. This distance function is then used in lifelong memory-based learning.

This approach has similar weaknesses.

3.3 LIFELONG NEURAL NETWORKS

Here we introduce two early neural network approaches to lifelong supervised learning.

3.3.1 MTL NET

Although MTL net (Multi-task learning with neural network) Caruana [1997] is described

as a lifelong learning method in [Thrun, 1996b], it is actually a batch multi-task learning

34 3. LIFELONG SUPERVISED LEARNING

method. Based on our definition of lifelong learning, they are different learning paradigms.

However, for historical reasons, we still give it a brief discussion here.

In MTL net, instead of building a neural network for each individual task, it constructs

a universal neural network for all the tasks, see Figure 3.1. This universal neural network

uses the same input layer for input from all tasks and uses one output unit for each task (or

class in this case). There is also a shared hidden layer in MTL net that is trained in parallel

using Back-Propagation [Rumelhart et al., 1985] on all the tasks to minimize the error on

all the tasks. This shared layer allows features developed for one task to be used by other

tasks. So some developed features can represent the common characteristics of the tasks.

For a specific task, it will activate some hidden units that are related to it while making the

weights of the other irrelevant hidden units small. Essentially, like a normal batch multi-

task learning method, the system jointly optimizes the classification of all the past/previous

and the current/new tasks. It is thus not regarded as a lifelong learning method based on

the definition in this book (see Section 2.2.4). Several extensions of MTL net were made

in [Silver and Mercer, 2002, Silver and Poirier, 2004, 2007], from generating and using

virtual training examples to deal with the need for the training data of all previous tasks

to adding contexts.

3.3.2 LIFELONG EBNN

This lifelong learning approach is in the context of EBNN (Explanation-Based Neural

Network) [Thrun, 1996a], which again leverages the previous task data (or the support set)

to improve learning. Same as Section 3.2.2, concept learning is the goal of this work, which

learns a function f : I → {0, 1} to predict if an object represented by a feature vector x ∈ I
belongs to a concept (y = 1) or not (y = 0).

In this approach, the system first learns a general distance function, d : I × I → [0, 1],

considering all the past data (or the support set) and uses this distance function to share or

transfer the knowledge of the past task data to the new task TN+1. Given two input vectors,

say x and x′, function d computes the probability of x and x′ being members of the same

concept (or class), regardless what the concept is. In [Thrun, 1996b], d is learned using an

neural network trained with Back-Propagation. The training data for learning the distance

function is generated as follows: For each past task data Di ∈ Dp, each pair of examples

of the concept generates an training example. For a pair, 〈x, y = 1〉 ∈ Di and 〈x′, y′ = 1〉 ∈
Di, a positive training example is generated, 〈(x, x′), 1〉. For a pair 〈x, y = 1〉 ∈ Di and

〈x′, y′ = 0〉 ∈ Di or 〈x, y = 0〉 ∈ Di and 〈x′, y′ = 1〉 ∈ Di, a negative training example is

generated, 〈(x, x′), 0〉.
With the learned distance function in hand, EBNN works as follows: Unlike a tradi-

tional neural network, EBNN estimates the slope (tangent) of the target function at each

data point x and adds it into the vector representation of the data point. In the new

task TN+1, a training example is of the form, 〈x, fN+1(x),OxfN+1(x)〉, where fN+1(x) is

3.4. CUMULATIVE LEARNING IN THE OPEN WORLD 35

just the original class label of x ∈ DN+1 (the new task data). The system is trained using

Tangent-Prop algorithm [Simard et al., 1992]. OxfN+1(x) is estimated using the gradi-

ent of the distance d obtained from the neural network, i.e., OxfN+1(x) ≈ ∂dx′ (x)
∂x , where

〈x′, y′ = 1〉 ∈ DN+1 and dx′(x) = d(x, x′). The rationale is that the distance between x and

a positive training example x′ is an estimate of the probability of x being a positive exam-

ple, which approximates fN+1(x). As a result, the built EBNN fits both the current task

data DN+1 and the support set through OxfN+1(x) and d.

Similar to lifelong KNN in Section 3.2, in this case, the part of the system that learns

the distance function (the shared knowledge) and performs EBNN is the knowledge-based

learner in Section 1.3. Again, the knowledge base stores only the past data. Similarly,

this technique also does not deal with correctness or applicability of the shared knowledge

d (see Section 1.3).

Like lifelong KNN, since lifelong EBNN does not retain any knowledge learned in

the past but only accumulates the past data, it is also inefficient if the number of previous

tasks is large because the training of the distance function d needs to be re-done using all

the past data (the support set) whenever a new task arrives. Additionally, since every pair

of data points in each past task dataset forms a training example for learning the distance

function d, the training data for learning d can be huge.

3.4 CUMULATIVE LEARNING IN THE OPEN WORLD

Cumulative learning studied in this section was proposed in [Fei et al., 2016] for text

classification. It is a special form of lifelong machine learning (LML). It is different from

most other LML problems in that its tasks are of the second kind in Section 3.1. That

is, each task introduces a new class and needs to build a classifier that classifies this class

and all other classes in the past. It performs two functions: (1) detecting unseen classes in

testing, and (2) incrementally adding new classes to the existing classification model without

re-training the whole model from scratch. These two functions in fact enable the system to

perform a limited form of self-motivated learning because by recognizing that something

new is happening, the system has the opportunity to learn the new thing. Traditionally,

self-motivated learning means that the learner has curiosity that motivates it to explore

new territories and to learn new things. In the context of supervised learning, the key is

for the system to recognize what it has not seen before. If the classification system cannot

recognize anything new, there is no way for it to learn anything new except being told by a

human user or an external system, which is not ideal for an intelligent system. Furthermore,

it cannot function in a dynamic open environment, where new or novel objects appear all

the time, e.g., in the self-driving car environment. Note that in this paper, the new data

still needs to be labeled by the user before learning as it may consists of multiple unseen

classes. This manual labeling is reasonable as this often happens in human learning, i.e.,

36 3. LIFELONG SUPERVISED LEARNING

one may ask someone else what the data is about if one does not already know himself or

herself.

Fei et al. [2016] used an example to motivate this type of learning. The 2016 pres-

idential election in the USA was a hot topic on the social media and many social science

researchers relied on the collected online user discussions to carry out their research. During

the long campaign, every new proposal made by a candidate is followed by a huge amount

of discussions on social media. A multi-class classifier is thus needed to track and organize

the discussions. As the campaign goes on, the initially built classifier will inevitably en-

counter new topics (e.g. Donald Trump’s plan for immigration reform or Hillary Clinton’s

new proposal for tax increase) that have not been covered in previous training. In this case,

the classifier should first recognize these new topics when they occur rather than classifying

them into some existing classes or topics. Second, after enough training examples of the

new topics are collected, the existing classifier should incorporate the new classes or topics

in a manner that does not require rebuilding the entire classification system from scratch.

Image recognition is another good example. Due to too many objects in the world, it is

just impossible to build a classifier to recognize every one of them. The system has to learn

cumulatively: recognizing each object that it has been trained on, detecting new objects

that it has never seen before, and learning to recognize the new objects incrementally.

Cumulative learning is formally stated as follows: At a particular time point, the

learner has built a multi-class classification model FN based on all past N classes of data

Dp = {D1,D2, . . . ,DN} with their corresponding class labels YN = {l1, l2, . . . , lN}. FN is

able to classify each test instance to either one of the known classes li ∈ YN or the unknown

class C0, which represents all new or unseen classes or topics in the test set. This is called

open world classification (or simply open classification), which we will discuss below. When

a new class of data DN+1 is added to the system with its class label lN+1, the current

model FN is updated to produce FN+1 so that FN+1 can classify each test instance into

one of the known classes li ∈ YN+1 = {l1, l2, . . . , lN , lN+1} or the unknown class C0.

Cumulative learning is a form of LML because it conforms to the definition of LML in

Chapter 1. Specifically, the new learning task TN+1 is to build a multi-class open classifier

based on all the past and the current classes. The knowledge base contains the past model

FN and all the past training data.

Open (World) Classification or Learning: Classic supervised learning makes

the closed world assumption, meaning that all the test classes have been seen in training.

In cumulative learning, the test data may contain instances from classes that have not

appeared in training. This is called open world learning (or simply open learning or open

classification). Fei et al. [2016] proposed a technique to perform open classification based

on a center-based similarity space learning method (called CBS learning), which we will

discuss shortly.

3.4. CUMULATIVE LEARNING IN THE OPEN WORLD 37

3.4.1 TRAINING A CUMULATIVE LEARNING MODEL

This sub-section describes training in cumulative learning, which was inspired by human

concept learning. Humans are exposed to new concepts all the time. One way we learn a new

concept is perhaps by searching from the already known concepts, looking for the similar

ones, and then trying to find the difference between these known concepts and the new one

without using all the known concepts. For example, assume we have already learned the

concepts like “movie,” “furniture,” and “soccer.” Now we are presented with the concept

of “basketball” and its set of documents. We find that “basketball” is similar to “soccer,”

but very different from “movie” and “furniture.” Thus we just need to accommodate the

new concept “basketball” into our old knowledge base by focusing on distinguishing the

“basketball” and “soccer” concepts, and do not need to worry about the difference between

“basketball” and “movie” or “furniture,” because the concepts of “movie” and “furniture”

can easily tell that documents from “basketball” do not belong to either of them.

Fei et al. [2016] adopted this idea and used the 1-vs-rest strategy of SVM for

cumulative learning of multiple classes. Before the new class lN+1 arrives, the learn-

ing system has built a classification model FN , which consists of a set of N 1-vs-rest

binary classifiers FN = {f1, f2, . . . , fN} for the past N classes using their training sets

Dp = {D1,D2, . . . ,DN} and corresponding class labels YN = {l1, l2, . . . , lN}. Each fi is a

binary classifier built using the CBS learning method (see Section 3.4.3) for identifying

instances of class li. When a new dataset DN+1 of class lN+1 arrives, the system goes

through the following two steps to update the classification model FN to build a new

model FN+1 in order to be able to classify test data or instances of all existing classes in

YN+1 = {l1, l2, . . . , lN , lN+1} and recognize unseen class C0 of documents.

1. Searching for a set of classes SC that are similar to the new class lN+1.

2. Learning to separate the new class lN+1 and the previous classes in SC.

For step 1, the similarity between the new class lN+1 and the previous ones {l1, l2, ..., lN} is

computed by running each of the 1-vs-rest past binary classifiers fi in FN = {f1, f2, ..., fN}
to classify instances in DN+1. The classes of those past binary classifiers that accept (classify

as positive) a certain number/percentage λsim of instances from DN+1 are regarded as

similar classes and denoted by SC.

The step 2 of separating the new class lN+1 and classes in SC involves two sub-

steps: (1) building a new binary classifier fN+1 for the new class lN+1 and (2) updating

the existing classifiers for the classes in SC. It is intuitive to build fN+1 using DN+1 as

the positive training data and the data of the classes in SC as the negative training data.

The reason for updating classifiers in SC is that the joining of class lN+1 confuses those

classifiers in SC. To re-build each classifier, the system needs to use the original negative

data employed to build the existing classifier fi and the new data DN+1 as the new negative

38 3. LIFELONG SUPERVISED LEARNING

training data. The reason that the old negative training data is still used is because the

new classifier still needs to separate class li from those old classes.

The detailed algorithm is given in Algorithm 1. Line 1 initializes SC to the empty

set. Line 3 initializes the variable CT (count) to record the number of instances in DN+1

that will be classified as positive by classifier fi. Lines 4-9 use fi to classify each instance in

DN+1 and record the number of instances that are classified (or accepted) as positive by fi.

Lines 10-12 check whether there are too many instances in DN+1 that have been classified

as positive by fi to render class li as similar to class lN+1. λsim is a threshold controlling

how many percents of instances in DN+1 should be classified to class li before considering

li as similar/close to class lN+1. Lines 14-17 build a new classifier fN+1 and update all the

classifiers for classes in SC.

Algorithm 1 Cumulative Learning

Input : classification model FN = {f1, f2, . . . , fN}, past datasets {D1,D2, . . . ,DN}, new

dataset DN+1, similarity threshold λsim.

Output : classification model FN+1 = {f1, . . . , fN , fN+1}

1: SC = ∅
2: for each classifier fi ∈ FN do

3: CT = 0

4: for each test instance xj ∈ DN+1 do

5: class = fi(xj) // classify document xj using fi
6: if class = li then

7: CT = CT + 1 // wrongly classified

8: end if

9: end for

10: if CT > λsim × |DN+1| then

11: SC = SC ∪{li}
12: end if

13: end for

14: Build fN+1 and add it to FN+1

15: for each fi of class li ∈ SC do

16: Update fi
17: end for

18: Return FN+1

In summary, the learning process uses the set SC of similar classes to the new class

lN+1 to control both the number of binary classifiers that need to be built/updated and also

3.4. CUMULATIVE LEARNING IN THE OPEN WORLD 39

the number of negative instances used in building the new classifier fN+1. It thus greatly

improves the efficiency compared to building a new multi-class classifier FN+1 from scratch.

Combining the above cumulative learning process and the underlying classifier cb-

sSVM discussed in Section 3.4.3, the new learner, called CL-cbsSVM (CL stands for Cu-

mulative Learning), is able to tackle both challenges in cumulative learning.

3.4.2 TESTING A CUMULATIVE LEARNING MODEL

To test the new classification model FN+1 = {f1, f2, ..., fN , fN+1}, the standard technique

of combining the set of 1-vs-rest binary classifiers to perform multi-class classification is

followed with a rejection option for the unknown. As output scores from different SVM

classifiers are not comparable, the SVM scores for each classifier are first converted to

probabilities based on a variant of Platts algorithm [Platt and Others, 1999], which is

supported in LIBSVM [Chang and Lin, 2011]. Let P (y|x) be a probabilistic estimator,

where y ∈ Y N+1 (= {l1, l2, , lN , lN+1}) is a class label and x is the feature vector of a test

instance. Let θ (= 0.5) be the decision threshold, y∗ be the final predicted class for x, and

C0 be the label for the unknown. Classification of the test instance x is done as follow:

y∗ =

{
argmaxy∈Y N+1 P (y|x) if P (y|x) ≥ θ

C0 otherwise
. (3.3)

The idea is that for the test instance x, each binary classifier fi ∈ FN+1 is used to produce

a probability P (li|x). If none of the probabilities is greater than θ (= 0.5), the document

represented by x is regarded as unseen/unknown and belonging to C0; otherwise it is

classified to the class with the highest probability.

3.4.3 OPEN WORLD LEARNING FOR UNSEEN CLASS DETECTION

This subsection describes CBS learning, which performs binary classification focusing on

identifying positive class documents and has a superior ability to detect unseen classes

or classifying them as not positive. It provides the base learning method for cumulative

learning above [Fei et al., 2016]. It is based on the idea of reducing the open space risk

while balancing the empirical risk in learning. Classic learners define and optimize over

empirical risk, which is measured on the training data. For open learning, it is crucial to

consider how to extend the classic model to capture the risk of the unknown by preventing

over-generalization. To tackle this problem, Scheirer et al. [2013] introduced the concept

of open space risk. Below, we first discuss the open space risk management strategy in Fei

et al. [2016], and then apply an SVM-based CBS learning method as the solution towards

managing the open space risk. The basic idea of CBS learning is to find a “ball” (decision

boundary) to cover the positive class data area. Any document falling outside of the “ball”

is considered not positive. Although CBS learning only performs binary classification, ap-

40 3. LIFELONG SUPERVISED LEARNING

plying the 1-vs-rest method described in Section 3.4.2 gives a multi-class CBS classification

model, which is called cbsSVM in [Fei et al., 2016].

Open Space Risk

Consider the risk formulation for open image recognition in [Scheirer et al., 2013], where

apart from empirical risk, there is risk in labeling the open space (space away from positive

training examples) as “positive” for any unknown class. Due to lack of information of a

classification function on the open space, open space risk is approximated by a relative

Lebesgue measure [Shackel, 2007]. Let So be a large ball of radius ro that contains both

the positively labeled open space O and all of the positive training examples; and let f be

a measurable classification function, where fy(x) = 1 means recognizing x as belonging to

class y of interest and fy(x) = 0 otherwise. In our case, y is simply any class of interest li.

In [Fei et al., 2016], O is defined as the positively labeled area that is sufficiently

far from the center of the positive training examples. Let Bry(ceny) be a closed ball of

radius ry centered around the center ceny of positive class y, which, ideally, should tightly

covers all positive examples of class y only; So be a larger ball Bro(ceny) of radius ro
with the same center ceny. Let classification function fy(x) = 1 for x ∈ Bro(ceny), and

fy(x) = 0 otherwise. Also let q be the positive half space defined by a binary SVM decision

hyperplane Ω obtained using positive and negative training examples. We also define the

size of ball Bro to be bounded by Ω, Bro ∩ q = Bro . Then the positive open space is defined

as O = So −Bry(ceny). So needs to be determined during learning for the positive class.

This open space formulation greatly reduces the open space risk compared to tra-

ditional SVM and 1-vs-Set Machine in [Scheirer et al., 2013]. For traditional SVM, clas-

sification function fSVMy (x) = 1 when x ∈ q, and its positive open space is approximately

q −Bry(ceny), which is only bounded by the SVM decision hyperplane Ω. For 1-vs-Set

Machine in [Scheirer et al., 2013], f1−vs−sety (x) = 1 when x ∈ g, where g is a slab area with

thickness δ bounded by two parallel hyperplanes Ω and Ψ (Ψ||Ω) in q. And its positive open

space is approximately g − g ∩Bry(ceny). Given open space formulations of the traditional

SVM and 1-vs-Set Machine, we can see that both methods label an unlimited area as the

positively labeled space, while Fei et al. [2016] reduces it to a bounded area of a “ball.”

Given the open space definition, the question is how to estimate So for the positive

class. Fei et al. [2016] used the center-based similarity space learning (CBS learning), which

transforms the original document space to a similarity space. The final classification is

performed in the CBS space. Below, we introduce CBS learning and briefly discuss why it

is suitable for the problem.

Center-based Similarity Space Learning

Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} be the set of training examples, where xk is the

feature vector (e.g., with unigram features) representing a document and yk ∈ {1,−1} is its

3.4. CUMULATIVE LEARNING IN THE OPEN WORLD 41

class label. This feature vector is called a document space vector (or ds-vector). Traditional

classification directly uses D to build a binary classifier. However, CBS learning transforms

each ds-vector xk (no change to its class label) to a center-based similarity space feature

vector (CBS vector) cbs-vk. Each feature in cbs-vk is a similarity between a center cj of the

positive class documents and xk.

To make CBS learning more effective by generating more similarity features, multiple

document space representations or feature vectors (e.g., one based on unigrams and one

based on bigrams) can be used to represent each document, which results in multiple centers

for the positive documents. There can also be multiple document similarity functions used

to compute similarity values. The detailed learning technique is as follows.

For a document xk, we have a set Rk of p ds-vectors, Rk = {dk1 , dk2 , . . . , dkp}. Each

ds-vector dkj denotes one document space representation of the document xk, e.g., unigram

representation or bigram representation. Then the centers of positive training documents

can be computed, which are represented as a set of p centroids C = {c1, c2, . . . , cp}. Each cj
corresponds to one document space representation in Rk. Rocchio method in information

retrieval [Manning et al., 2008] is used to compute each center cj (a vector), which uses the

corresponding ds-vectors of all training positive and negative documents:

cj =
α

|D+|
∑

xk∈D+

dkj∥∥dkj∥∥ − β

|D − D+|
∑

xk∈D−D+

dkj∥∥dkj∥∥ , (3.4)

where D+ is the set of documents in the positive class and |.| is the size function. α

and β are parameters. It is reported that using the popular tf-idf (term frequency and

inverse document frequency) representation, α = 16 and β = 4 usually work well [Buckley

et al., 1994]. The subtraction is used to reduce the influence of those terms that are not

discriminative (i.e., terms appearing in both classes).

Based on Rk for a document xk (in both training and testing) and the previously

computed set C of centers using the training data, we can transform a document xk from

its document space representations Rk to one center-based similarity space vector cbs-vk by

applying a similarity function Sim on each element dkj of Rk and its corresponding center

cj in C:

cbs-vk = Sim(Rk, C) . (3.5)

Sim can contain a set of similarity measures. Each measure m is applied to p document

representations dkj in Rk and their corresponding centers cj in C to generate p similarity

features (cbs-features) in cbs-vk.

For ds-features, unigrams and bigrams with tf-idf weighting were used as two doc-

ument representations. The five similarity measures in [Fei and Liu, 2015] were applied

to measure the similarity of two vectors. Based on the CBS space representation, SVM is

applied to produce a binary CBS classifier fy.

42 3. LIFELONG SUPERVISED LEARNING

Why Does CBS Learning Work?

We now briefly explain why CBS learning gives a good estimate to So. Due to using similar-

ities as features, CBS learning generates a boundary to separate the positive and negative

training data in the similarity space. Since similarity has no direction (or it covers all direc-

tions), the boundary in the similarity space is essentially a “ball” encompassing the positive

class training data in the original document space. The “ball” is an estimate of So based

on those similarity measures.

Mapping to Components in the LML Architecture in Section 1.3

We now map the components of CL-cbsSVM to the components of the general architecture

of LML in Section 1.3. The knowledge base in Section 1.3 is the knowledge base in

LML, which stores the previous model FN and the training data from all previous tasks.

Algorithm 1 is the knowledge-based learner. The issues of correctness and applicability

of knowledge in Section 1.3 are not of concern here.

3.5 ELLA: AN EFFICIENT LIFELONG LEARNING
ALGORITHM

This section focuses on the lifelong supervised learning system ELLA (Efficient Lifelong

Learning Algorithm) proposed by Ruvolo and Eaton [2013a,b]. It maintains a sparsely

shared basis (the past knowledge) for all task models, transfers knowledge from the basis

to the new task, and refines the basis over time to maximize the performances across all

tasks. Unlike cumulative learning, each task in ELLA is independent of other tasks. ELLA

also follows the tradition of multi-task learning aimed at optimizing the performances of

all tasks. Many other lifelong learning methods mainly optimize the performance of the

new task, although they can help optimize any previous task if needed. In the presentation

below, we try to use about the same notation as in the original paper for easy reference.

3.5.1 PROBLEM SETTING

As in a normal LML problem, ELLA receives a sequence of supervised learning tasks,

1, 2, . . . , N , in a lifelong manner. Each task t has its training data Dt = {(xti, yti) : i =

1, . . . , nt}, where nt is the number of training instances in Dt, and is defined by a hid-

den (or latent) true mapping f̂ t(x) from an instance space X t ⊆ Rd to a set of labels Yt
(or Yt = R for regression). Let d be the feature dimension.

ELLA extends the batch multi-task learning model GO-MTL [Kumar et al., 2012]

(also in Section 2.2.2) to make it more efficient and become an incremental or online multi-

task learning system, which is regarded as an LML system. Like Go-MTL, ELLA takes

a parametric approach to model building in which the model or the prediction function

3.5. ELLA: AN EFFICIENT LIFELONG LEARNING ALGORITHM 43

f t(x) = f t(x;θt) for each task t is governed by a task-specific parameter vector θt ∈ Rd.
The goal of ELLA is to construct task models f1, . . . , fN so that:

1. for each task, f t ≈ f̂ t.

2. a new model f t can be added quickly when the training data for a new task t arrives.

3. each past model f t can be updated efficiently after the addition of the new task.

ELLA assumes that the total number of tasks, the distribution of tasks and their order are

all unknown [Ruvolo and Eaton, 2013b]. It also assumes that there can be a large number

of tasks, while each task can have a large number of data points. Thus, an LML algorithm

that is both effective and efficient is needed.

3.5.2 OBJECTIVE FUNCTION

In the same way as the GO-MTL model [Kumar et al., 2012] (see Section 2.2.2), ELLA

maintains k sparsely shared basis model components for all task models. Let L ⊆ Rd×k be

the k basis model components. Each task model’s parameter vector θt is assumed to be

a linear combination of the weight vector st ∈ Rk and the basis model components L. We

thus obtain the equation below (same as Equation 2.7):

Θ
d×N

= L
d×k
× S
k×N

, (3.6)

where Θ = [θ1,θ2, . . . ,θN] and S = [s1, s2, . . . , sN]. For each task t, θt = Lst. The initial

objective function of ELLA is the same as Equation 2.8 in GO-MTL except that it optimizes

the average (rather than the sum) loss on the training data across all tasks, which is essential

for the convergence guarantees:

1

N

N∑
t=1

min
st

{
1

nt

nt∑
i=1

L
(
f(xti; Lst), yti

)
+ µ‖st‖1

}
+ λ ‖L‖2F , (3.7)

where f(xti; Lst) = θtxti = (Lst)Txti. Since the objective function is not jointly convex in L

and the st’s, to optimize it, one can use a common approach to computing a local optimum,

i.e., alternately optimizing st while holding L fixed, and optimizing L while holding st fixed.

However, as pointed out in Ruvolo and Eaton [2013b], there are two major inefficiency issues

in the above objective function (which also exist in GO-MTL).

1. There is an explicit dependence on all of the previous training data (through the

inner summation). That is, to compute the objective function, one needs to iterate

all training instances in all tasks in order to compute their loss function values. If the

number of tasks is large or the number of training instances in each task is large, this

iteration can be very inefficient.

44 3. LIFELONG SUPERVISED LEARNING

2. When evaluating a single candidate L in Equation 3.7, an optimization problem must

be solved to recompute the value of each st. This means each st will have to be

updated when L is updated. This becomes increasingly expensive when there are

more and more tasks.

Ruvolo and Eaton [2013b] proposed some approximation techniques to deal with the above

two inefficiency issues, which we detail in the next subsection. The basic idea is to ap-

proximate the fit of a new task model using the single-task solution as a point estimate in

the basis of model components learned over the past tasks, and then updates the basis to

incorporate the new knowledge from the new task.

3.5.3 DEALING WITH THE FIRST INEFFICIENCY

To address the first issue, Ruvolo and Eaton [2013b] used the second-order Taylor ex-

pansion for approximation. Before giving the technical details, let us briefly review some

mathematical foundations.

Taylor Expansion

In the single-variable case, i.e., when g(x) is a one variable function, the second-order Taylor

expansion near a constant value a is:

g(x) ≈ g(a) + g′(a)(x− a) +
1

2
g′′(a)(x− a)2 , (3.8)

where g′() and g′′() are the derivative and the second-order derivative of function g.

In the multiple-variable case, i.e., when g(x) is a multivariate function (assuming x

has n values), the second-order Taylor expansion near vector a of a constant size n is:

g(x) ≈ g(a) +∇g(a)(x− a) +
1

2
‖(x− a)‖2H(a) , (3.9)

where ‖v‖2a = vTav and H(a) is called Hessian Matrix of function g.

Optimality Conditions in Unconstrained Optimization

Consider the problem of minimizing function g : Rn → R, where g is twice continuously

differentiable on Rn:

min
x∈Rn

g(x) . (3.10)

Theorem 3.2 First-Order Necessary Conditions for Optimality. Let function g :

Rn → R be differentiable at a point x̂ ∈ Rn. If x̂ is a local minimizer, then ∇g(x̂) = 0.

3.5. ELLA: AN EFFICIENT LIFELONG LEARNING ALGORITHM 45

Proof. From the definition of the first-order Taylor expansion, we have:

f(x) = f(x̂) +∇f(x̂)T(x− x̂) + o(‖x− x̂‖) , (3.11)

that is

f(x)− f(x̂) = ∇f(x̂)T(x− x̂) + o(‖x− x̂‖) , (3.12)

where lim
x→x̂

o(‖x−x̂‖)
‖x−x̂‖ = 0. Let x := x̂− α∇f(x̂), where α is a positive constant. Plugging it

into Equation 3.12, then:

0 ≤ f(x̂− α∇f(x̂))− f(x̂)

α
= −‖∇f(x̂)‖2 +

o(α ‖∇f(x̂)‖)
α

. (3.13)

Taking the limit as α ↓ 0, we obtain:

0 ≤ −‖∇f(x̂)‖2 ≤ 0 . (3.14)

Hence ∇f(x̂) = 0. 2

Removing Dependency

We now come back to ELLA. To remove the explicit dependence on all task training

data, the second-order Taylor expansion is used to approximate the objective function in

Equation 3.7. Let’s first define a function g(θt) as below:

g(θt) =
1

nt

nt∑
i=1

L
(
f(xti;θ

t), yti
)
, (3.15)

where θt = Lst. Then the objective function in Equation 3.7 becomes:

1

N

N∑
t=1

min
st

{
g(θt) + µ‖st‖1

}
+ λ ‖L‖2F . (3.16)

Let’s assume that the minimum solution of the function g is θ̂
t
, i.e., θ̂

t
=

argminθt
1
nt

∑nt

i=1 L
(
f(xti;θ

t), yti
)

(which is an optimal predictor learned on only the train-

ing data for task t). Then, the second-order Taylor expansion near θ̂
t

is as follows:

g(θt) ≈ g(θ̂
t
) +∇g(θ̂

t
)(θt − θ̂

t
) +

1

2
‖θt − θ̂

t
‖2Ht , (3.17)

where Ht = H(θ̂
t
) is the Hessian Matrix of function g.

46 3. LIFELONG SUPERVISED LEARNING

Considering that function g is used in the outer minimization in Equation 3.16, the

first constant term in Equation 3.17 can be suppressed. According to the first-order nec-

essary conditions (Theorem 3.2), ∇g(θ̂
t
) = 0 since θ̂

t
is the local minimum solution of

function g, and thus the second term in Equation 3.17 can also be removed. Hence the new

objective function after plugging in Equation 3.16 is:

1

N

N∑
t=1

min
st

{
‖θt − θ̂

t
‖2Ht + µ‖st‖1

}
+ λ ‖L‖2F . (3.18)

As θt = Lst, Equation 3.18 can be rewritten as:

1

N

N∑
t=1

min
st

{
‖θ̂

t
− Lst‖2Ht + µ‖st‖1

}
+ λ‖L‖2F . (3.19)

Ht =
1

2
∇2

θt
,θt

1

nt

nt∑
i=1

L
(
f(xti;θ

t), yti
) ∣∣∣∣
θt

=
ˆθ
t
, and

θ̂
t

= argmin
θt

1

nt

nt∑
i=1

L
(
f(xti;θ

t), yti
)
.

Note that θ̂
t

and Ht will remain the same if the training data for task t does not change.

Thus, the new objective function in Equation 3.19 removes the dependence of the optimiza-

tion on the training data of all previous tasks.

3.5.4 DEALING WITH THE SECOND INEFFICIENCY

The second efficiency issue is that when computing a single candidate L, an optimization

problem must be solved to recompute the value of each st. To solve this problem, Ruvolo and

Eaton [2013b] adopted this strategy: when the training data for task t is last encountered,

only st is updated while st
′

for other tasks t′ remain the same. That is, st is computed when

the training data for task t is last encountered, and it is not updated later when training on

other tasks. Although this seems to prevent the influence of earlier tasks from later tasks,

they will benefit from the subsequent adjustment of the basis latent model components L.

Using the previously computed values of st, the following optimization process is performed:

st ← argmin
st

‖θ̂
t
− Lmst‖2Ht + µ‖st‖1 , with fixed Lm, and

Lm+1 ← argmin
L

1

N

N∑
t=1

(
‖θ̂

t
− Lst‖2Ht + µ‖st‖1

)
+ λ‖L‖2F , with fixed st .

3.5. ELLA: AN EFFICIENT LIFELONG LEARNING ALGORITHM 47

where notation Lm refers to the value of the latent components at the mth iteration and t

is assumed to be the particular task for which the training data just arrives. Note that if t

is an existing task, the new training data is merged into the old training data of t.

For the specific steps in performing the updates in the preceding equations, please

refer to the original paper. They depend on the type of the model and the loss function

used. The paper presented two cases, linear regression and logistic regression.

Mapping to Components in the LML Architecture in Section 1.3

We now map the components of ELLA to the components of the general architecture of

LML in Section 1.3. In ELLA, the knowledge base is the data structure that stores L,

the shared basis model components, the weight vector st for each task, and the training

data for each task. Knowledge-based learner is the whole ELLA algorithm. The issues

of correctness and applicability of previous knowledge are not explicitly handled, but are

considered to some extent in the optimization process for the new task t.

3.5.5 ACTIVE TASK SELECTION

Lifelong learning in the above problem setting (Section 3.5.1) is a passive process, i.e., the

system has no control over the order in which the learning tasks are presented. Ruvolo and

Eaton [2013a] considered ELLA in an active task selection setting. Assuming that there is

a pool of candidate tasks, rather than choosing a task randomly as in ELLA, Ruvolo and

Eaton [2013a] chose tasks in a certain order with the purpose of maximizing future learning

performance using as few tasks as possible. The problem is practical since each learning

task may need a significant amount of time of manual labeling or each learning task may

take a long time for the system to run. In such cases, learning in a task-efficient manner by

choosing some tasks in certain order is more scalable to real-life LML problems.

Active Task Selection Setting

The active task selection setting in LML is defined as follows: instead of modeling training

data of task t as in regular LML, the system has a pool of candidate unlearned tasks T pool

to choose from. For each candidate task t ∈ T pool, only a subset of training instances is

labeled, which are denoted by Dtc = (Xt
c,y

t
c). Based on these small subsets, one of the

tasks, tnext ∈ T pool is chosen to learn next. After that, all the training data of tnext will be

revealed, which is denoted by D(tnext) = (X(tnext),y(tnext)). Note that for each task t, Dtc ⊆
Dt. The size of the candidate pool can be a fixed value or increase/decrease dynamically

during learning.

Diversity Method

Here we introduce the diversity method for active task selection proposed in [Ruvolo and

Eaton, 2013a] which was shown to perform the best compared to the other methods used in

48 3. LIFELONG SUPERVISED LEARNING

the paper. In the context of ELLA, in order to maximize performance on future tasks, the

model should have a flexible and robust set of latent components, i.e., L. In other words,

L should be adaptable to a wide variety of tasks. If L does not fit well for a new task t, it

means that the information in t has not been represented well in the current L. Thus, in

order to solve the widest range of tasks, the next task should be the one that the current

basis L performs the worst, i.e., the loss on the subset of the labeled data is maximal. This

heuristic is described as follows:

tnext = argmax
t∈T pool

min
st
‖θ̂

t
− Lst‖2Ht + µ‖st‖1 , (3.20)

where θ̂
t

and Ht are obtained from the subset of the labeled data Dtc. Since Equation 3.20

tends to select tasks that are encoded poorly with the current basis L, the selected tasks

are likely to be very different from existing tasks, and it thus encourages diverse tasks.

Rather than simply choosing the task with the maximal loss value, another way

(called Diversity++) is to estimate the probability of selecting task t as the square value

of the minimal loss value for t, as below:

p(tnext = t) ∝
(

min
st
‖θ̂

t
− Lst‖2Ht + µ‖st‖1

)2

. (3.21)

Then each time, a task is sampled based on the probability p(tnext). This is thus a stochastic

variant of the diversity method above.

3.6 LSC: LIFELONG SENTIMENT CLASSIFICATION

This section introduces the Lifelong Sentiment Classification (LSC) system given in [Chen

et al., 2015] in the context of Näıve Bayesian (NB) learning. It aims to classify whether

a product review expresses a positive or negative opinion. Below we first briefly introduce

NB classification and then review its lifelong extension for sentiment classification. Again

for easy reference, we follow the notation in the original paper.

3.6.1 NAÏVE BAYESIAN TEXT CLASSIFICATION

Given a set of training documents D = {d1, d2, . . . , d|D|}, a vocabulary of V (the set of

distinct words/terms in D) and a set of classes C = {c1, c2, . . . , c|C|} associated with D,

Näıve Bayesian classification trains a classifier by computing the conditional probability of

each word w ∈ V given each class cj , i.e., P (w|cj) and the prior probability of each class,

P (cj) [McCallum and Nigam, 1998].

P (w|cj) is estimated based on the empirical word counts as follows:

P (w|cj) =
λ+Ncj ,w

λ |V |+
∑|V |
v=1Ncj ,v

, (3.22)

3.6. LSC: LIFELONG SENTIMENT CLASSIFICATION 49

where Ncj is the number of times that word w occurs in the documents of class cj . λ

(0 ≤ λ ≤ 1) is used for smoothing. When λ = 1, it is known as Laplace smoothing. The

prior probability of each class, P (cj), is estimated as follows:

P (cj) =

∑|D|
i=1 P (cj |di)
|D|

, (3.23)

where P (cj |di) = 1 if cj is the label of the training document di and 0 otherwise.

For testing, given a test document d, NB computes the posterior probability P (cj |d)

for each class cj and picks the class with the highest P (cj |d) as the classification result:

P (cj |d) =
P (cj)P (d|cj)

P (d)
(3.24)

=
P (cj)

∏
w∈d P (w|cj)nw,d∑|C|

r=1 P (cr)
∏
w∈d P (w|cr)nw,d

, (3.25)

where nw,d is the number of times that word w appears in d.

NB is a natural fit for lifelong learning because past knowledge can serve as priors for

the probabilities of the new task very easily. LSC exploits this idea. Let us answer two spe-

cific questions in the context of sentiment classification. The first question is why the past

learning can contribute to the new/current task classification given that the current task

already has labeled training data. The answer is that the training data may not be fully

representative of the test data due to sample selection bias [Heckman, 1979, Shimodaira,

2000, Zadrozny, 2004] and/or small training data size, which is the case in [Chen et al.,

2015]. For example, in a sentiment classification application, the test data may contain

some sentiment words that are absent in the current training data, but they have appeared

in review data in some previous tasks. So the past knowledge can provide the prior senti-

ment polarity information for the current new task. Note that for sentiment classification,

sentiment words such as good, nice, terrible, and poor are instrumental. Note also that

each task in [Chen et al., 2015] is actually from a different domain (or products). We thus

use task and domain interchangeably from now on.

The second question is why the past knowledge can help even if the past domains

are very diverse and not very similar to the current domain. The main reason is that in

sentiment classification, sentiment words and expressions are largely domain independent.

That is, their polarities (positive or negative) are often shared across domains. Hence having

worked a large number of previous/past domains, the system has learned a lot of positive

and negative sentiment words. It is important to note that only one or two past domains

are not sufficient because of the low coverage of sentiment words in the limited domains.

50 3. LIFELONG SUPERVISED LEARNING

3.6.2 BASIC IDEAS OF LSC

This subsection introduces the basic ideas of the LSC technique. We start by discussing

what is stored in the knowledge base of LSC.

Knowledge Base

For each word w ∈ V p (where V p is the vocabulary of all previous tasks), the knowledge base

KB stores two types of information: document-level knowledge and domain-level knowledge.

1. Document-level knowledge NKB
+,w (and NKB

−,w): number of occurrences of w in the doc-

uments of the positive (and negative) class in the previous tasks.

2. Domain-level knowledge MKB
+,w (and MKB

−,w): number of domains in which P (w|+) >

P (w|−) (and P (w|+) < P (w|−)). Here, in each previous task, P (w|+) and P (w|−)

are calculated using Equation 3.22. Here + and − stands for positive and negative

opinion classes respectively.

The domain-level knowledge is complementary to the document-level knowledge as w may

be extremely frequent in a domain but rare in other domains which leads to the superfluous

effect of that domain on w at the document level.

A Naive Approach to Using Knowledge

From Section 3.6.1, we can see that the key parameters that affect Näıve Bayesian classi-

fication results are P (w|cj) which are computed using the empirical counts Ncj ,w and the

total number of words in the class of documents. In binary classification, P (w|cj) are com-

puted using N+,w and N−,w. This suggests that we can revise these counts appropriately

to improve classification. Given the new task data Dt, we denote the empirical word counts

N t
+,w (and N t

−,w) as the number of times that word w occurs in the positive (and negative)

documents in Dt. Here, we explicitly use superscript t to distinguish it from the previous

tasks. The task becomes how to effectively use the knowledge in the knowledge base KB

to update word counts to build a superior Näıve Bayesian classifier.

Given the knowledge base KB from the past learning tasks, one naive way to build a

classifier is to sum up the counts in KB (served as priors) with the empirical counts N t
+,w

and N t
−,w of Dt, i.e., X+,w = N t

+,w +NKB
+,w and X−,w = N t

−,w +NKB
−,w. Here, we call X+,w

and X−,w virtual counts as they will be updated using optimization discussed in the next

sub-section. In building the classifier, N+,w and N−,w (i.e., Ncj ,w) in Equation 3.22 are

replaced by X+,w and X−,w respectively. This naive method turns out to be quite good in

many cases, but it has two weaknesses:

1. The past domains usually contain much more data than the current domain which

means NKB
+,w (and NKB

−,w) may be much larger than N t
+,w (and N t

−,w). As a result, the

merged results may be dominated by the counts in the KB from the past domains.

3.6. LSC: LIFELONG SENTIMENT CLASSIFICATION 51

2. It does not consider the domain dependent word polarity. A word may be positive

in the current domain but negative in past domains. For example, past domains may

indicate that the word “toy” is negative because there are a lot of past sentences like

“this product is a toy.” However, in the toy domain, the word expresses no sentiment.

The LSC system solves these two problems using an optimization method.

3.6.3 LSC TECHNIQUE

LSC uses stochastic gradient descent (SGD) to minimize the training error by adjusting

X+,w and X−,w (virtual counts), which are the numbers of times that a word w appears in

the positive and negative classes respectively.

For correct classification, ideally, we should have the posterior probability P (+|di) =

1 for each positive class (+) document di, and P (−|di) = 1 for each negative class (−)

document di. In stochastic gradient descent, we optimize the classification of each di ∈ Dt.
Chen et al. [2015] used the following objective function for each positive document di (a

similar objective function can also be formulated for each negative document):

F+,i = P (+|di)− P (−|di) . (3.26)

We omit the derivation steps and just give the final equations below. To simplify the

equations, we define g(X), a function of X where X is a vector consisting of X+,w and

X−,w of each word w:

g (X) = β|di| =

(
λ |V |+

∑|V |
v=1X+,v

λ |V |+
∑|V |
v=1X−,v

)|di|
, (3.27)

∂F+,i

∂X+,u
=

nu,di

λ+X+,u
+ P (−)

P (+)

∏
w∈di

(λ+X−,w

λ+X+,w

)nw,di × ∂g
∂X+,u

1 + P (−)
P (+)

∏
w∈di

(λ+X−,w

λ+X+,w

)nw,di × g(X)
− nu,di
λ+X+,u

, (3.28)

∂F+,i

∂X−,u
=

nu,di

λ+X−,u
× g(X) + ∂g

∂X−,u

P (+)
P (−)

∏
w∈di

(λ+X+,w

λ+X−,w

)nw,di + g(X)
. (3.29)

In stochastic gradient descent, we update the variables X+,u and X−,u for the positive

document di iteratively using:

X l
+,u = X l−1

+,u − γ
∂F+,i

∂X+,u
, and

X l
−,u = X l−1

−,u − γ
∂F+,i

∂X−,u
,

52 3. LIFELONG SUPERVISED LEARNING

where u represents each word in di. γ is the learning rate and l represents each iteration.

Similar update rules can be derived for each negative document di. X
0
+,u = N t

+,u +NKB
+,u

and X0
−,u = N t

−,u +NKB
−,u serve as the starting points. The iterative updating process stops

when the counts converge.

Exploiting Knowledge via Penalty Terms

The above optimization can update the virtual counts for better classification in the current

domain. However, it does not deal with the issue of domain dependent sentiment words,

i.e., some words may change their polarities across different domains. Nor does it use the

domain-level knowledge in the knowledge base KB (Section 3.6.2). We thus propose to add

penalty terms into the optimization to accomplish these.

The idea is that if a word w can distinguish classes very well in the current domain

training data, we should rely more on the current domain training data. So we define a

set VT of distinguishing words in the current domain. A word w belongs to VT if P (w|+)

is much larger or much smaller than P (w|−) in the current domain, i.e., P (w|+)
P (w|−) ≥ σ or

P (w|−)
P (w|+) ≥ σ, where σ is a parameter. Such words are already effective in classification for

the current domain, so the virtual counts in optimization should follow the empirical counts

(N t
+,w and N t

−,w) in the current task/domain, which are reflected in the L2 regularization

penalty term below (α is the regularization coefficient):

1

2
α
∑
w∈VT

((
X+,w −N t

+,w

)2
+
(
X−,w −N t

−,w
)2)

. (3.30)

To leverage domain-level knowledge (the second type of knowledge in the KB in

Section 3.6.2, we want to use only those reliable parts of the knowledge. The rationale here

is that if a word only appears in one or two past domains, the knowledge associated with

it is probably not reliable or it is highly specific to those domains. Based on this idea,

domain frequency is used to define the reliability of the domain-level knowledge. For w,

if MKB
+,w ≥ τ or MKB

−,w ≥ τ (τ is a parameter), it is regarded as appearing in a reasonable

number of domains, making its knowledge reliable. The set of such words is denoted by VS .

Then the second penalty term is:

1

2
α
∑
w∈VS

(
X+,w −Rw ×X0

+,w

)2
+

1

2
α
∑
w∈VS

(
X−,w − (1−Rw)×X0

−,w
)2

, (3.31)

where the ratio Rw is defined as MKB
+,w/(M

KB
+,w +MKB

−,w). X0
+,w and X0

−,w are the starting

points for SGD. Finally, the partial derivatives in Equations. 3.27, 3.28, and 3.29 are revised

by adding the corresponding partial derivatives of Equations 3.30 and 3.31 to them.

3.7. SUMMARY AND EVALUATION DATASETS 53

Mapping to Components in the LML Architecture in Section 1.3

We now map the components of LSC to the components of the general architecture of LML

in Section 1.3. In this case, the knowledge base of LSC is the knowledge base of LML in

Section 1.3. It stores the domain level knowledge and document-level knowledge discussed

in Section 3.6.2. The raw datasets of the previous tasks are not stored. Knowledge-based

learner is the LSC algorithm. The issues of correctness and applicability of previous knowl-

edge are dealt with through the penalty terms of Equations 3.30 and 3.31.

3.7 SUMMARY AND EVALUATION DATASETS

Although lifelong machine learning (LML) started with supervised learning more than 20

years ago, existing work is still limited in both the variety and depth. There is still no

general mechanism or algorithm that can be applied in a variety of tasks like existing

machine learning algorithms such as SVM, naive Bayes, and deep learning, which can be

used for almost any supervised learning task. There are many reasons for this. Perhaps, the

most difficult issue is that the research community still does not have a good understanding

of what the knowledge is in general, how to represent knowledge, and how to use knowledge

in learning effectively. A unified theory of knowledge and related issues is urgently needed.

Another reason is that knowledge from supervised learning is difficult to use across domains

because to some extent optimization is an obstacle for reuse or transfer. Each model is highly

optimized for its specific task. It is difficult to pick and choose some pieces of the knowledge

learned from previous tasks or domains and apply them to new tasks because a model is

often not decomposable. For example, it is very difficult to reuse any knowledge in a SVM

model or apply it in different but similar tasks. Simpler models are often much easier to

reuse. For example, it is not hard to pick some rules from a rule-based classifier and use

them to help learning a new task. This is probably why human learning is not optimized

as we are not good at optimization.

Self-motivated learning is an area that has barely been touched in current research.

Ideally, lifelong learning should also identify what to learn rather than always being guided

or supervised by human users. Cumulative learning touched the issue. A self-motivated

learning system must be able to detect new things using the open world classification

paradigm. Without this capability, it is probably impossible to do self-motivated learning

because the system would not know what to learn. All these problems and many others

still need a great deal of future research.

Evaluation Datasets

To help researchers working in the field, we summarize the evaluation datasets used in the

papers covered in the chapter. For those publicly available datasets, we provide their URLs.

Thrun [1996b] used a dataset of color camera images of different objects (such as bot-

tle, hammer, and book) in evaluation. Caruana [1997] used the dataset 1D-ALVINN [Pomer-

54 3. LIFELONG SUPERVISED LEARNING

leau, 2012] in the road-following domain. They also created the dataset 1D-DOORS [Caru-

ana, 1997] in the object-recognition domain. In addition, a medical decision-making appli-

cation was also tested in [Caruana, 1997]. Fei et al. [2016] evaluated their method using

the 100-products Amazon review dataset created by Chen and Liu [2014b]1 and the pop-

ular text classification dataset 20-Newsgroup23. The 100-products Amazon review dataset

contains Amazon reviews from 100 different types of products. Each type of product (or

domain) has 1000 reviews. The 20-Newsgroup dataset contains news articles of 20 different

topics. Each topic has about 1000 articles. Ruvolo and Eaton [2013b] used three (3) datasets

in their evaluation. The first is the land mine dataset from [Xue et al., 2007], which detects

whether or not a land mine appears in an area according to radar images. The second is

the facial expression recognition challenge dataset in [Valstar et al., 2011]4. The third is a

London Schools dataset5. Chen et al. [2015] evaluated on Amazon reviews from 20 diverse

product domains, which is a subset of the dataset in [Chen and Liu, 2014b]6.

1https://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset.zip
2http://qwone.com/~jason/20Newsgroups/
3https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
4http://gemep-db.sspnet.eu
5https://github.com/tjanez/PyMTL/tree/master/data/school
6https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip

https://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset.zip
http://qwone.com/~jason/20Newsgroups/
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
http://gemep-db.sspnet.eu
https://github.com/tjanez/PyMTL/tree/master/data/school
https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip

55

C H A P T E R 4

Lifelong Unsupervised
Learning

This chapter focuses on lifelong unsupervised learning. Much of work in this area is done in

the contexts of topic modeling and information extraction. These two areas are well suited

to lifelong machine learning (LML). In the case of topic modeling, topics learned in the

past in related domains can obviously be used to guide the modeling in the new or current

domain [Chen and Liu, 2014a,b, Wang et al., 2016]. The knowledge base (KB) (Section

1.3) stores the past topics. Note that in this chapter, we use the terms domain and task

interchangeably as in the existing research, each task is from a different domain. In terms

of information extraction (IE), LML is also natural because the goal of IE is to extract and

accumulate as much useful information or knowledge as possible. The extraction process

is thus by nature continuous and cumulative. The extracted information earlier can be

used to help extract more information later with higher quality [Liu et al., 2016]. These

all match the objectives of LML. In the IE case, the knowledge base stores the extracted

information and some other forms of useful knowledge. Even with the current primitive

LML techniques, these tasks can already produce significantly better results regardless

whether the data is large or small. When the data size is small, these techniques are even

more advantageous. For example, when the data is small, traditional topic models produce

very poor results, but lifelong topic models can still generate very good topics. Ideally, as

the knowledge base expands, more extractions will be made and few errors will incur. This

is similar to our human learning. As we become more and more knowledgeable, it is easier

for us to learn more and also make fewer mistakes. In the following sections, we discuss

the current representative techniques of lifelong unsupervised learning which are geared

towards achieving these properties.

4.1 LIFELONG TOPIC MODELING

Topic models, such as LDA [Blei et al., 2003] and pLSA [Hofmann, 1999], are unsupervised

learning methods for discovering topics from a set of text documents. They have been ap-

plied to numerous applications, e.g., opinion mining [Chen et al., 2014, Liu, 2012, Mukherjee

and Liu, 2012, Zhao et al., 2010], machine translation [Eidelman et al., 2012], word sense

disambiguation [Boyd-Graber et al., 2007], phrase extraction [Fei et al., 2014] and informa-

tion retrieval [Wei and Croft, 2006]. In general, topic models assume that each document

56 4. LIFELONG UNSUPERVISED LEARNING

discusses a set of topics. probabilistically, a multinomial distribution over the set of topics,

and each topic is indicated by a set of topical words, probabilistically, a multinomial dis-

tribution over the set of words. The two kinds of distributions are called document-topic

distribution and topic-word distribution respectively. The intuition is that some words are

more or less likely to be present given the topics of a document. For example, “sport” and

“player” will appear more often in documents about sports, “rain” and “cloud” will appear

more frequently in documents about weather.

However, fully unsupervised topic models tend to generate many inscrutable topics.

The main reason is that the objective functions of topic models are not always consistent

with human judgment [Chang et al., 2009]. To deal with this problem, we can use any of

the following three approaches:

1. Inventing better topic models: This approach may work if a large number of documents

is available. If the number of documents is small, regardless how good the model is, it

will not generate good topics simply because topic models are unsupervised learning

methods and insufficient data cannot provide reliable statistics for modeling. Some

form of supervision or external information beyond the given documents is necessary.

2. Asking users to provide prior domain knowledge: This approach asks the user or a

domain expert to provide some prior domain knowledge. One form of knowledge can

be in the form of must-links and cannot-links. A must-link states that two terms (or

words) should belong to the same topic, e.g., price and cost. A cannot-link indicates

that two terms should not be in the same topic, e.g., price and picture. Some exist-

ing knowledge-based topic models (e.g., [Andrzejewski et al., 2009, 2011, Chen et al.,

2013b,c, Hu et al., 2011, Jagarlamudi et al., 2012, Mukherjee and Liu, 2012, Petterson

et al., 2010, Xie et al., 2015]) have used such prior domain knowledge to produce better

topics. However, asking the user to provide prior knowledge is problematic in practice

because the user may not know what knowledge to provide and wants the system to

discover useful knowledge for him/her. It also makes the approach non-automatic.

3. Using lifelong topic modeling : This approach incorporates LML in topic modeling.

Instead of asking the user to provide prior knowledge, prior knowledge is learned and

accumulated automatically in the modeling of previous tasks. The approach works

because of the observation that there are usually a great deal of sharing of concepts

or topics across domains and tasks in natural language processing [Chen and Liu,

2014a,b], e.g., in sentiment analysis [Liu, 2012, 2015] as we discussed in the preface

of this book. We will give some examples shortly too.

We focus on the third approach. Following the definition in Chapter 1, each task

here means to perform topic modeling on a set of documents of a particular domain. The

knowledge base (KB) stores all the topics obtained from each of the previous tasks, which

are used in various ways as prior knowledge in different lifelong topic models.

4.1. LIFELONG TOPIC MODELING 57

At the beginning, the KB is either empty or filled with knowledge from an external

source such as WordNet [Miller, 1995]. It grows with the results of incoming topic modeling

tasks. Since all the tasks are about topic modeling, we use domains to distinguish the

tasks. Two topic modeling tasks are different if their corpus domains are different. The

scope of a domain is quite general. A domain can be a category (e.g., sports) or a product

(e.g., camera) or an event (e.g., presidential election). We use T1, T2, . . . , TN to denote the

sequence of previous tasks, Dp = {D1,D2, ...,DN} to denote their corresponding data or

corpora, and use TN+1 to denote the new or current task with its data DN+1.

Key questions in lifelong topic modeling

For lifelong topic modeling to work, several questions need to be answered. Different models

have different strategies to answer these questions.

1. What past knowledge should be retained and accumulated in the KB? As indicated

above, in existing models, only the output topics from each previous domain/task are

retained.

2. What kinds of knowledge should be used in the new domain modeling and how to

mine such knowledge from the KB? Note that the raw past topics in the KB may not

be directly used in topic modeling. Current lifelong topic models use must-link and

cannot-link types of knowledge mined from the raw past topics stored in the KB.

3. How to assess the quality of knowledge and how to deal with possibly wrong knowl-

edge? Previous modeling can make mistakes, and wrong knowledge from the past is

often detrimental to new modeling.

4. How to apply the knowledge in the modeling process to generate better topics in the

new domain?

Why does lifelong topic modeling work?

The motivation for lifelong topic modeling is that topics from a large number of previous

domains can provide high quality knowledge to guide the modeling in the new domain

to produce better topics. Although every domain is different, there is often a fair amount

of concept or topic overlapping across domains. Using product reviews of different types

of products (or domains) as an example, we observe that every product review domain

probably has the topic of price, reviews of most electronic products share the topic of

battery and reviews of some products share the topic of screen. Topics produced from a

single domain can be erroneous (i.e., a topic may contain some irrelevant words in its top

ranked positions), but if a set of shared words among some topics generated from multiple

domains can be found, these shared words are more likely to be correct or coherent for a

particular topic. They can serve as a piece of prior knowledge to help topic modeling.

58 4. LIFELONG UNSUPERVISED LEARNING

For example, we have product reviews from three domains. The classic topic model

such as LDA [Blei et al., 2003] is used to generate a set of topics from each domain. Every

domain has a topic about price, which is listed below with its top four words (words are

ranked based on their probabilities under each topic):

• Domain 1: price, color, cost , life

• Domain 2: cost , picture, price, expensive

• Domain 3: price, money, customer, expensive

These topics are not perfect due to the incoherent words (words that do not indicate the

main topic): color, life, picture, and customer. However, if we focus on those words that

appear together in the same topic at least in two domains (the underlined words), we find

the following two sets:

{price, cost} and {price, expensive}.

The words in each of the sets are likely to belong to the same topic. As such, {price, cost}
and {price, expensive} can serve as prior or past knowledge. That is, a piece of knowledge

contains words that are semantically correlated. These two sets are called must-links.

With the help of the knowledge, a new model can be designed to adjust the probability

and improve the output topics for each of the above three domains or a new domain. Given

the above knowledge indicating price and cost are related, price and expensive are related, a

new topic may be found in Domain 1: price, cost, expensive, color, which has three coherent

words in the top four positions rather than only two words as in the original topic. This

represents a good topic improvement.

In the next section, we review the LTM model [Chen and Liu, 2014a], which uses

only must-links as prior knowledge. Its main idea is also applied in the LAST model for a

sentiment analysis task [Wang et al., 2016]. In Section 4.3, we review the more advanced

model AMC [Chen and Liu, 2014b], which can use both must-links and cannot-links as

prior knowledge to model in a new domain with only a small set of documents. There is

also another model called AKL [Chen et al., 2014] that clusters past topics before mining

must-links. Since both LTM and AMC improve AKL, AKL will not be discussed further.

4.2 LTM: A LIFELONG TOPIC MODEL

LTM (Lifelong Topic Model) was proposed in [Chen and Liu, 2014a]. It works in the follow-

ing lifelong setting: At a particular point in time, a set of N previous modeling tasks have

been performed. From each past task/domain data (or document set) Di ∈ Dp, a set of top-

ics Si has been generated. Such topics are called prior topics (or p-topics for short). Topics

from all past tasks are stored in the Knowledge Base (KB) S (known as the topic base

in [Chen and Liu, 2014a]). At a new time point, a new task represented by a new domain

4.2. LTM: A LIFELONG TOPIC MODEL 59

document set DN+1 arrives for topic modeling. This is also called the current domain. LTM

does not directly use the p-topics in S as knowledge to help its modeling. Instead, it mines

must-links from S and use the must-links as prior knowledge to help model inferencing for

the (N + 1)th task. The process is dynamic and iterative. Once modeling on DN+1 is done,

its resulting topics are added to S for future use. LTM has two key characteristics:

1. LTM’s knowledge mining is targeted, meaning that it only mines useful knowledge

from those relevant p-topics in S. To do this, LTM performs a topic modeling on

DN+1 first to find some initial topics and then uses these topics to find similar p-

topics in S. Those similar p-topics are used to mine must-links (knowledge) which are

more likely to be applicable and correct. These must-links are then used in the next

iteration of modeling to guide the inference to generate more accurate topics.

2. LTM is a fault-tolerant model as it is able to deal with errors in automatically mined

must-links. First, due to wrong topics (topics with many incoherent/wrong words or

topics without a dominant semantic theme) in S or mining errors, the words in a

must-link may not belong to the same topic in general. Second, the words in a must-

link may belong to the same topic in some domains, but not in others due to the

domain diversity. Thus, to apply such knowledge in modeling, the model must deal

with possible errors in must-links.

4.2.1 LTM MODEL

Like many topic models, LTM uses Gibbs sampling for inference [Griffiths and Steyvers,

2004]. Its graphical model is the same as LDA, but it has a very different sampler which can

incorporate prior knowledge and also handle errors in the knowledge as indicated above.

The LTM system is illustrated in Figure 4.1, in the general LML framework of Figure 1.2.

LTM works as follows (Algorithm 2): It first runs the Gibbs sampler of LTM for

M iterations (or sweeps) to find a set of initial topics AN+1 from DN+1 with no knowledge

(line 1). It then makes another M Gibbs sampling sweeps (lines 2-5). But before each of

these new sweeps, it first mines a set of targeted must-links (knowledge) KN+1 for every

topic in AN+1 using the function TopicKnowledgeMiner (Algorithm 3, detailed in the

next subsection) and then uses KN+1 to generate a new set of topics AN+1 from DN+1. To

distinguish topics in AN+1 from p-topics, these new topics are called the current topics (or

c-topics for short). We say that the mined must-links are targeted because they are mined

based on the c-topics in AN+1 and are targeted at improving the topics in AN+1. Note

that to make the algorithm more efficient, it is not necessary to mine knowledge for every

sweep. Section 4.2.2) focuses on the topic knowledge mining function of LTM. The Gibbs

sampler will be given in Section 4.2.4. Line 6 simply updates the knowledge base, which

is simple as each task is from a distinct domain in this paper. The set of topics is simply

added to the knowledge base S for future use.

60 4. LIFELONG UNSUPERVISED LEARNING

Algorithm 2 Lifelong Topic Modeling (LTM)

Input : New domain data DN+1; Knowledge Base S
Output : Topics from new domain AN+1

1: AN+1 ← GibbsSampler(DN+1, ∅, M) // Run M iterations with no knowledge

2: for i = 1 to M do

3: KN+1 ← TopicKnowledgeMiner(AN+1, S)

4: AN+1 ← GibbsSampler(DN+1, KN+1, 1) // Run with knowledge KN+1

5: end for

6: S ← UpdateKB(AN+1,S)

Algorithm 3 TopicKnowledgeMiner

Input : topics from new domain AN+1; knowledge base S
Output : must-links (knowledge) KN+1 for new domain

1: for each p-topic sk ∈ S do

2: j∗ = minj KL-Divergence(aj , sk) for each c-topic aj ∈ AN+1

3: if KL-Divergence(aj∗ , sk) ≤ π then

4: MN+1
j∗ ←MN+1

j∗ ∪ {sk}
5: end if

6: end for

7: KN+1 ← ∪j∗ FIM(MN+1
j∗). // Frequent Itemset Mining

4.2. LTM: A LIFELONG TOPIC MODEL 61

Topic Model:
Gibbs Sampler

Knowledge Base
(KB)

Topics

Topics

Must-links

T1, T2, . . . , TN , TN+1, . . .

Previously Learned Tasks Future Learning Tasks

Task Manager New Task

DN+1

Topic Knowledge
Miner

Topics

P-topics

Knowledge-Based Topic Model

Figure 4.1: The Lifelong Topic Model (LTM) system architecture.

4.2.2 TOPIC KNOWLEDGE MINING

The TopicKnowledgeMiner function is given in Algorithm 3. For each p-topic sk in S,

it finds the best matching (or the most similar) c-topic aj∗ in the c-topic set AN+1 (line 2).

The matching is done using KL-Divergence (line 2) since each topic is a distribution over

words. MN+1
j∗ is used to store all matching p-topics for each c-topic aj∗ (line 4). Note

that the matching p-topics are found for each individual c-topic aj∗ because aj∗ specific

p-topics are preferable for more accurate knowledge (must-links) mining, which is done in

line 7. In other words, these matching p-topicsMN+1
j∗ are targeted towards each aj∗ and

should provide high quality knowledge for aj∗ . MN+1
j∗ is mined to generate must-links

62 4. LIFELONG UNSUPERVISED LEARNING

KN+1
j∗ for each c-topic aj∗ . Must-links mined for all c-topics in AN+1 are stored in KN+1.

Below, we describe topic matching and knowledge mining in greater detail.

Topic matching (lines 2-5, Algorithm 3): To find the best match for sk in S with

a c-topic aj∗ in AN+1, KL-Divergence is used, which computes the difference between two

distributions (lines 2 and 3). Specifically, Symmetrised KL (SKL) Divergence is employed,

i.e., given two distributions P and Q, the divergence is calculated as:

SKL(P,Q) =
KL(P,Q) +KL(Q,P)

2
, and (4.1)

KL(P,Q) =
∑
i

ln

(
P (i)

Q(i)

)
P (i) . (4.2)

The c-topic with the minimum SKL Divergence with sk is denoted by aj∗ . Parameter π is

used to ensure that the p-topics in MN+1
j∗ are reasonably correlated with aj∗ .

Mining must-link knowledge using frequent itemset mining (FIM): Given

the p-topics in each matching setMN+1
j∗ , this step finds sets of words that appear together

multiple times in these p-topics. The shared words among matching p-topics across multiple

domains are likely to belong to the same topic. To find such shared words in the matching

set of p-topicsMN+1
j∗ , frequent itemset mining (FIM) is used [Agrawal and Srikant, 1994].

FIM is stated as follows: Given a set of transactions X , where each transaction xi ∈ X
is a set of items. In our context, xi is a set of top words of a p-topic (no probability attached).

X isMN+1
j∗ without lowly ranked words in each p-topic as only the top words are usually

representative of a topic. The goal of FIM is to find every itemset (a set of items) that

satisfies some user-specified frequency threshold (also called minimum support), which is

the minimum number of times that an itemset should appear in X . Such itemsets are called

frequent itemsets. In the context of LTM, a frequent itemset is a set of words that have

appeared together multiple times in the p-topics of MN+1
j∗ , which is a must-link.

Only frequent itemsets of length two, i.e., each must-link has only two words, are

used in the LTM model, e.g., {battery, life}, {battery, power}, {battery, charge}. Larger

sets tend to contain more errors.

4.2.3 INCORPORATING PAST KNOWLEDGE

As each must-link reflects a possible semantic similarity relation between a pair of words,

the generalized Pólya urn (GPU) model [Mahmoud, 2008] is used to leverage this knowledge

in the Gibbs sampler of LTM to encourage the pair of words to appear in the same topic.

Below, we first introduce the Pólya urn model which serves as the basic framework to

incorporate knowledge, and then presents the generalized Pólya urn model, which can deal

with possible errors in must-links to make LTM fault-tolerant to some extent.

Simple Pólya Urn Model. The Pólya urn model works on colored balls and urns.

In the topic model context, a term/word can be seen as a ball of a certain color and a topic

4.2. LTM: A LIFELONG TOPIC MODEL 63

as an urn. The distribution of a topic is reflected by the color proportions of balls in the

urn. LDA follows the simple Pólya urn (SPU) model in the sense that when a ball of a

particular color is drawn from an urn, the ball is put back to the urn along with a new ball

of the same color. The content of the urn changes over time, which gives a self-reinforcing

property known as “the rich get richer”. This process corresponds to assigning a topic to a

term in Gibbs sampling.

Generalized Pólya urn Model. The generalized Pólya urn (GPU) model [Chen

and Liu, 2014a, Mahmoud, 2008, Mimno et al., 2011] differs from SPU in that, when a ball

of a certain color is drawn, two balls of that color are put back along with a certain number

of balls of some other colors. These additional balls of some other colors added to the urn

increase their proportions in the urn. This is the key technique for incorporating must-links

as we will see below.

Applying the GPU model to topic modeling, when a word w is assigned to a topic

t, each word w′ that shares a must-link with w is also assigned to the topic t by a certain

amount, which is decided by the matrix A′t,w′,w. w′ is thus promoted by w, meaning that

the probability of w′ under topic t is also increased. Here, a must-link of a topic t means

this must-link is extracted from the p-topics matching with topic t.

The problem is how to set proper values for matrix A′t,w′,w. To answer this question,

let us also consider the problem of wrong knowledge. Since the must-links are mined from

p-topics in multiple previous domains automatically, the semantic relationship of words in

a must-link may not be correct for the current domain. It is a challenge to determine which

must-link is not appropriate. One way to deal with the problem is to assess how the words

in a must-link correlated with each other in the current domain. If they are more correlated,

they are more likely to be correct for a topic in the domain and thus should be promoted

more. If they are less correlated, they are more likely to be wrong and should be promoted

less (or even not promoted).

To measure the correlation of two words in a must-link in the current domain,

Pointwise Mutual Information (PMI) is used, which is a measure of words association in

text [Church and Hanks, 1990]. In this case, it measures the extent to which two words tend

to co-occur, which corresponds to the higher-order co-occurrence on which topic models are

based [Heinrich, 2009]. The PMI of two words is defined as follows:

PMI(w1, w2) = log
P (w1, w2)

P (w1)P (w2)
, (4.3)

where P (w) denotes the probability of seeing word w in a random document, and P (w1, w2)

denotes the probability of seeing both words co-occurring in a random document. These

probabilities are empirically estimated using the current domain collection DN+1:

P (w) =
#DN+1(w)

#DN+1
, (4.4)

64 4. LIFELONG UNSUPERVISED LEARNING

P (w1, w2) =
#DN+1(w1, w2)

#DN+1
, (4.5)

where #DN+1(w) is the number of documents in DN+1 that contain word w and

#DN+1(w1, w2) is the number of documents that contain both words w1 and w2. #DN+1

is the total number of documents in DN+1. A positive PMI value implies a true semantic

correlation of words, while a non-positive PMI value indicates little or no semantic correla-

tion. Thus, only must-links with positive PMI values are considered. A parameter factor µ

is added to control how much the GPU model should trust the word relationships indicated

by PMI. The amount of promotion for word w′ when seen w is defined as follows:

A′t,w,w′ =


1 w = w′

µ× PMI(w,w′) (w,w′) is a must-link of topic t

0 otherwise

(4.6)

4.2.4 CONDITIONAL DISTRIBUTION OF GIBBS SAMPLER

The GPU model is nonexchangeable, i.e., the joint probability of the words in any given

topic is not invariant to the permutation of those words. The inference for the model can be

computationally expensive due to the nonexchangeability of words, that is, the sampling

distribution for the word of interest depends on each possible value for the subsequent

words along with their topic assignments. LTM takes the approach of [Mimno et al., 2011]

which approximates the true Gibbs sampling distribution by treating each word as if it

were the last. The approximate Gibbs sampler has the following conditional distribution:

P (zi = t|z−i,w, α, β,A′) ∝
n−id,t + α∑T

t′=1(n−id,t′ + α)
×

∑V
w′=1 A′t,w′,wi

× n−it,w′ + β∑V
v=1(

∑V
w′=1 A′t,w′,v × n

−i
t,w′ + β)

,
(4.7)

where n−i is the count excluding the current assignment of zi, i.e., z−i, w refers to all

the words in all documents in the document collection DN+1 and wi is the current word

to be sampled with a topic denoted by zi. nd,t denotes the number of times that topic

t was assigned to words in document d, where d is the document index of word wi. nt,v
refers to the number of times that word v appears under topic t. α and β are predefined

Dirichlet hyperparameters. T is the number of topics, and V is the vocabulary size. A′ is

the promotion matrix defined in Equation 4.6.

Mapping to Components in the LML Architecture in Section 1.3

The knowledge base of LTM is the knowledge base of Section 1.3. It stores only the past

topics or p-topics from previous tasks. Knowledge-based learner here is the knowledge-

4.3. AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA 65

based topic model here in Figure 4.1. The issues of correctness and applicability of previous

knowledge (must-links) are dealt with using frequent itemset mining (FIM) and Pointwise

Mutual Information (PMI).

4.3 AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA

The LTM model needs a fairly large set of documents in order to generate reasonable

initial topics to be used in finding similar past topics in the knowledge base to mine ap-

propriate must-link knowledge. However, when the document set (or data) is very small,

this approach does not work because the initial modeling produces very poor topics, which

cannot be used to find matching or similar past topics in the knowledge base to serve as

prior knowledge. A new approach is thus needed. The AMC model (topic modeling with

Automatically generated Must-links and Cannot-links) [Chen and Liu, 2014b] aims to solve

the problem. AMC’s must-link knowledge mining does not use any information from the

new domain/task. Instead, it mines must-links from the past topics independent of the

new domain. However, to make the resulting topics accurate, must-link knowledge is far

from sufficient. Thus, AMC also uses cannot-links, which are hard to mine independent of

the new domain data due to the high computational complexity. Cannot-links are mined

dynamically. All these are detailed in this section.

Algorithm 4 AMC Model

Input : New domain data DN+1; Knowledge Base S; Must-links M
Output : Topics from new domain AN+1

1: M← MustLinkMiner(S)

2: C = ∅ // C stores cannot-links

3: AN+1 ← GibbsSampler(DN+1, M, C, M); // Run M Gibbs iterations with must-links

M but no cannot-links

4: for r = 1 to R do

5: C ← C ∪ CannotLinkMiner(S, AN+1)

6: AN+1 ← GibbsSampler(DN+1, M, C, N)

7: end for

8: S ← UpdateKB(AN+1, S)

4.3.1 OVERALL ALGORITHM OF AMC

Algorithm 4 gives the overall algorithm of AMC, which is also illustrated in Figure 4.2. Line

1 mines a set of must-links M using the function MustLinkMiner from previous topics

(or p-topics) in the knowledge base (KB) S. Note here the must-links can be generated

66 4. LIFELONG UNSUPERVISED LEARNING

Topic Model:
Gibbs Sampler

Knowledge Base
(KB)

Topics

Topics

Cannot-links

T1, T2, . . . , TN , TN+1, . . .

Previously Learned Tasks Future Learning Tasks

Task Manager New Task

DN+1

Cannot-Link
Miner

Topics

P-topics

Knowledge-Based Topic Model

Must-Link
Miner

Must-links

Figure 4.2: The AMC model system architecture.

4.3. AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA 67

offline independent of the current new task. Line 3 runs the proposed Gibbs sampler

(introduced in Section 4.3.5) using only the must-links M to produce a set of topics AN+1,

where M is the number of Gibbs sampling iterations. Line 5 mines cannot-links C using

the function CannotLinkMiner based on the current topics AN+1 and p-topics in the

knowledge base S (see Sections 4.3.3). Then line 6 uses both must-links M and cannot-

links C to improve the resulting topics. This process can run iteratively (R times) to obtain

a set of superior topics to be stored in the knowledge base and also output to the user.

Function UpdateKB(AN+1,S) (line 8) is very simple at the moment. If the domain of AN+1

exists in S, replace those topics of the domain in S with AN+1; otherwise, AN+1 is added

to S.

4.3.2 MINING MUST-LINK KNOWLEDGE

Since AMC cannot use topics from the new domain to find similar topics in the knowledge

base like LTM, it mines must-links directly from the knowledge base without considering

the context of any new task using the function MustLinkMiner. Recall that each topic

generated from a topic model, such as LDA, is a distribution over words, i.e., words with

their associated probabilities. Words are commonly ranked based on their probabilities in a

descending order. In practice, top words under a topic are expected to represent some similar

semantic meaning. The lower ranked words usually have very low probabilities due to the

smoothing effect of the Dirichlet hyperparameters rather than true correlations within the

topic, leading to their unreliability. Thus, in [Chen and Liu, 2014b], only top 15 words are

employed to represent a topic. This topic representation is used in mining both must-link

and cannot-link knowledge.

Given knowledge base S, similar to the LTM model in Section 4.2, must-links are sets

of words that appear together in multiple topics and they are mined using the data mining

technique frequent itemset mining (FIM). However, this technique is insufficient due to the

problem with the single minimum support threshold used in classic FIM algorithms.

A single minimum support is not appropriate because generic topics, such as price

with topic words like price and cost, are shared by many (even all) product review domains,

but specific topics such as screen, occur only in product domains having such features. This

means that different topics may have very different frequencies in the data. Thus, using

a single minimum support threshold is unable to extract both generic and specific topics

because if this threshold is set too low, the popular topics will result in numerous spurious

frequent itemsets (which results in wrong must-links) and if it is set too high, must-links

from less frequent topics will not be found. This is called the rare item problem in data

mining and has been well documented in the data mining literature [Liu, 2007].

To address the above issue, the AMC model uses the multiple minimum supports

frequent itemset mining (MS-FIM) algorithm in Liu et al. [1999]. MS-FIM is stated as

follows: Given a set of transactions R, where each transaction ri ∈ R is a set of items from

68 4. LIFELONG UNSUPERVISED LEARNING

a global item set I, i.e., ri ⊆ I. In AMC, ri is a topic comprising the top words of the topic

(no probability attached). An item is a word. R is thus the collection of all p-topics in the

knowledge base S and I is the set of all words in S. In MS-FIM, each item/word is given

a minimum itemset support (MIS). The minimum support that an itemset (a set of items)

must satisfy is not fixed. It depends on the MIS values of all the items in the itemset. MS-

FIM also has another constraint, called the support difference constraint (SDC), expressing

the requirement that the supports of the items in an itemset must not be too different. MIS

and SDC together can solve the above rare item problem.

The goal of MS-FIM is to find all itemsets that satisfy the user-specified MIS thresh-

olds and SDC constraints. Such itemsets are called frequent itemsets. In AMC, a frequent

itemset is a set of words which have appeared multiple times in the p-topics in the knowledge

base S. The frequent itemsets of length two are used as the learned must-link knowledge,

e.g., {battery, life}, {battery, power}, {battery, charge}, {price, expensive}, {price, pricy},
{cheap, expensive}.

Again each must-link used in AMC has only two words [Chen and Liu, 2014b]. As

mentioned in Section 4.2.2, larger sets tend to contain more errors. Such errors are hard to

deal with than those in pairs. The same rationale applies to cannot-links.

There are two key challenges in incorporating the must-link knowledge in modeling:

1. A word can have multiple meanings or senses. For example, light may mean “some-

thing that makes things visible” or “of little weight.” Different senses may lead to

distinct must-links. For example, with the first sense of light, the must-links can be

{light, bright} and {light, luminance}. In contrast, {light, weight} and {light, heavy}
indicate the second sense of light. Without dealing with this, it can cause the transi-

tivity problem [Chen and Liu, 2014b]. That is, if words w1 and w2 form a must-link,

and words w2 and w3 form a must-link, it implies a must-link between w1 and w3,

i.e., w1, w2, and w3 should be in the same topic. With transitivity, light, bright, and

weight would be incorrectly assumed to be in the same topic.

2. Not every must-link is suitable for a domain. This is the same wrong knowledge

problem discussed in Section 4.2.

To deal with the first issue, a must-link graph was proposed in [Chen and Liu, 2014b]

to distinguish multiple senses in must-links to solve the transitivity problem. As the must-

links are automatically mined from the set of p-topics (for past topics) in S, the p-topics

may also provide some guidance on whether the mined must-links share the same word sense

or not. Given two must-links m1 and m2, if they share the same word sense, the p-topics

that cover m1 should have some overlapping with p-topics that cover m2. For example,

must-links {light, bright} and {light, luminance} should be mostly coming from the same

set of p-topics related to the semantic meaning “something that makes things visible” of

light. On the other hand, little topic overlapping indicates likely different word senses. For

4.3. AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA 69

example, must-links {light, bright} and {light, weight} may come from two different sets

of p-topics as they usually refer to different topics.

Following this idea, a must-link graph G is constructed where a must-link is a vertex.

An edge is formed between two vertices if the two must-links m1 and m2 have a shared

word. For each edge, the amount of their original p-topics overlapping is used to decide

whether the two must-links share the same sense or not. Given two must-links m1 and m2,

the p-topics in S covering each of them are denoted by C1 and C2 respectively. m1 and m2

share the same sense if

#(C1 ∩ C2)

Max(#C1,#C2)
> πoverlap , (4.8)

where πoverlap is the overlap threshold for distinguishing senses. This threshold is necessary

due to errors in topics. The edges that do not satisfy the above inequality are discarded.

The final must-link graph G can provide some guidance on selecting the right must-links

sharing the same word sense in the Gibbs sampler (in Section 4.3.5) for dealing with the

transitivity problem.

To tackle the second problem, Pointwise Mutual Information (PMI) was also used

to approximate the semantic correlation using the current domain data. This is similar to

that in the LTM model (Section 4.2.3) and thus will not be discussed again.

4.3.3 MINING CANNOT-LINK KNOWLEDGE

Although it is reasonable to find must-links from all past topics, it is problematic to find

cannot-links from all past topics (p-topics) as it is prohibitive to do so. This is because

for a word w, there are usually only a few words wm that share must-links with w while

there is a huge number of words wc that can form cannot-links with w. In general, if there

are V words in the vocabulary of all tasks or domains, then there are O(V 2) potential

cannot-links. However, for a new domain DN+1, most of these cannot-links are not useful

because the vocabulary size of DN+1 is much smaller than V . Thus, AMC focuses only on

those words that are relevant to DN+1.

Formally, given the knowledge base S and the current c-topics AN+1 from the new

task domain data DN+1, cannot-links from each pair of top words w1 and w2 in each c-

topic Aj ∈ AN+1 are extracted. Based on this formulation, to mine cannot-links (using

CannotLinkMiner), the mining algorithm enumerates every pair of top words w1 and w2

and checks whether they form a cannot-link or not. Thus, the cannot-link mining is targeted

to each c-topic with the aim to improve the c-topic using the discovered cannot-links.

Given two words, CannotLinkMiner determines whether they form a cannot-link or

not as follows: If the words seldom appear together in p-topics in S, they are likely to have

distinct semantic meanings. Let the number of past domains that w1 and w2 appear in

different p-topics be Ndiff and the number of past domains that w1 and w2 share the same

70 4. LIFELONG UNSUPERVISED LEARNING

topic be Nshare. Ndiff should be much larger than Nshare. Two conditions or thresholds

are necessary to control the formation of a cannot-link:

1. The ratio Ndiff/(Nshare +Ndiff) (called the support ratio) is equal to or larger than

a threshold πc. This condition is intuitive.

2. Ndiff is greater than a support threshold πdiff . This condition is needed because the

above ratio can be 1, but Ndiff can be very small and thus unreliable.

Some cannot-link examples are as follows: {battery, money}, {life, movie}, {battery, line}
{price, digital}, {money, slow} and {expensive, simple}.

Similar to must-links, cannot-links can be wrong too. Wrong cannot-links are usually

harder to detect and to verify than wrong must-links. Due to the power-law distribution

of natural language words [Zipf, 1932], most words are rare and will not co-occur with

most other words. The low co-occurrences of two words do not necessarily mean a negative

correlation (cannot-link). Chen and Liu [2014b] proposed to detect and balance cannot-

links inside the sampling process. More specifically, they extended Pólya urn model to

incorporate the cannot-link knowledge, and also to deal with the issues above.

4.3.4 EXTENDED PÓLYA URN MODEL

Gibbs sampler for the AMC model differs from that of LTM as LTM does not consider

cannot-links. A multi-generalized Pólya Urn (M-GPU) model was proposed in [Chen and

Liu, 2014b] for AMC. We have introduced the simple Pólya urn (SPU) model, and the

generalized Pólya urn (GPU) model in Section 4.2.3. We now extend the GPU model to

the multi-generalized Pólya urn model (M-GPU).

Instead of involving only one urn at a time as in the SPU and GPU models, the M-

GPU model considers a set of urns in the sampling process simultaneously [Chen and Liu,

2014b]. M-GPU allows a ball to be transferred from one urn to another, enabling multi-urn

interactions. Thus, during sampling, the populations of several urns will evolve even if only

one ball is drawn from one urn. This capability makes the M-GPU model more powerful

and suitable for solving the complex problems discussed so far.

In M-GPU, when a ball is randomly drawn, a certain number of additional balls of

each color are returned to the urn, rather than just two balls of the same color as in SPU.

This is inherited from the GPU model. As a result, the proportions of these colored balls

are increased, making them more likely to be drawn in this urn in the future. This is called

the promotion of these colored balls in [Chen and Liu, 2014b]. Applying the idea, when a

word w is assigned to a topic k, each word w′ that shares a must-link with w is also assigned

to topic k by a certain amount λw′,w. The definition of λw′,w is similar to the promotion

matrix in the LTM model (see Section 4.2.3). Thus, we will not discuss it further here.

To deal with multiple senses problem in M-GPU, Chen and Liu [2014b] exploited the

fact that each word usually has only one correct sense or meaning under one topic. Since

4.3. AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA 71

the semantic concept of a topic is usually represented by some top words under it, the word

sense that is the most related to the concept is treated as the correct sense. If a word w does

not have multiple must-links, then there is no multiple sense problem. If w has multiple

must-links, the rationale here is to sample a must-link (say m) that contains w to be used

to represent the likely word sense from the must-link graph G. The sampling distribution

will be given in the next sub-section. Then, the must-links that share the same word sense

with m, including m, are used to promote the related words of w.

To deal with cannot-links, M-GPU defines two sets of urns to be used in sampling.

The first set is the set of topic urns UKd∈DN+1
, where each urn is for one document and

contains balls of K colors (topics) and each ball inside has a color k ∈ {1 . . .K}. This

corresponds to the document-topic distribution in AMC. The second set of urns is the set

of word urns UVk∈{1...K} corresponding to the topic-word distributions, with balls of colors

(words) w ∈ {1 . . . V } in each word urn.

Based on the definition of cannot-link, two words in a cannot-link cannot both have

large probabilities under the same topic. As M-GPU allows multi-urn interactions, when

sampling a ball representing word w from a word urn UVk , the balls representing the cannot-

words of w, say wc (sharing cannot-links with w) can be transferred to other urns (see Step

5 below), i.e., decreasing the probabilities of those cannot-words (words in a cannot-link)

under this topic while increasing their corresponding probabilities under some other topic.

The ball representing word wc should be transferred to an urn which has a higher proportion

of wc. That is, an urn that has a higher proportion of wc is randomly sampled for wc to

transfer to (Step 5b below). However, it is possible that there is no other urn that has a

higher proportion of wc. There are two ways to deal with this issue: 1) create a new urn

to move wc to, which was used in [Chen et al., 2013c]. This approach assumes that the

cannot-link is correct. 2) keep wc in the urn UVk as the cannot-link may not be correct, so it

is possible that UVk is the right urn for wc. As discussed in Section 4.3.3, a cannot-link can

be wrong. For example, the model puts battery and life in the same topic k where battery

and life have the highest probabilities (or proportions). However, a cannot-link {battery,

life} wants to separate them after seeing them in the same topic. In this case, we should not

trust the cannot-link as it wants to split the correlated words into different topics. Chen

and Liu [2014b] took the second approach due to the noisy in cannot-links.

Based on all the above ideas, the M-GPU sampling scheme is presented as follows:

1. Sample a topic k from UKd and a word w from UVk sequentially, where d is the dth

document in DN+1.

2. Record k and w, put back two balls of color k into urn UKd , and two balls of color w

into urn UVk .

3. Sample a must-link m that contains w from the prior knowledge base. Get a set of

must-links {m′} where m′ is either m or a neighbor of m in the must-link graph G.

72 4. LIFELONG UNSUPERVISED LEARNING

4. For each must-link {w,w′} in {m′}, we put back λw′,w number of balls of color w′

into urn UVk based on matrix λw′,w.

5. For each word wc that shares a cannot-link with w:

(a) Draw a ball qc of color wc (to be transferred) from UVk and remove it from UVk .

The document of ball qc is denoted by dc. If no ball of color wc can be drawn

(i.e., there is no ball of color wc in UVk), skip steps b) and c).

(b) Produce an urn set {UVk′} such that each urn in it satisfies the following condi-

tions:

i) k′ 6= k

ii) The proportion of balls of color wc in UVk′ is higher than that of balls of color

wc in UVk .

(c) If {UVk′} is not empty, randomly select one urn UVk′ from it. Put the ball qc drawn

from Step a) into UVk′ . Also, remove a ball of color k from urn UKdc and put back

a ball of k′ into urn UKdc . If {UVk′} is empty, put the ball qc back to UVk .

4.3.5 SAMPLING DISTRIBUTIONS IN GIBBS SAMPLER

For each word wi in each document d, sampling consists of two phases based on the M-GPU

sampling process above:

Phase 1 (Steps 1-4 in M-GPU): calculate the conditional probability of sampling a

topic for word wi. The process enumerates each topic k and calculates its corresponding

probability, which is decided by three sub-steps:

a) Sample a must-link mi that contains wi, which is likely to have the word sense consistent

with topic k, based on the following conditional distribution:

P (mi = m|k) ∝ P (w1|k)× P (w2|k) , (4.9)

where w1 and w2 are the words in must-link m and one of them is the same as wi.

P (w|k) is the probability of word w under topic k given the current status of the

Markov chain in the Gibbs sampler, which is defined as:

P (w|k) ∝
∑V
w′=1 λw′,w × nk,w′ + β∑V

v=1(
∑V
w′=1 λw′,v × nk,w′ + β)

, (4.10)

where nk,w refers to the number of times that word w appears under topic k. β is the

predefined Dirichlet hyper-parameter.

b) After getting the sampled must-link mi, a set of must-links {m′} are created where m′

is either mi or a neighbor of mi in the must-link graph G. The must-links in this set

4.3. AMC: A LIFELONG TOPIC MODEL FOR SMALL DATA 73

{m′} are likely to share the same word sense of word wi according to the corresponding

edges in the must-link graph G.

c) The conditional probability of assigning topic k to word wi is defined as below:

p(zi = k|z−i,w, α, β, λ)

∝
n−id,k + α∑K

k′=1(n−id,k′ + α)

×
∑
{w′,wi}∈{m′} λw′,wi × n−ik,w′ + β∑V

v=1(
∑
{w′,v}∈{m′v}

λw′,v × n−ik,w′ + β)
,

(4.11)

where n−i is the count excluding the current assignment of zi, i.e., z−i. w refers to all

the words in all documents in the new document collection DN+1 and wi is the current

word to be sampled with a topic denoted by zi. nd,k denotes the number of times that

topic k is assigned to words in document d. nk,w refers to the number of times that word

w appears under topic k. α and β are predefined Dirichlet hyper-parameters. K is the

number of topics, and V is the vocabulary size. {m′v} is the set of must-links sampled

for each word v following Phase 1 a) and b), which is recorded during the iterations.

Phase 2 (Step 5 in M-GPU): this sampling phase deals with cannot-links. There are

two sub-steps:

a) For every cannot-word (say wc) of wi, one instance (say qc) of wc from topic zi is

sampled, where zi denotes the topic assigned to word wi in Phase 1, based on the

following conditional distribution:

P (q = qc|z,w, α) ∝ ndc,k + α∑K
k′=1(ndc,k′ + α)

, (4.12)

where dc denotes the document of the instance qc. If there is no instance of wc in zi,

skip step b).

b) For each drawn instance qc from Phase 2 a), resample a topic k (not equal to zi) based

on the conditional distribution below:

P (zqc = k|z−qc ,w, α, β, λ, q = qc)

∝ I[0,p(wc|k)](P (wc|zc))

×
n−qcdc,k

+ α∑K
k′=1(n−qcdc,k′

+ α)

×
∑
{w′,wc}∈{m′c}

λw′,wc × n
−qc
k,w′ + β∑V

v=1(
∑
{w′,v}∈{m′v}

λw′,v × n−qck,w′ + β)
,

(4.13)

74 4. LIFELONG UNSUPERVISED LEARNING

where zc (the same as zi sampled from 4.11) is the original topic assignment. {m′c} is the

set of must-links sampled for word wc. Superscript −qc denotes the counts excluding

the original assignments. I() is an indicator function, which restricts the ball to be

transferred only to an urn that contains a higher proportion of word wc. If there is

no topic k that has a higher proportion of wc than zc, then keep the original topic

assignment, i.e., assign zc to wc.

Mapping to Components in the LML Architecture in Section 1.3

Like LTM, The knowledge base of AMC is the knowledge base of LML in Section 1.3. It

stores only the past topics or p-topics from previous tasks. Knowledge-based learner is

the knowledge-based topic model in Figure 4.2. The issues of correctness and applicability

of previous knowledge are dealt with explicitly using multiple minimum supports frequent

itemset mining (MS-FIM), the cannot-link miner, the must-link graph, and Pointwise Mu-

tual Information (PMI). They are further considered implicitly by the M-GPU model.

4.4 LIFELONG INFORMATION EXTRACTION

Information extraction (IE) is a rich ground for applying lifelong machine learning (LML)

because the earlier extraction results are often very useful to later extraction and learning.

NELL is a well-known representative system in this area Carlson et al. [2010a], Mitchell

et al. [2015]. However, NELL is a semi-supervised learning system, it is thus not covered

here. We study it in Chapter 5. This section introduces an application of LML to a specific

unsupervised IE task based on the work in [Liu et al., 2016]. The IE task is aspect or

opinion target extraction from opinion documents, which is a fundamental task of sentiment

analysis (Liu 2012). It aims to extract opinion targets from opinion text. For example, from

the sentence “This phone has a great screen, but its battery life is short,” it should extract

“screen” and “battery life.” In product reviews, aspects are product attributes or features.

In [Liu et al., 2016], a syntactic dependency-based method called double propagation

(DP) [Qiu et al., 2011] was adopted as the base extraction method, which was augmented

with the LML capability. DP is based on the fact that opinions have targets and there are

often syntactic relations between sentiment or opinion words (e.g., “great” in “the picture

quality is great”) and target aspect (e.g., “picture quality”). Due to the syntactic relations,

sentiment words can be recognized by identified aspects, and aspects can be identified by

known sentiment words. The extracted sentiment words and aspects are used to identify

new sentiment words and new aspects, which are used again to extract more sentiment

words and aspects. This bootstrapping propagation process ends when no more sentiment

words or aspects can be found. The extraction rules were designed based on dependency

relations among sentiment words and aspects produced by dependency parsing.

Figure 4.3 shows the dependency relations between words in “The phone has a good

screen.” If “good” is a known sentiment word (given or extracted), “screen,” a noun modified

4.4. LIFELONG INFORMATION EXTRACTION 75

DT

The

NN

phone

VBZ

has

DT

a

JJ

good

NN

screen

.

.

det

dobj

amod
det

Figure 4.3: Dependency relations in the sentence “The phone has a good screen.”

by “good,” is an aspect as they have a dependency relation amod. From a given seed set of

sentiment words, one can extract a set of aspects from a syntactic rule like ‘if a word A,

whose part-of-speech (POS) is a singular noun (nn), has the dependency relation amod with

(i.e., modified by) a sentiment word O, then A is an aspect.’ Similarly, one can use such

rules to extract new aspects from the extracted aspects, and new sentiment words from the

extracted aspects.

4.4.1 LIFELONG LEARNING THROUGH RECOMMENDATION

Although effective, syntactic rule-based methods such as DP still have room for major

improvements. Liu et al. [2016] showed that incorporating lifelong learning can improve the

extraction markedly.

To realize lifelong learning, Liu et al. [2016] used the idea of recommendation, in

particular collaborative filtering [Adomavicius and Tuzhilin, 2005]. This type of recommen-

dation uses the behavioral information of other users to recommend products/services to

the current user. Following the idea, [Liu et al., 2016] used the information in reviews of a

large number of other products (data of the previous tasks) to help extract aspects from

reviews of the current product (data of the new task). The recommendation is based on

the previous task data and extraction results. This method is called lifelong IE through

recommendations. Two forms of recommendations were used: (1) semantic similarity-based

recommendation, and (2) aspect associations-based recommendation.

1. Semantic similarity-based recommendation aims to solve the problem of missing syn-

onymous aspects of DP using word vectors trained from a large corpus of reviews for

similarity comparison. Word vectors are regarded as a form of prior or past knowledge

learned from the past data. Let us see an example. Using the DP method, “picture” is

extracted as an aspect from the sentence “The picture is blurry,” but “photo” is not

extracted from the sentence “The phone is good, but not the photos.” One reason for

the inability to extract “photo” is that to ensure good extraction precision, many use-

ful syntactic dependency rules with low precision are not used. The proposed semantic

similarity-based recommendation can make use of the extracted aspect “picture” to

76 4. LIFELONG UNSUPERVISED LEARNING

recommend “photo” (“photo” is a synonym of “picture”) based on the semantic sim-

ilarity of the word vectors of the two words.

2. The second form of recommendation is via aspect associations or correlations. This

form is useful because in the first recommendation, “picture” cannot be used to recom-

mend “battery” as an aspect because their semantic similarity value is very small. The

idea of using the second form of recommendation is that many aspects are correlated

or co-occur across domains. For example, those products with the aspect “picture”

also have a high chance of using batteries as pictures are usually taken by digital

devices that need batteries. If rules about such associations can be discovered, they

can be used to recommend additional aspects. For this purpose, association rules from

data mining [Liu, 2007] was employed. To mine associations, Liu et al. [2016] used

the extraction results from the previous tasks stored in the knowledge base S.

The knowledge base contains two forms of information: the word vectors and the extraction

results from the previous/past tasks.

4.4.2 AER ALGORITHM

The proposed extraction algorithm is called AER (Aspect Extraction based on Recommen-

dations) [Liu et al., 2016] and is shown in Algorithm 5, which consists of three main steps:

base extraction, aspect recommendation (which includes a knowledge learning sub-step

discussed in Section 4.4.3), and knowledge base updating.

Step 1 (base extraction, lines 1− 2): Given the new document data DN+1 for

the (N + 1)th task for extraction and a set O of seed opinion or sentiment words, this step

first uses the DP method (DPextract) to extract an initial (or base) set A− of aspects using

a set R− of high precision rules (line 1). The set of high precision rules are selected from

the set of rules in DP by evaluating their precisions individually using a development set.

The set A− of extracted aspects thus has very high precision but not high recall. Then,

it extracts a set A+ of aspects from a larger set R+ of high recall rules (R−⊆R+) also

using DPextract (line 2). The set A+ of extracted aspects thus has very high recall but low

precision.

Step 2 (aspect recommendation, lines 3− 7): This step recommends more as-

pects using A− as the base to improve the recall. To ensure recommendation quality, Liu

et al. [2016] required that the recommended aspects must be from the set Adiff = A+ −A−
(line 3). As indicated above, two forms of recommendation are performed, similarity-based

using Sim-recom (line 4) and association rule-based using AR-recom (line 6). Their respec-

tive results As and Aa are combined with A− to produce the final extraction result (line

7). Note that the word vectors WV required by Sim-recom is stored in the knowledge base

S. The association rules AR used in AR-recom are mined from the extraction results of

previous tasks also stored in the knowledge base S.

4.4. LIFELONG INFORMATION EXTRACTION 77

Step 3 (knowledge base update, line 8): This step updates the knowledge base

S, which is simple as each task is from a distinct domain in this paper. That is, the set of

extracted aspects is simply added to the knowledge base S for future use.

We will not discuss Step 1 and step 3 further as they are fairly straightforward. Our

focus is on the two recommendation methods, which will be introduced in Section 4.4.4.

For the recommendations to work, we first need to learn the past knowledge in terms of

word vectors WV and association rules AR. We discuss knowledge learning next.

Algorithm 5 AER Algorithm

Input : New domain data DN+1, high precision aspect extraction rulesR−, high recall aspect

extraction rules R+, seed opinion words O, and knowledge base S
Output : Extracted aspect set A

1: A− ← DPextract(DN+1,R−,O) // A−: aspect set with high precision

2: A+ ← DPextract(DN+1,R+,O) // A+: aspect set with high recall

3: Adiff ← A+ −A−
4: As ← Sim-recom(A−,Adiff ,WV) //WV is the set of word vectors stored in the knowl-

edge base S
5: AR ← MineAssociationRules(S)

6: Aa ← AR-recom(A−,Adiff ,AR)

7: A ← A− ∪ As ∪ Aa
8: A ← UpdateKB(A,S)

4.4.3 KNOWLEDGE LEARNING

Generating Word Vectors

In [Liu et al., 2016], word vectors were trained using neural networks in [Mikolov et al.,

2013]. Researchers have shown that using word vectors trained this way is highly effective

for the purpose of semantic similarity comparison [Mikolov et al., 2013, Turian et al., 2010].

There are several publicly available word vector resources trained from Wikipedia, Reuters

news or Broadcast News for general NLP tasks such as POS tagging and Named Entity

Recognition [Collobert and Weston, 2008, Huang et al., 2012, Pennington et al., 2014].

However, the initial experiments in [Liu et al., 2016] showed these word vectors were not

accurate for their task. They thus trained the word vectors using a large corpus of 5.8

million reviews [Jindal and Liu, 2008]. Clearly, the word vectors can also be trained by just

using the data in the past domains, but the paper did not try that. It will be interesting to

see the difference in results produced with word vectors trained from the two data sources.

78 4. LIFELONG UNSUPERVISED LEARNING

Mining Association Rules

Assocition rules are of the form,X −→ Y , whereX and Y are disjoint sets of items, i.e., a set

of aspects in our case. X and Y are called antecedent and consequent of the rule respectively.

The support of the rule is the number of transactions that contains both X and Y divided by

the total number of transactions, and the confidence of the rule is the number of transactions

that contains both X and Y divided by the number of transactions that contains X. Given

a transaction database DB, an association rule mining algorithm generates all rules that

satisfies a user-specified minimum support and a minimum confidence constraints [Agrawal

and Srikant, 1994]. DB contains a set of transactions. In our case, a transaction consists

of all the aspects discovered from one previous domain or task, which is stored in the

knowledge base S. Association rule mining has been well studied in data mining.

4.4.4 RECOMMENDATION USING PAST KNOWLEDGE

Recommending Aspects using Word Vectors

Algorithm 6 gives the details of Sim-recom(A−, Adiff , WV), which recommends aspects

based on aspect similarities measured using word vectors. For each term t in Adiff , which

can be a single word or a multi-word phrase, if the similarity between t and any term in

A− is at least ε (line 2), which means that t is very likely to be an aspect and should be

recommended, then add t into As (line 3). The final recommended aspect set is As.

Algorithm 6 Sim-recom Algorithm

Input : Aspect sets A− and Adiff , word vectors WV
Output : Recommended aspect set As

1: for each aspect term t ∈ Adiff do

2: if Sim(t,A−,WV) ≥ ε then

3: As ← As ∪ {t}
4: end if

5: end for

The function Sim(t, A−) in line 2 returns the maximum similarity between term t

and the set of terms in A−, i.e.:

Sim(t,A−) = max{VS(φt,φtq) : tq ∈ A−} . (4.14)

where φt is t’s word vector, VS(φt,φtq) is VSw(φt,φtq) if t and tq are single words, oth-

erwise, VS(φt, φtq) is VSp(φt,φtq). VSw(φt,φtq) and VSp(φt,φtq) compute single words

similarity and phrases or phrase-word similarity respectively. Given two terms t and t′,

their semantic similarity is calculated using their vectors φt and φt′ in WV as below:

4.4. LIFELONG INFORMATION EXTRACTION 79

VSw(φt,φt′) =
φTt φt′

||φt|| · ||φt′ ||
. (4.15)

Since there are no vectors for multi-word phrases in the pre-trained word vectors, the

average cosine similarities of words in the phrases is used to evaluate phrase similarities:

VSp(φt,φt′) =

∑L
i=1

∑L′

j=1 VSw(φti ,φt′j)

L× L′
, (4.16)

where L is the number of single words in t, and L′ is that of t′. The reason for using

average similarity for multi-word phrases is that it considers the length of the phrases, and

sets lower similarity value naturally if the lengths of two phrases are different.

Recommending Aspects Using Association Rules

Algorithm 7 gives the details of AR-recom, which recommends aspects based on aspect

association rules. For each association rule r in AR, if the antecedent of r is a subset of A−
(line 2), then recommend the terms in cons(r) ∩ Adiff into the set Aa (line 3). The function

ante(r) returns the set of aspects in r’s antecedent, and the function cons(r) returns the

set of (candidate) aspects in r’s consequent.

Algorithm 7 AR-recom Algorithm

Input : Aspect sets A− and Adiff , association rules AR
Output : Recommended aspect set Aa

1: for each association rule r ∈ AR do

2: if ante(r) ⊆ A− then

3: Aa ← Aa ∪ (cons(r) ∩ Adiff)

4: end if

5: end for

For example, one association rule inAR could be: picture, display → video, purchase,

whose antecedent contains “picture” and “display,” and consequent contains “video” and

“purchase.” If both words “picture” and “display” are in A−, and only “video” is in Adiff ,

then only “video” is added into Aa.

Mapping to Components in the LML Architecture in Section 1.3

The knowledge base of Section 1.3 is the data structure in AER that stores the word vec-

tors and the sets of extracted aspects from all previous tasks. Knowledge-based learner

is the AER algorithm. The issues of correctness and applicability of previous knowledge

80 4. LIFELONG UNSUPERVISED LEARNING

are not explicitly dealt with, but are implicitly handled to some extent by using word vec-

tors trained from a relevant review corpus and by ensuring the recommended aspects are

extracted by high recall rules from the current task domain data.

4.5 LIFELONG-RL: LIFELONG RELAXATION LABELING

Shu et al. [2016] proposed a lifelong relaxation labeling method called Lifelong-RL, which

incorporates LML in the relaxation labeling method [Hummel and Zucker, 1983]. Lifelong-

RL was applied to a sentiment analysis task. This section gives an overview of Lifelong-RL.

We first introduce the relaxation labeling (RL) algorithm. We then briefly describe how

to incorporate the lifelong learning capability in RL. For the application to the sentiment

analysis task, please refer to the original paper.

4.5.1 RELAXATION LABELING

Relaxation Labeling (RL) is an unsupervised graph-based label propagation algorithm that

works iteratively. The graph consists of nodes and edges. Each edge represents a binary

relationship between two nodes. Each node ni in the graph is associated with a multinomial

distribution P (L(ni)) (L(ni) being the label of ni) on a label set Y . Each edge is associated

with two conditional probability distributions P (L(ni)|L(nj)) and P (L(nj)|L(ni)), where

P (L(ni)|L(nj)) represents how the label L(nj) influences the label L(ni) and vice versa.

The neighbors Ne(ni) of a node ni are associated with a weight distribution w(nj |ni) with∑
nj∈Ne(ni)

w(nj |ni) = 1.

Given the initial values of these quantities as inputs, RL iteratively updates the label

distribution of each node until convergence. Initially, we have P 0(L(ni)). Let ∆P r+1(L(ni))

be the change of P (L(ni)) at iteration r + 1. Given P r(L(ni)) at iteration r, ∆P r+1(L(ni))

is computed by:

∆P r+1(L(ni)) =
∑

nj∈Ne(ni)

w(nj |ni)×
∑
y∈Y

P (L(ni)|L(nj) = y)× P r(L(nj) = y)


(4.17)

Then, the updated label distribution for iteration r + 1, P r+1(L(ni)), is computed with:

P r+1(L(ni)) =
P r(L(ni))× (1 + ∆P r+1(L(ni)))∑

y∈Y P
r(L(ni) = y)× (1 + ∆P r+1(L(ni) = y))

(4.18)

Once RL ends, the final label of node ni is its highest probable label: L(ni) =

argmax
y∈Y

(P (L(ni) = y)).

Note that P (L(ni)|L(nj)) and w(nj |ni) are not updated in each RL iteration but

only P (L(ni)) is. P (L(ni)|L(nj)), w(nj |ni) and P 0(L(ni)) are provided by the user or

computed based on the application context. RL uses these values as input and iteratively

4.6. SUMMARY AND EVALUATION DATASETS 81

updates P (L(ni)) based on Equations 4.17 and 4.18 until convergence. Next we discuss how

to incorporate LML in RL.

4.5.2 LIFELONG RELAXATION LABELING

For LML, as usual, it is assumed that at any time step, the system has worked on N

past domain data Dp = {D1,D2, . . . ,DN}. For each past domain data Di ∈ DN , the same

Lifelong-RL algorithm has been applied and its result has been saved in the knowledge base

(KB). Then the algorithm can borrow some useful prior/past knowledge in the KB to help

RL in the new/current domain DN+1. Once the result of the current domain is produced,

it is also added to the KB for future use.

We now discuss the specific types of information or knowledge that can be obtained

from the previous tasks to help RL in the future, which are thus stored in the KB.

1. Prior edges: In many applications, the graph is not given. Instead, it has to be con-

structed based on the data from the new task/domain data DN+1. However, due to

the limited data in DN+1, some edges between nodes that should be present are not

extracted from the data. But such edges between the nodes may exist in some past

domain data. Then, those edges and their associated probabilities can be borrowed.

2. Prior labels: Some nodes in the new task/domain may also exist in some previous

tasks/domains. Their labels in the past domains are very likely to be the same as

those in the current domain. Then, those prior labels can give us a better idea about

the initial label probability distributions of the nodes in the current domain DN+1.

To leverage those edges and labels from the past domains, the system needs to ensure

that they are likely to be correct and applicable to the current task. This is a challenge

problem. Interested readers, please refer to the original paper [Shu et al., 2016].

4.6 SUMMARY AND EVALUATION DATASETS

Although lifelong supervised learning has been researched since the beginning of lifelong

machine learning (LML) at around 1995. little research had been done on lifelong unsuper-

vised learning until recently. Several papers were published in the past few years on lifelong

topic modeling and lifelong information extraction. These methods all exploit the sharing

of topics and concepts across tasks and domains in natural language. As discussed earlier

in the chapter, NLP is quite suitable for LML precisely due to its extensive sharing of

expressions, concepts, and syntactic structures across domains and tasks. We thus believe

LML can have a major impact on NLP.

Here we would also like to highlight a question that people often ask about lifelong

unsupervised learning. That is, when faced with a new task, can we combine all the past

and the current data to form a big dataset to perform the task to achieve the same or even

82 4. LIFELONG UNSUPERVISED LEARNING

better results for the new task? This combining data approach can be seen as a very simple

form of LML. But clearly, the approach is not suitable for lifelong topic modeling because

of three key reasons. First, with a large number of different domain datasets, there will

be a huge number of topics, which makes it very difficult for the user to set the number

of topics. Second, much poorer topics are likely to be the result due to the mix-up of the

data from very different domains which cause wrong words to be grouped together to form

incoherent topics. Thus, true topics specific to the new domain may be lost or mixed up

with topics from other domains. Third, because of the fact that the new data is only a tiny

portion of the big data, topics modeling will not focus on those small and domain specific

topics but only on those big topics that cut cross many domains. Thus those important

domain specific topics will be lost. In a similar way, other information extraction methods

will have similar problems if all the data are combined into one. For example, this approach

cannot solve the problems that the AER system tries to solve.

Evaluation Datasets

We now summarize the evaluation datasets used in the papers discussed in this chapter.

For those publicly available datasets, we provide their URLs. Hopefully they will be useful

to researchers in the field.

Chen and Liu [2014a] created a dataset containing online reviews from 50 domains

or types of products, which are all electronic products. The reviews were crawled from

Amazon.com. Each domain has 1,000 reviews. This dataset has been used in [Chen and

Liu, 2014a, Wang et al., 2016]. This dataset also has four (4) larger review collections with

10,000 reviews in each collection. The dataset is publicly available 1. Chen and Liu [2014b]

expanded this dataset by adding another 50 domains of reviews, each of which contains

reviews from a non-electronic product or domain. Some example product domains include

Bike, Tent, Sandal, and Mattress. Again, each domain contains 1,000 reviews. This larger

dataset is also available publicly 2. This dataset has also been used for evaluation in [Liu

et al., 2016, Shu et al., 2016]. Liu et al. [2016] and Shu et al. [2016] additionally employed

two publicly available aspect-annotated review datasets. One has five review collections

and the other has three review collections [Liu et al., 2015a] 3.

1https://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset.zip
2https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip
3http://www.cs.uic.edu/liub/FBS/sentiment-analysis.htm

https://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset.zip
https://www.cs.uic.edu/~zchen/downloads/KDD2014-Chen-Dataset.zip
http://www.cs.uic.edu/ ̃liub/FBS/sentiment-analysis.htm

83

C H A P T E R 5

Lifelong Semi-Supervised
Learning for Information

Extraction

This chapter focuses on lifelong semi-supervised learning. It mainly covers one system, called

NELL, which stands for Never-Ending Language Learner [Carlson et al., 2010a, Mitchell

et al., 2015]. It is the only lifelong semi-supervised learning system that we are aware of.

NELL is also a good example of the systems approach to lifelong machine learning (LML).

It is perhaps the only live LML system that has been reading the Web to extract certain

types of information (or knowledge) 24 hours a day and 7 days a week since January 2010.

Although several efforts have been made by other researchers to read the Web to extract

various types of knowledge to build large knowledge bases, e.g., WebKB [Craven et al., 1998],

KnowItAll [Etzioni et al., 2004], and YAGO [Suchanek et al., 2007], they are not lifelong

learning systems except ALICE [Banko and Etzioni, 2007]. ALICE works in an LML setting

and is unsupervised. Its goal is to extract information to build a domain theory of concepts

and their relationships. The extraction in ALICE is done using a set of hand-crafted lexico-

syntactic patterns (e.g., “< ? grains > such as buckwheat” and “buckwheat is a < ? food

>”). ALICE also has some ability to produce general propositions by abstraction, which

deduces a general proposition from a set of extracted fact instances. ALICE’s LML feature

is realized by updating the current domain theory with new extractions and by using the

output of each learning cycle to suggest the focus of subsequent learning tasks, i.e., the

process is guided by earlier learned knowledge.

As a semi-supervised information extraction system, NELL has only a small number

of labeled training examples for each of its learning tasks, which is far from sufficient

to learn accurate extractors to extract reliable knowledge. Without reliable knowledge,

lifelong learning is impossible because using wrong knowledge for future learning is highly

detrimental. As we discussed several times earlier in the book, identifying the correct past

knowledge is a major challenge for LML. NELL made an attempt to solve this problem

by extracting different types of related knowledge using different types of data sources and

by constraining the learning tasks so that the tasks can reinforce or help each other and

constrain each other to ensure each of them extracts reasonably correct or robust knowledge.

84 5. LIFELONG SEMI-SUPERVISED LEARNING FOR INFORMATION EXTRACTION

5.1 NELL: A NEVER ENDING LANGUAGE LEARNER

A large part of human knowledge is learned by reading books and listening to lectures.

Unfortunately, computers still cannot understand human language in order to read books

to acquire knowledge systematically. The NELL system represents an effort to extract two

types of knowledge from reading Web documents. Since January 2010, it has been reading

the Web non-stop and has accumulated millions of facts with attached confidence weights

(e.g., servedWith(tea, biscuits)), which are called beliefs, and are stored in a structured

knowledge base. The input to NELL consists of the following:

1. an ontology defining a set of target categories and relations to be learned (in the form

of a collection of predicates), a handful of seed training examples for each, and a set

of constraints that couple various categories and relations (e.g., Person and Sport are

mutually exclusive).

2. webpages crawled from the Web, which NELL uses to extract information.

3. occasional interactions with human trainers to correct some of the mistakes made by

NELL.

With this input, the goal of NELL is two-fold:

1. extract facts from the webpages to populate the initial ontology. Specifically, NELL

continuously extracts the following two types of information or knowledge.

(a) category of a noun or noun phrase, e.g., Los Angeles is a city, Canada is a country,

New York Yankees is a baseball team1.

(b) relations of a pair of noun phrases. For example, given the name of a university

(say Stanford) and a major (say Computer Science), check whether the relation

hasMajor(Stanford, Computer Science) is true.

2. learn to perform the above extraction tasks, also called the reading tasks, better than

yesterday. Learning is done in a semi-supervised manner.

To achieve these objectives, NELL works iteratively in an infinite loop, i.e., hence

never-ending or lifelong, like an EM algorithm. Each iteration performs two main tasks

corresponding to the two objectives:

1. Reading task : read and extract the two types of information or knowledge from the

Web to grow the knowledge base (KB) of structured facts (or beliefs). Specifically,

NELL’s category and relation extractors first propose extraction results as updates

to the KB. The Knowledge Integrator (KI) module then records these individual

1Recently learned knowledge examples in NELL can be found at http://rtw.ml.cmu.edu/rtw/.

http://rtw.ml.cmu.edu/rtw/

5.1. NELL: A NEVER ENDING LANGUAGE LEARNER 85

recommendations, makes the final decision about the confidence assigned to each

potential belief after considering various consistency constraints, and then performs

updates to the KB.

Because of a huge number of possible candidate beliefs and the large size of knowledge

base, NELL considers only the beliefs which it has highest confidence, limiting each

extractor or sub-system to propose only a limited number of new candidate beliefs for

any given predicate on any given iteration. This enables NELL to operate tractably

and also to be able to add millions of new beliefs over many iterations.

2. Learning task : learn to read better with the help of the accumulated knowledge in the

updated knowledge base and coupling constraints. The evidence for improved reading

is shown by the fact that the system can extract more information more accurately.

Specifically, learning in NELL optimizes the accuracy of each learned function. The

training examples consist of a combination of human-labeled instances (the dozen or

so labeled seed examples provided for each category and relation in NELL’s ontology),

labeled examples contributed over time through NELLs crowdsourcing website, a set

of NELL self-labeled training examples corresponding to NELL’s current/updated

knowledge base, and a large amount of unlabeled Web text. The last two sets of the

training examples propel NELL’s lifelong learning and self-improvement process over

time.

Since semi-supervised learning often gives low accuracy because of the limited number

of labeled examples, NELL improves the accuracy and the quality of the extracted

knowledge by coupling the simultaneous training of many extractors. These extractors

extract from different data sources and are learned using different learning algorithms.

The rationale is that the errors made by these extractors are uncorrelated. When mul-

tiple subsystems make uncorrelated errors, the probability that they all make the same

error is much lower, which is the product of individual probabilities (considering them

as independent events). These multiple extractors are linked by coupling constraints.

That is, the under-constrained semi-supervised learning tasks can be made more ro-

bust by imposing constraints that arise from coupling the training of many extractors

for different categories and relations. Their learning tasks are thus guided by one

another’s results, through the shared KB and coupling constraints.

Even with coupling constraints and sophisticated mechanisms to ensure extraction quality,

errors can still be made, which may propagate, accumulate, and even multiply. NELL

mitigates this problem further by interacting with some human trainer each day for about

10-15 minutes to fix some of the errors to prevent their propagation and producing poorer

and poorer results subsequently.

86 5. LIFELONG SEMI-SUPERVISED LEARNING FOR INFORMATION EXTRACTION

5.2 NELL ARCHITECTURE

NELL’s architecture is shown in Figure 5.1. There are four main components in NELL:

data resources, knowledge base, subsystem components, and knowledge integrator.

Data Resources. Since the goal of NELL is to continuously read webpages crawled

from the Web to extract knowledge, webpages are thus the data resources.

Knowledge Base. Knowledge base stores all the extracted knowledge that is ex-

pressed as beliefs. As mentioned above, two types of knowledge are stored in the knowledge

base: instances of various categories and relations. A piece of knowledge can be a candidate

fact or a belief. A candidate fact is extracted and proposed by the subsystem components,

and may be promoted to a belief, which is decided by Knowledge Integrator.

Subsystem Components. It contains several subsystems, which are the extractors

and learning components of NELL. As indicated earlier, in the reading phrase, these sub-

systems perform extraction and propose candidate facts to be included in the knowledge

base. In the learning phrase, they learn based on their individual leaning methods with

the goal of improving themselves using the current state of the knowledge base and the

coupling constraints. Each subsystem is built based on different extraction methods taking

input from different parts of the data resources. The four subsystems, CPL, CSEAL, CMC,

and RL, are discussed in the next section.

Knowledge Integrator. Knowledge Integrator (KI) controls the condition of pro-

moting candidate facts into beliefs. It consists of a set of hand-coded criteria. Specifically,

KI decides what candidate facts are promoted to the status of beliefs. It is based on a hard-

coded rule. The rule says that candidate facts with high confidence from a single source

(those with posterior > 0.9) are promoted. Low-confidence candidates are promoted if they

have been proposed by multiple sources. Mutual-exclusion and type-checking constraints

are also used in KI. In particular, if a candidate fact does not satisfy a constraint (mutual-

exclusion or type-checking) based on the existing beliefs in the KB, it is not promoted.

Once a candidate fact becomes a belief, it never gets demoted.

5.3 EXTRACTORS AND LEARNING IN NELL

As we can see in Figure 5.1, there are four major subsystem components that perform

extraction and learning [Carlson et al., 2010a]. We discuss them now.

• Coupled Pattern Learner (CPL): In the reading phrase, the extractors in the CPL

subsystem extract both category and relation instances from unstructured free Web

text using contextual patterns. At the beginning, they are the given seed patterns and

later they are the learned and promoted patterns from previous iterations. Example

category and relation extraction patterns are “mayor of X” and “X plays for Y,”

respectively.

5.3. EXTRACTORS AND LEARNING IN NELL 87

Figure 5.1: NELL system architecture [Carlson et al., 2010a].

In the learning phrase, such patterns are learned in CPL using some heuristics pro-

cedures based co-occurrence statistics between noun phrases and existing contextual

patterns (both defined using part-of-speech tag sequences) for each predicate of inter-

est. The learned patterns essentially serve as classification functions that classify noun

phrases by semantic categories [Mitchell et al., 2015] (e.g., a boolean valued function

that classifies whether any given noun phrase refers to a city). Relationships between

predicates are used to filter out patterns that are too general.

Candidate instances and patterns extracted and learned are also filtered using mutual-

exclusion and type-checking constraints to remove those possible invalid instances

and patterns. Mutual-exclusion constraints enforce that mutually exclusive predi-

cates cannot both be satisfied by the same input x. For example, x cannot be both

a person and a car. Type-checking constraints are used to couple or to link rela-

tion extractors (or contextual patterns for relation extraction) with category extrac-

tors (or contextual patterns for category extraction). For example, given the relation

universityHasMajor(x, y), x should be of type/category university and y should be

of type/category major. Otherwise, the relation is likely to be wrong.

The remaining candidates are then ranked using simple co-occurrence statistics and

estimated precisions. Only a small number of top ranked candidate instances and

patterns are promoted and retained in the knowledge base for future used. Additional

details about CPL can be found in [Carlson et al., 2010b].

88 5. LIFELONG SEMI-SUPERVISED LEARNING FOR INFORMATION EXTRACTION

• Coupled SEAL (CSEAL): CSEAL is an extraction and learning system that extracts

facts from semi-structured webpages using wrapper induction. Its core system is an

existing wrapper induction system called SEAL [Wang and Cohen, 2009]. SEAL is

based on an semi-supervised machine learning model called set-expansion, also known

as learning from positive and unlabeled examples (PU learning) [Liu et al., 2002]. Set

expansion or PU learning is defined as follows. Given a set S of seeds of a certain tar-

get type (or positive examples), and a set of unlabeled examples U (which is obtained

by querying the Web using the seeds), the goal of set-expansion is to identify examples

in U that belong to S. SEAL uses wrappers. For a category, the wrapper is defined

by character strings which specify the left context and right context of an entity to

be extracted. The entities are mined from Web lists and tables of the category. For

example, a wrapper <li class=“player arg1”> <h4> indicates that

arg1 should be a player. An instance is extracted by a wrapper if it is found anywhere

in the document matching with the left and right contexts of the wrapper. The rela-

tions are extracted in the same manner. However, wrappers for these predicates are

learned independently in SEAL. SEAL does not have the mechanism for exploiting

mutual exclusion or type-checking constraints. CSEAL added these constraints on top

of SEAL so that the candidates extracted from the wrappers can be filtered out if

they violate the mutual-exclusion and type-checking constraints.

Again, the remaining candidates are ranked and only a small number of top-ranked

candidate instances and patterns are promoted and retained in the knowledge base

for future use. Additional details about CPL can be found in [Carlson et al., 2010b,

Wang and Cohen, 2009].

• Coupled Morphological Classifier (CMC): CMC consists of a set of binary classifiers,

one for each category, for classifying whether the extracted candidate facts/beliefs by

other components/subsystems are indeed of their respective categories. To ensure high

precision, the system classifies only up to 30 new beliefs per predicate in each iteration,

with a minimum posterior probability of 0.75. All classifiers are built using logistic

regression with L2 regularization. The features are various morphological clues, such

as words, capitalization, affixes, and parts-of-speech. The positive training examples

are obtained from the beliefs in the current knowledge base, and negative examples

are items inferred using mutual-exclusion constraints and the current beliefs in the

knowledge base.

• Rule Learner (RL): RL is a first-order relational learning system similar to

FOIL [Quinlan and Cameron-Jones, 1993]. Its goal is to learn probabilistic Horn

clauses and to use them to infer new relations from the existing relations in the

knowledge base. This reasoning capability represents an important advance of NELL

that does not exist in most current information extraction or LML systems.

5.4. COUPLING CONSTRAINTS IN NELL 89

In Mitchell et al. [2015], several new subsystem components were also proposed, e.g., NEIL

(Never Ending Image Learner), which classifies a noun phrase using its associated visual

images, and OpenEval (an online information validation technique), which uses real time

Web search to gather the distribution of text contexts around a noun phrase to extract

instances of predicates. More information about them and others can be found in the

original paper.

5.4 COUPLING CONSTRAINTS IN NELL

We have already seen two types of coupling constraints, i.e., mutual-exclusion and type-

checking constraints. NELL also uses several other coupling constraints to ensure the quality

or precision of its extraction and learning results. We believe that coupling constraints are

an important feature and novelty of NELL, which help solve a key problem in lifelong

machine learning (LML), i.e., how to ensure that the learned or extracted knowledge is

correct (see Section 1.3). Without a reasonable solution to this problem, LML is difficult

because errors can propagate and even multiply as the iterative process progresses. Below

are three other coupling constraints that NELL uses.

• Multi-view co-training coupling constraint : In many cases, the same category or rela-

tion can be learned from different data sources, or views. For example, a predicate

instance can be learned from free text by CPL and also extracted from some semi-

structured webpages by CSEAL using its wrapper. This constraint requires that the

two results should agree with each other. In general, for extraction or learning cat-

egories, given a noun phrase X, multiple functions that use different sets of noun

phrase features (or views) to predict if X belongs to a category Yi should give the

same result. The same idea also applies to extraction or learning of relations.

• Subset/superset coupling constraint : When a new category is added to NELL’s ontol-

ogy, its parents (supersets) are also specified. For example, “Snack” is declared to be

a subset of “Food.” If X belongs to “Snack”, then X should satisfy the constraint of

being “Food.” This constraint couples or links the learning tasks that extract “Snack”

to those that learn to extract “Food.”

• Horn clause coupling constraint : The probabilistic Horn clauses learned from

FOIL [Quinlan and Cameron-Jones, 1993] give another set of logic based constraints.

For example, X living in Chicago and Chicago being a city in USA can lead to X

lives in USA (with a probability p). In general, whenever NELL learns a Horn clause

rule to infer new beliefs from existing beliefs in the knowledge base, this rule serves

as a coupling constraint.

90 5. LIFELONG SEMI-SUPERVISED LEARNING FOR INFORMATION EXTRACTION

5.5 SUMMARY

NELL is a good example of a lifelong semi-supervised information extraction system. This

chapter gave an introduction to its key ideas, architecture, and various sub-systems and

algorithms. It is by no means exhaustive. Many specific aspects of the system were not

given in-depth treatments. The system is also continuously evolving and is becoming more

and more powerful. What is very valuable about NELL is that it is perhaps the only non-

stop or continuous learning system that extracts information from both unstructured text

and semi-structure documents on the Web. We believe that more such real lifelong learning

systems should be constructed to truly realize continuous learning, knowledge accumulation,

and problem solving. Such systems will allow researchers to gain true insights into lifelong

learning on how lifelong learning may work in practice and what the technical challenges

are. These insights will help us design better and more practically useful lifelong learning

systems and techniques.

Finally, we map NELL’s components to the components in the general architecture

of LML in Section 1.3. NELL’s knowledge base is the knowledge base of LML in Section

1.3. It stores all extracted facts and relations, known as beliefs. It also has some rea-

soning capabilities, which other current lifelong learning algorithms/systems do not have.

Knowledge-based learner is the set of learners and extractors discussed in Section 5.3

and Section 5.4. The issues of correctness and applicability of knowledge are mainly handled

by coupling constraints and interactions with human trainers.

91

C H A P T E R 6

Lifelong Reinforcement
Learning

This chapter discusses lifelong reinforcement learning. Reinforcement learning is the prob-

lem where an agent learns actions through trial and error interactions with a dynamic

environment [Kaelbling et al., 1996, Sutton and Barto, 1998]. In each interaction step, the

agent receives input the current state of the environment. It chooses an action from a set of

possible actions. The action changes the state of the environment. Then, the agent gets the

value of this state transition, which can be a reward or penalty. This process repeats as the

agent learns a trajectory of actions to optimize its objective, e.g., to maximize the long run

sum of rewards. The goal of reinforcement learning is to learn an optimal policy that maps

states to actions (possibly stochastically). There is a recent surge in research in reinforce-

ment learning due to its successful use in the computer program called AlphaGo [Silver

et al., 2016], which won 4-1 against one of the legendary professional Go players Lee Sedol

in March 20161.

Let us see an example of a reinforcement learning setting [Tanaka and Yamamura,

1997]. This example involves an agent trying to find gold in an N ×N gridworld maze. The

agent can choose one action from a set of possible actions, moving left/right/up/down and

picking up an item. The maze, which is the environment, may have obstacles, monsters,

and gold. When the agent picks up the gold, it gets a positive reward (say +1000). If the

agent is killed by a monster, it gets a negative reward (say −1000). When the agent steps

into an obstacle, it will retreat to the previous location. The agent keeps interacting with

the environment through actions and reward feedback to learn the best sequence of actions.

The goal is to maximize the total reward (final reward - cost of all actions taken).

Reinforcement learning is different from supervised learning in that there is no in-

put/output pair in reinforcement learning. In supervised learning, the manual label indi-

cates the best output label for an input. However, in reinforcement learning, after an action

is taken, the agent is not told which action would have been in its best long term inter-

ests. So the agent needs to gain useful experience and learn an optimal sequence of actions

through interactions with the environment via feedback.

However, in order to achieve high-quality performance, the agent usually needs a large

amount of quality experience. This is particularly true in high-dimensional control problems.

1https://deepmind.com/alpha-go

https://deepmind.com/alpha-go

92 6. LIFELONG REINFORCEMENT LEARNING

The high cost of gaining such experience is a challenging issue. In order to overcome it,

lifelong reinforcement learning has been proposed and studied by several researchers. The

motivation is to use the experience accumulated from other tasks to improve the agent’s

decision making in the current new task.

Lifelong reinforcement learning was first proposed by Thrun and Mitchell [1995] who

worked on a lifelong robot learning problem. They showed that with knowledge memo-

rization, the robot can learn faster while relying less on real-world experimentations. Ring

[1998] proposed a continual-learning agent that aims to gradually solve complicated tasks

by learning easy tasks first. Tanaka and Yamamura [1997] treated each environment as a

task, and constructed an artificial neural network for each task/environment. They then

used the weights of the nodes in the neural networks for existing tasks to initialize the neu-

ral network for the new task. Konidaris and Barto [2006] proposed to use approximations

of prior optimal value functions for initialization in a new task. The intuition is that an

agent can be trained on a sequence of relatively easy tasks to gain experience and develop a

more informative measure of reward, which can then be leveraged when performing harder

tasks. Wilson et al. [2007] proposed a hierarchical Bayesian lifelong reinforcement learn-

ing technique in the framework of Markov Decision Process (MDP). In particular, they

added a random variable to indicate MDP classes, and assumed that the MDP tasks being

assigned to the same class are similar to each other. An nonparametric infinite mixture

model was proposed to take into account the unknown number of MDP classes. Fernández

and Veloso [2013] proposed a policy reuse method in lifelong reinforcement learning where

policies learned from prior tasks are probabilistically reused to help a new task. A nonlinear

feedback policy that generalizes across multiple tasks is also used as knowledge in [Deisen-

roth et al., 2014]. Knowledge policy is defined as a function of both state and task, which

can account for unknown states in an existing task and states in a new task. Brunskill and

Li [2014] studied lifelong reinforcement learning via PAC-inspired option discovery. They

showed that the learned options from previous experience can potentially accelerate learn-

ing in the new task. Bou Ammar et al. [2014] proposed a Policy Gradient Efficient Lifelong

Learning Algorithm (PG-ELLA) that extends ELLA [Ruvolo and Eaton, 2013b] for life-

long reinforcement learning. Along the same line, Bou Ammar et al. [2015a] proposed a

cross-domain lifelong reinforcement learner based on policy gradient methods. Later, Bou

Ammar et al. [2015c] added constraints to PG-ELLA for safe lifelong learning. This chapter

reviews the representative techniques proposed for lifelong reinforcement learning.

6.1 LIFELONG REINFORCEMENT LEARNING THROUGH
MULTIPLE ENVIRONMENTS

Tanaka and Yamamura [1997] proposed a lifelong reinforcement learning technique that

treats an environment as a task. In their problem setting, there is a set of tasks, i.e., a set

of environments. The tasks are independent of one anther. For example, there is a set of

6.1. LIFELONG REINFORCEMENT LEARNING THROUGH MULTIPLE ENVIRONMENTS 93

mazes and each maze setting is an environment. In each of the mazes, the places of start and

gold are fixed while other environment factors such as the places of obstacles and monsters,

or the maze size are different. Clearly, the environments and the tasks are assumed to share

some common properties.

A two-step algorithm was proposed for learning [Tanaka and Yamamura, 1997]: a)

acquiring bias from previous N tasks, and b) incorporating bias into the new (N + 1)th

task. The bias here is the knowledge in the LML context to be exploited. The bias consists

of two parts, initial bias and learning bias. The initial bias is used to initialize the model

starting stage. The learning bias is used to influence the modeling or learning process.

A neural network was used as an example model in this work. To incorporate bias, the

authors applied a stochastic gradient method [Kimura, 1995] with a new update equation.

The details are discussed in the subsection below.

6.1.1 ACQUIRING AND INCORPORATING BIAS

For each task/environment, a neural network is constructed. To simplify the model, the

authors used a 2-layer neural network. In each task t, each neural network node (i, j) has a

weight wti,j . The intuition is that if the weight of a node does not change much throughout

the learning process of the tasks, it can be used as an invariant node. On the other hand,

if the weight of a node varies a lot, it is likely to be a task dependent node.

Based on this idea, two types of biases are acquired from the previous N tasks and

they are then applied in the learning phrase of the new (N + 1)th task.

1. Initial bias: In reinforcement learning, the initial random walk stage is usually very

expensive. It is thus important to have a good initialization in order to improve the

speed of convergence and the final performance. Initial bias is used to provide a good

initial stage in order to reduce this cost. The initial weight of a node (i, j) for the

(N + 1)th task is the average weight of the same node across all the previous N tasks,

i.e., 1
N

∑N
t=1w

t
i,j .

2. Learning bias: Since the stochastic gradient method [Kimura, 1995] is used, the weight

of each node can have different learning rate based on their variance in the previous

tasks. Following this intuition, those nodes that have varying weights in the previous

tasks are more likely to be task dependent, and thus require slightly larger learning

rates than those nodes with little weight changes. So for a node (i, j) in the (N + 1)th

task, its weight update is performed as follows:

wN+1
i,j ← wN+1

i,j + αβi,j(1− γ)∆wN+1
i,j , and (6.1)

βi,j = ε(1 + max
t=1,...,N

wN+1
i,j − min

t=1,...,N
wN+1
i,j) . (6.2)

Here α is the universal learning rate for all nodes. βi,j is the learning bias for each

node and it controls the learning rate. ε is the bias parameter.

94 6. LIFELONG REINFORCEMENT LEARNING

In a nutshell, the neural network for the (N + 1)th task is initialized with initial bias and

then updated via learning bias with gradient updating equations of Equations 6.1 and 6.2.

Mapping to Components in the LML Architecture in Section 1.3

The knowledge base of Section 1.3 is the data structure that stores all the neural networks

of the previous tasks. Knowledge-based learner is the whole training algorithm here,

which first computes the initial bias and the learning bias from previous neural networks

stored in the knowledge base and then uses them to initialize the neural network for the

new task and to train the network. The issues of correctness and applicability of previous

knowledge are not dealt with explicitly, but are handled implicitly to some extent in the

new task optimization.

6.2 HIERARCHICAL BAYESIAN LIFELONG
REINFORCEMENT LEARNING

Wilson et al. [2007] worked on reinforcement learning in the framework of Markov Deci-

sion Process (MDP). The way to solve a MDP problem is to find an optimal policy that

minimizes the total expected costs/penalties. Instead of working on only one MDP task in

isolation, the authors considered a sequence of MDP tasks, and proposed a model called

MTRL (Multi-Task Reinforcement Learning). Although the term multi-task is used in the

name, MTRL is in fact an online multi-task learning method, which is considered as a

lifelong learning method. The key idea of MTRL is the use of the hierarchical Bayesian

approach to model classes of MDPs. Each class (or cluster) has some shared structure,

which is regarded as the shared knowledge and is transferred to a new MDP of the class.

This strong prior makes the learning of the new MDP much more efficient.

6.2.1 MOTIVATION

This work assumes that the MDP tasks are chosen randomly from a fixed but unknown

distribution [Wilson et al., 2007]. As a result, the MDP tasks share some aspects that enable

the knowledge extraction and transfer. To understand why the shared aspects may help

more quickly learn the optimal policy for a new MDP task, let’s follow the gold-finding

example at the beginning of the chapter.

Each MDP task is to find gold in a maze. The maze may contain obstacles, monsters,

and gold. Depending on the type of environment, certain types of rocks might be good

indicators of the presence of gold while some other types of rocks may be correlated with

the absence of gold. Also, some signals such as noise or smell may come from monsters

nearby. If an agent learns everything from scratch, it may take a long time to learn all

these rules and adjust its behaviors. However, with the observations from previous MDP

tasks, the agent may learn some useful knowledge, e.g., some monsters carry a strong smell.

6.2. HIERARCHICAL BAYESIAN LIFELONG REINFORCEMENT LEARNING 95

Using such knowledge, the agent can quickly adjust itself to avoid this type of monsters

when it detects the smell. The idea is that given the knowledge from the previous MDP

tasks and a small amount of experience in the new MDP task, the agent can exploit the

knowledge to explore the new MDP environment much more efficiently.

6.2.2 HIERARCHICAL BAYESIAN APPROACH

Bayesian modeling was applied to tackle the problem in the paper. In the single-task sce-

nario, a Bayesian model-based reinforcement learning computes the posterior distribution

P (M |Θ,O) where M denotes a random variable over MDPs. O is the observation set and

Θ is the set of model parameters. This distribution is used to help the agent choose actions.

It will evolve with more actions and observations. One näıve way to extend this single-task

approach to lifelong learning is to assume that all the MDP tasks are the same and treat

the observations as coming from a single MDP task. Obviously, if the MDP tasks are not

the same, this näıve method does not perform well.

To consider the differences between MDP tasks, Wilson et al. [2007] proposed a

hierarchical Bayesian model that adds a random variable C to indicate MDP classes (or

groups of similar MDPs). The assumption is that the MDP tasks within the same class

assignment are similar to each other while the MDP tasks with different class assignments

are very different from each other. Here,M denotes an MDP task and M denotes a random

variable over MDPs. The sequence of MDP tasks are represented by M1,M2, Instead

of having the posterior distribution as P (M |Θ,O) in the single-task case, the posterior

distribution for ith task in the hierarchical case is modeled as P (M |Ψ,Oi) where Ψ =

{Θ, C}. Θ denotes the parameters under each class and C means all class assignments. Oi
is the observation set for taskMi. Using this posterior distribution, an approximate MDP

M̂i is learned by leveraging previous tasks to approximate Mi. This addition of the class

layer makes the model hierarchical. The intuition is that the knowledge in a class can be

transferred to a MDP task within the same class, but not to a MDP task outside the class.

To take into account of the unknown number of MDP tasks in lifelong reinforcement

learning, a nonparametric infinite mixture model was used in the class layer. In the non-

parametric infinite mixture model, it is assumed that there is an infinite number of classes

(or mixture components), which account for the case of seeing a new MDP task that is

dissimilar to all previous ones. Specifically, Dirichlet process is applied. Dirichlet process is

a stochastic process involving a base distribution G0 and a positive scaling parameter α.

The parameter α governs the probability with which the Dirichlet Process assumes a new

class should be assigned. This new class is also called an auxiliary class. Using the above

process, a Gibbs sampling process can be designed to repeatedly sample class assignments

until convergence.

96 6. LIFELONG REINFORCEMENT LEARNING

6.2.3 MTRL ALGORITHM

We now present the MTRL algorithm (see Algorithm 8). At the beginning, without having

any MDP task, the hierarchical model parameters Ψ are initialized to uninformed values

(line 1). When each new MDP task Mi arrives (line 2), the algorithm goes through two

steps: (1) it applies the knowledge Ψ learned from the previous MDP tasks to learn an

approximate MDP M̂i forMi (lines 4− 10) and (2) it updates the old knowledge to generate

the new knowledge from M̂1, . . . , M̂i (line 12) after considering the new task.

Algorithm 8 Hierarchical Bayesian MTRL Algorithm

Input : A sequence of MDP tasks M1,M2, . . .

Output : Hierarchical model parameters Ψ

1: Initialize the hierarchical model parameters Ψ

2: for each MDP task Mi from i = 1, 2, . . . do

3: // Step 1: apply the past knowledge for fast learning of the new MDP task Mi

4: Oi = ∅; // Oi is the observation set for the environment in Mi

5: while policy πi has not converged do

6: M̂i ← SampleAnMDP(P (M |Ψ,Oi)) // P (M |Ψ,Oi) is the posterior distribution

7: πi = Solve(M̂i) // e.g., by value iteration

8: Run πi in Mi for k steps

9: Oi = Oi∪ {observations from k steps}
10: end while

11: // Step 2: learn the new parameters (knowledge) from M̂1, . . . , M̂i

12: Ψ← UpdateModelParameters(Ψ|M̂1, . . . , M̂i)

13: end for

For step 1, the function SampleAnMDP samples a set of MDPs based on the posterior

distribution P (M |Ψ,Oi), where M denotes a random variable over all MDPs, and returns

an MDP with the highest probability (say M̂i). This is how the past knowledge is used.

We will explain this function in Section 6.2.5). An optimal policy πi is then learned for M̂i

(line 7) using a method like value iteration [Sutton and Barto, 1998]. After πi is obtained,

it is applied for k steps in the Mi environment (line 8). This part is similar to Thompson

sampling [Strens, 2000, Thompson, 1933, Wang et al., 2005] except that a set of MDPs

are sampled first and the one with the highest probability is selected. The observations

gathered from the k steps are added into the observation set Oi, which changes the posterior

distribution P (M |Ψ,Oi). The system then goes to the next iteration to sample a new M̂i.

This process is repeated until the policy πi converges.

For step 2, line 12 learns a new set of hierarchical model parameters Ψ from

M̂1, . . . , M̂i, which contains the class assignment for each MDP task and the model pa-

6.2. HIERARCHICAL BAYESIAN LIFELONG REINFORCEMENT LEARNING 97

rameters associated with each class. Note that the function UpdateModelParameters (see

Section 6.2.4) can automatically decide the number of classes, as well as the inherent class

structure in the hierarchical model.

6.2.4 UPDATING HIERARCHICAL MODEL PARAMETERS

We first describe how to update the hierarchical model parameters Ψ (line 12 in Algo-

rithm 8). Details about sampling of a MDP (line 6) will be discussed in the next subsec-

tion. Gibbs sampling is used to find the proper set of model parameters (see Algorithm 9).

The techniques in Algorithm 9 can handle the situation where the base distribution G0 is

not conjugate to the component distribution. In Gibbs sampling, the Markov chain state

includes Θ and C, where Θ = {θ1, . . . , θK} (K is the number of existing classes) is the set of

class parameters and C = {C1, . . . , Ci} is the set of class assignments. The use of auxiliary

classes allows for the assignments of novel or new classes. m is the number of such auxiliary

classes and is empirically set to a small value.

In Algorithm 9, the Markov chain state is initialized with the current parameters

(line 3). Lines 7− 10 draw the parameters for each auxiliary class. Line 12− 14 call Al-

gorithm 10 to sample a class assignment for each M̂j . Given the class assignments, a new

set of class parameters are sampled (line 16). The sampling depends on the specific form

of MDP distribution, and was not specified in the paper. After the burn-in period, Gibbs

sampler keeps running until it converges. The final Markov state is returned to update the

hierarchical model parameters (line 20).

6.2.5 SAMPLING AN MDP

Finally, we describe the function SampleAnMDP (line 6 in Algorithm 8), which samples

an MDP. For accurate sampling, the agent or system needs to have an accurate hierar-

chical model. Then it should update its model parameters Ψ (knowledge) whenever a new

observation is available. However, this is computationally expensive for lifelong learning

considering that the number of observations and the number of MDP tasks can both be

large. Instead, Wilson et al. [2007] proposed to keep the parameters Ψ fixed when learning

a new MDP. That’s why line 12 in Algorithm 8 is outside of the while loop (lines 5− 10).

Note that Ψ includes the class assignments C and class parameters Θ, which together is

called an informed prior, and they remain fixed during the exploration of a new MDP.

The process of generating an MDP is such that a class c is sampled first and the

MDP M̂i is sampled afterward based on the class. The class is sampled with the help of

Algorithm 10. Here is how the past knowledge is used to help future learning. That is, if

c belongs to a known class c ∈ {1, ...,K}, then the information in θc is used as the prior

knowledge for exploration (see below). Otherwise, the agent uses a new class and sample

the class parameters θc from the prior G0 (no past knowledge is used).

98 6. LIFELONG REINFORCEMENT LEARNING

Algorithm 9 Update Hierarchical Model Parameters.

Input : Model estimates {M̂1, . . . , M̂i} for MDP tasks {M1, . . . ,Mi}, MDP distribution F

given a class, Dirichlet Process DP(G0, α)

Output : Updated hierarchical model parameters Ψ̂

1: Let i be the total number of MDPs seen so far.

2: Let m be the number of auxiliary classes

3: Initialize the Markov chain state (Θ0, C0)

4: k ← 0

5: while Gibbs sampling is not converged do

6: K = |Θk|
7: for c = K + 1 to K +m do

8: Draw θc from G0

9: Θk = Θk ∪ {θc}
10: end for

11: Ψ̂ = {Θk, Ck}
12: for j = 1 to i do

13: cj = SamplingClassAssignment(Ψ̂, M̂j , F,K,m,G0, α)

14: end for

15: Remove all classes with zero MDPs

16: Θk+1 = Sample(P (Θk|c1, . . . , ci))
17: Ck = {c1, . . . , ci}
18: k ← k + 1

19: end while

20: return Ψ̂ = {Θk, Ck}

6.2. HIERARCHICAL BAYESIAN LIFELONG REINFORCEMENT LEARNING 99

SampleAnMDP works as follow: at the beginning, M̂i is initialized by sampling from

the informed prior, and Ci is initialized similarly. In subsequent iterations, after each set

of observations (line 8 in Algorithm 8), the agent samples a sequence of class assignments

Ci by running Algorithm 10 multiple times and picks the most probable one as the class

assignment for M̂i. Recall that α controls how likely the returned class c is an auxiliary

class (unseen class), i.e., K + 1 ≤ c ≤ K +m (line 4 of Algorithm 10). Once the class c

is sampled, the agent then samples an MDP from class c using the posterior distribution

P (Mi|θc,Oi). The algorithm is generic and applicable to different forms of MDP distribution

F which lead to distinct specific sampling procedures. See the original paper [Wilson et al.,

2007] for additional details.

Algorithm 10 Sampling Class Assignment

Input : Hierarchical model parameters Ψ, MDP parameter estimate M̂j , MDP distribution F

given a class, the number of existing classes K, the number of auxiliary classes m, Dirichlet

Process DP(G0, α)

Output : Class assignment Cj for M̂j

1: Let i be the total number of MDPs seen so far

2: Let n−j,c be the number of MDPs assigned to class c without considering class assign-

ment of M̂j

3: Let Fc,j denotes F (θc, M̂j), the probability of M̂j in class c (the exact form may differ

in different problems)

4: Sample and return Cj according to:

P (Cj = c) ∝

{
n−j,c

i−1+αFc,j , 1 ≤ c ≤ K
α/m
i−1+αFc,j , K + 1 ≤ c ≤ K +m

Mapping to Components in the LML Architecture in Section 1.3

The knowledge base of Section 1.3 is data structure that stores the hierarchical model

parameters Ψ learned from previous tasks and all past approximate MDPs. Knowledge-

based learner is the MTRL algorithm. The issues of correctness and applicability of

previous knowledge is not explicitly handled, but are considered implicitly when it assigns

a new class to a new task if the previous classes are not appropriate.

100 6. LIFELONG REINFORCEMENT LEARNING

6.3 PG-ELLA: LIFELONG POLICY GRADIENT
REINFORCEMENT LEARNING

Instead of augmenting the stochastic gradient method with lifelong learning capability in

Section 6.1, Bou Ammar et al. [2014] employed a policy gradient method [Sutton et al.,

2000]. Specifically, Bou Ammar et al. [2014] extended a single-task policy gradient algo-

rithm to a lifelong learning algorithm called Policy Gradient Efficient Lifelong Learning

Algorithm (PG-ELLA). The lifelong idea in PG-ELLA is similar to that in ELLA [Ruvolo

and Eaton, 2013b] (Section 3.5). In this section, we first introduce policy gradient rein-

forcement learning and then present the PG-ELLA algorithm. Throughout this section, we

adopt the notations in [Bou Ammar et al., 2014].

6.3.1 POLICY GRADIENT REINFORCEMENT LEARNING

In reinforcement learning, an agent sequentially chooses actions to perform to maximize its

expected reward or return. As mentioned earlier, such problems are typically formalized

as a Markov Decision Process (MDP) 〈X ,A, P,R, λ〉. X ⊆ Rd is the set of states that is

potentially infinite with d being the dimension of the environment. A ⊆ Rda is the set of

all possible actions and da is the number of possible actions. P : X ×A×X → [0, 1] is the

state transition probability function, i.e., given a state and an action, it gives the probability

of the next state. R : X ×A → R is the reward function that provides the agent feedback.

λ ∈ [0, 1) is the degree to which rewards are discounted over time.

At each time step h, being in the state xh ∈ X , the agent must choose an action

ah ∈ A. After the action is taken, a new state xh+1 ∼ p(xh+1|xh, ah) is transited to as given

by P . At the same time, a reward rh+1 = R(xh, ah) is sent to the agent as feedback. A policy

is defined as a probability distribution over pairs of state and action, π : X ×A → [0, 1].

π(a|x) indicates the probability of choosing action a given state x. The goal of reinforcement

learning is to find an optimal policy π∗ that maximizes the expected return for the agent.

The actual sequence of state-action pairs forms a trajectory τ = [x0:H , a0:H] over a possibly

infinite horizon H.

Policy gradient methods have been widely applied in solving high-dimensional rein-

forcement learning problems [Bou Ammar et al., 2014, Peters and Bagnell, 2011, Peters and

Schaal, 2006, Sutton et al., 2000]. In a policy gradient method, the policy is represented by

a parametric probability distribution πθ(a|x) = p(a|x;θ) that stochastically chooses action

a given state x based on a vector θ of control parameters. The objective is to find the

optimal parameters θ∗ that maximize the expected average return:

J (θ) =

∫
T
pθ(τ)R(τ)dτ , (6.3)

where T denotes the set of all possible trajectories. The distribution over the trajectory τ

is defined as:

6.3. PG-ELLA: LIFELONG POLICY GRADIENT REINFORCEMENT LEARNING 101

pθ(τ) = P0(x0)
H−1∏
h=0

p(xh+1|xh, ah)πθ(ah|xh) . (6.4)

Here P0(x0) represents the probability of the initial state. The average return R(τ) is

defined as:

R(τ) =
1

H

H−1∑
h=0

rh+1 . (6.5)

Most policy gradient algorithms learn the parameters θ by maximizing a lower bound

on the expected return of J (θ) (Equation 6.3). It compares the result of the current policy

πθ and that of a new policy πθ̃. As in [Kober and Peters, 2011], this lower bound can be

obtained using Jensen’s inequality and the concavity of the logarithm:

logJ
(
θ̃
)

= log

∫
T
pθ̃(τ)R(τ)dτ

= log

∫
T

pθ(τ)

pθ(τ)
pθ̃(τ)R(τ)dτ

≥
∫
T
pθ(τ)R(τ) log

pθ̃(τ)

pθ(τ)
dτ (using Jensen’s inequality)

= −
∫
T
pθ(τ)R(τ) log

pθ(τ)

pθ̃(τ)
dτ

∝ −DKL

(
pθ(τ)R(τ)||pθ̃(τ)

)
= JL,θ(θ̃) ,

(6.6)

where DKL denotes the KL-Divergence. From the above, one can minimize the KL-

Divergence between the trajectory distribution pθ of the current policy πθ times its reward

function R and the trajectory distribution pθ̃ of the new policy πθ̃.

6.3.2 POLICY GRADIENT LIFELONG LEARNING SETTING

The problem setting of policy gradient lifelong learning is similar to the problem set-

ting of ELLA (Efficient Lifelong Learning Algorithm) (Section 3.5.1). That is, the rein-

forcement learning tasks arrive sequentially in a lifelong manner. Each task t is a MDP

〈X t,At, P t, Rt, λt〉 with the initial state distribution P t0 . Different from the supervised learn-

ing, each reinforcement learning task does not contain labeled training data. In each task,

the agent learns multiple trajectories before moving to the next task. Let N be the number

of tasks encountered so far. N may be unknown to the agent. The goal is to learn a set of

optimal policies {π∗
θ1 , π∗θ2 , . . . , π∗θN} with corresponding parameters {θ1∗,θ2∗, . . . ,θN∗}.

102 6. LIFELONG REINFORCEMENT LEARNING

6.3.3 OBJECTIVE FUNCTION AND OPTIMIZATION

Similar to ELLA, PG-ELLA also assumes that each task model’s parameters θt can be rep-

resented by a linear combination of a set of shared latent components L (shared knowledge)

and a task-specific coefficient vector st, i.e., θt = Lst [Bou Ammar et al., 2014]. In other

words, PG-ELLA maintains k sparsely shared basis model components for all task mod-

els. The k basis model components are represented by L ⊆ Rd×k. The task-specific vector

st should be sparse in order to accommodate the differences among tasks. The objective

function of PG-ELLA is as follows:

1

N

N∑
t=1

min
st

{
−J

(
θt
)

+ µ‖st‖1
}

+ λ ‖L‖2F , (6.7)

where ‖ · ‖1 is the L1 norm, which is controlled by µ as a convex approximation to the

true vector sparsity. ‖L‖2F is the Frobenius norm of matrix L and λ is the regularization

coefficient for matrix L. This objective function is closely related to Equation (3.7) in

ELLA. This objective function is not jointly convex in L and st. Thus, the alternating

optimization strategy was adopted to find a local minimum, i.e., optimizing L while fixing

st and optimizing st while fixing L.

Combining Equations 6.6 and 6.7, we obtain the objective function below:

1

N

N∑
t=1

min
st

{
−JL,θ

(
θ̃
t
)

+ µ‖st‖1
}

+ λ ‖L‖2F . (6.8)

Note the following for JL,θ
(
θ̃
t
)

:

JL,θ
(
θ̃
t
)
∝ −

∫
τ∈Tt

pθt(τ)Rt(τ) log

(
pθt(τ)Rt(τ)

p
θ̃
t(τ)

)
dτ . (6.9)

So the objective function can be rewritten as:

1

N

N∑
t=1

min
st

{[∫
τ∈Tt

pθt(τ)Rt(τ) log

(
pθt(τ)Rt(τ)

p
θ̃
t(τ)

)
dτ

]
+ µ‖st‖1

}
+ λ ‖L‖2F . (6.10)

Again similar to ELLA, there are two major inefficiencies when solving the objective

function: a) the explicit dependence of all available trajectories of all tasks; b) the evaluation

of a single candidate L depends on the optimization of st for each task t. To address the first

issue, the second-order Taylor approximation is used to approximate the objective function.

Following the steps in Section 3.5.3, one can yield the approximate objective function below:

1

N

N∑
t=1

min
st

{
‖θ̂

t
− Lst‖2Ht + µ‖st‖1

}
+ λ‖L‖2F , (6.11)

6.3. PG-ELLA: LIFELONG POLICY GRADIENT REINFORCEMENT LEARNING 103

Ht =
1

2
∇2

θ̃
t
,θ̃

t

{∫
τ∈Tt

pθt(τ)Rt(τ) log

(
pθt(τ)Rt(τ)

p
θ̃
t(τ)

)
dτ

} ∣∣∣∣
θ̃
t
=θ̂

t
and

θ̂
t

= argmin
θ̃
t

{∫
τ∈Tt

pθt(τ)Rt(τ) log

(
pθt(τ)Rt(τ)

p
θ̃
t(τ)

)
dτ

}
.

The second issue arises when computing the objective function for a single L. For

each single candidate L, an optimization problem must be solved to recompute each of the

st’s. When the number of tasks become large, this procedure becomes very expensive. The

approach to remedying this issue follows that in Section 3.5.4. When task t is encountered,

only st is updated while st
′

for other task t′ remains the same. Consequently, any changes

to θt will be transferred to other tasks only through the shared base L. Ruvolo and Eaton

[2013b] showed that this strategy does not significantly affect the quality of model fit when

there are a large number of tasks. Using the previously computed values of st, the following

optimizing process is performed:

st ← argmin
st

‖θ̂
t
− Lmst‖2Ht + µ‖st‖1 , with fixed Lm, and

Lm+1 ← argmin
L

1

N

N∑
t=1

(
‖θ̂

t
− Lst‖2Ht + µ‖st‖1

)
+ λ‖L‖2F , with fixed st ,

where Lm refers to the value of latent components at the mth iteration and t is assumed

to be the particular task the agent is working on. Additional details can be found in [Bou

Ammar et al., 2014].

Mapping to Components in the LML Architecture in Section 1.3

The knowledge base of Section 1.3 is the data structure of PG-ELLA that stores L, the

shared basis model components, the task specific coefficient vector st of each task, and the

MDP of each task. Knowledge-based learner is the whole PG-ELLA algorithm. Like

ELLA, the issues of correctness and applicability of previous knowledge are not explicitly

handled, but are considered to some extent in the optimization process for the new task t.

6.3.4 SAFE POLICY SEARCH FOR LIFELONG LEARNING

PG-ELLA employs unconstrained optimization in learning. However, such unconstrained

optimization could be fragile since the agent may learn to perform dangerous actions and

cause physical damage to the agent or environment. Based on PG-ELLA, Bou Ammar et al.

[2015c] proposed a safe lifelong learner for policy gradient reinforcement learning using an

adversarial framework. It considered the safety constraints on each task when optimizing

the overall performance. The objective function in [Bou Ammar et al., 2015c] is:

104 6. LIFELONG REINFORCEMENT LEARNING

min
L,st

[
ηt × lt(Lst)

]
+ µ‖st‖1 + λ‖L‖2F (6.12)

s.t. AtLst ≤ bt ∀t ∈ {1, 2, . . . , N}
λmin(LLT) ≥ p and λmax(LLT) ≤ q ,

where constraints At ∈ Rd×d and bt ∈ Rd represent the allowed policy combinations. λmin
and λmax are the minimum and maximum eigenvalues. p and q are bounding constraints on

Frobenius norm to ensure the shared knowledge is effective and safe to use. ηt is the design

weight for each task. The above objective function aims to make sure that the knowledge is

safely transferred across tasks and avoid causing the agent to learn and perform irrational

actions. For the method used in solving the optimization problem, please refer to [Bou

Ammar et al., 2015c].

6.3.5 CROSS-DOMAIN LIFELONG REINFORCEMENT LEARNING

The works in [Bou Ammar et al., 2014, 2015c] above assume that the tasks come from a

single task domain, i.e., they share a common state and action space. When the tasks have

different state and/or action spaces, an inter-task mapping [Taylor et al., 2007] is usually

needed to serve as a bridge between tasks. Taylor et al. [2007] studied transfer learning

for reinforcement learning in this setting, i.e., transferring from one source domain to one

target domain where the two domains have different state and action spaces. Given that an

inter-task mapping is provided to an agent as input, Taylor et al. [2007] showed that the

agent can learn one task and then significantly reduce the time it takes to learn another

task.

Also in the transfer learning setting, Bou Ammar et al. [2015b] proposed an algo-

rithm to automatically discover the inter-task mapping between two tasks. They focused

on constructing an inter-state mapping and demonstrated the effectiveness of applying it

from one task to another. The proposed method contains two steps: 1) It learns an inter-

state mapping using the Unsupervised Manifold Alignment (UMA) method in [Wang and

Mahadevan, 2009]. In particular, two sets of trajectories of states are collected from the

source task and target task respectively. Then, each set is transformed to a state feature

vector on which UMA is applied. 2) Given the learned inter-state mapping, a set of ini-

tial states in the target task is mapped into the states in the source task. Then, based

on the mapped source task states, the optimal source task policy is used to produce a set

of optimal state trajectories. Such optimal state trajectories are then mapped back to the

target task to generate target task-specific trajectories. However, the work in [Wang and

Mahadevan, 2009] does not generalize well to lifelong learning scenario as it only learns

the mapping between a pair of tasks. It is computationally expensive to learn the mapping

between each pair of tasks from a large pool of tasks for lifelong learning. Isele et al. [2016]

6.4. SUMMARY AND EVALUATION DATASETS 105

also proposed a zero-shot lifelong machine learning that models the inter-task relationship

via task descriptors.

Bou Ammar et al. [2015a] proposed a more efficient method to maintain and trans-

fer knowledge in a sequence of tasks in the lifelong setting. It is closely related to PG-

ELLA [Bou Ammar et al., 2014]. The difference is that [Bou Ammar et al., 2015a] allows

the tasks to come from different domains, i.e., from different state and/or action spaces.

Bou Ammar et al. [2015a] assumes that all tasks can be grouped into different task groups

where tasks within a task group is assumed to share a common state and action space.

Formally, instead of formulating the task parameters as θt = Lst as in PG-ELLA (Sec-

tion 6.3.3), Bou Ammar et al. [2015a] formulated them as θt = B(g)st where g is the task

group of B(g), which is the latent model components shared within g. Similar to PG-ELLA,

st is assumed to be sparse to accommodate distinct tasks. Furthermore, B(g) is assumed

to be Ψ(g)L where L is the global latent model components (same as that in PG-ELLA),

and Ψ(g) maps the shared latent components L into the basis for each group g of tasks.

Basically, Bou Ammar et al. [2015a] added another layer, i.e., task group, to model the

tasks from different domains. Theoretical guarantees were provided on the stability of the

approach as the number of tasks and groups increases. Please refer to the original paper in

[Bou Ammar et al., 2015a] for additional details.

6.4 SUMMARY AND EVALUATION DATASETS

This chapter introduced the existing lifelong learning work in the context of reinforcement

learning. Again, the current work is not extensive. This is perhaps partly due to the fact

that reinforcement learning was not as popular as traditional supervised learning in the

past because of fewer real-life applications. However, reenforcement learning has come to

the main stream due to the AlphaGo’s success in beating the best human player in the board

game of Go [Silver et al., 2016]. Although games have been the traditional application area

of reinforcement learning, it has significantly more applications than just games. With the

increased popularity of physical as well as software robots (such as chatbots and intelligent

personal assistants) that need to interact with human beings and with other robots in real-

life environments, reinforcement learning will become more and more important. Lifelong

reinforcement learning will be important too because it is very hard to collect a large

number of training examples in such real-life interactive environments with each individual

human person or robot. The system has to learn and accumulate knowledge from all possible

environments that it has experiences in to adapt itself to a new environment quick and to

perform its task well.

Evaluation Datasets

Finally, to help researchers in the field, we summarize the evaluation datasets used in the

papers discussed in this chapter. Tanaka and Yamamura [1997] used 9× 9 mazes data in

106 6. LIFELONG REINFORCEMENT LEARNING

their evaluation. Wilson et al. [2007] tested their hypotheses using a synthetic colored maze

data where the task is to go from one location to another following the least cost path.

PG-ELLA [Bou Ammar et al., 2014] was evaluated on three benchmark dynamic systems:

Simple Mass Spring Damper [Bou Ammar et al., 2014], Cart-Pole [Bocsi et al., 2013], and

Three-Link Inverted Pendulum [Bou Ammar et al., 2014]. Simple Mass Spring Damper

and Cart-Pole were also used in [Bou Ammar et al., 2015c]. Other than the three dynamic

systems, Quadrotor [Bouabdallah, 2007] was also used for evaluation in [Bou Ammar et al.,

2015b]. Bou Ammar et al. [2015a] additionally considered Bicycle and Helicopter systems.

107

C H A P T E R 7

Conclusion and Future
Directions

This book surveyed the existing ideas and techniques of lifelong machine learning (LML). It

also briefly covered closely related learning paradigms such as transfer learning and multi-

task learning, and discussed their differences from LML. There have been some confusions

among researchers about the differences of these learning paradigms, which are not sur-

prising as they are indeed similar. Hopefully, our new definition of LML and subsequent

discussions can clarify the differences and resolve the confusions.

Although LML was proposed in 1995, as we mentioned in the introduction chapter,

the research in the field has not been extensive due to many factors, e.g., its own difficulty,

lack of big data in the past, and the emphasis of statistical and algorithmic learning in the

machine learning (ML) community in the past two decades. However, with the resurgence

of AI and the progress and maturity of statistical machine learning algorithms, LML is

becoming increasingly important because the ultimate goal of machine learning is to learn

continuously and automatically in diverse domains to become more and more knowledge-

able. A system is not intelligent in the general sense without the ability to learn many

different types of knowledge, to accumulate it over time, and to use the knowledge to learn

more and to learn better. Even if a system is extremely good at doing one difficult task, e.g.,

playing Go like AlphaGo or playing chess like Deep Blue, it is not an intelligent system

in the general sense. Because of the physical limitations of human beings, our thinking,

reasoning, and problem solving are probably not or cannot be optimized for complex tasks.

A machine does not have these limitations and is bound to outperform human beings on

well-defined and narrow tasks in restricted environments.

We believe that now it is time to put a significant amount of effort in the research of

LML due to many reasons: First, there is a huge amount of data available now which enables

a system to learn a large quantity of diverse knowledge. Without a large volume of existing

knowledge, it is very difficult to learn more knowledge by leveraging the past knowledge.

This is analogous to human learning. The more we know, the more and better we are able to

learn. Second, statistical machine learning is becoming mature. Further improvements are

becoming more and more difficult, while using the past learned knowledge to help learning

is a natural way going forward, which mimics the human learning process. Existing research

has shown that LML is highly effective. Third, with the increased use of intelligent personal

108 7. CONCLUSION AND FUTURE DIRECTIONS

assistants, chatbots, and physical robots that interact with humans and other systems in

real-life environments, continuous LML capabilities are becoming increasingly necessary.

We expect a large amount of research will appear in the near future, which may result in

major breakthroughs.

Below, we would like to highlight some challenging problems and future directions to

encourage more research in LML. Their solutions can have fundamental impact on LML in

specific and machine learning and AI in general.

1. Correctness of knowledge: How to know whether a piece of past knowledge is

correct is crucial for LML. Because LML leverages the past knowledge to help future

learning, incorrect past knowledge can be very harmful. In a nutshell, LML is a con-

tinuously bootstrapping learning process. Errors can propagate from previous tasks

to subsequent tasks and result in more and more errors. This problem must be solved

or mitigated to a great extent to ensure that LML is effective. Human beings solve

this problem quite effectively. Even if mistakes are made initially, they can correct

them later if new evidences are present. They can also backtrack and fix the errors

along with the wrong inferences made based on the errors. An LML system should

be able to do the same. Some existing LML systems have already tried to address

this problem. For example, Chen and Liu [2014a] used frequent pattern mining to

find those must-links (past knowledge) that appear in multiple domains and assumed

those frequent must-links are more likely to be correct. They also explicitly checked

the validity of the past knowledge in the modeling process. However, the existing

methods are still quite rudimentary.

2. Applicability of knowledge: How to know whether a piece of knowledge is appli-

cable to a new learning task is also critical for LML. Although a piece of knowledge

may be correct and applicable in the context of some previous tasks, it may not be

applicable to the current task due to the wrong context. Without solving this prob-

lem, LML will not be effective either. Again, the systems in [Chen and Liu, 2014a,

Chen et al., 2015] proposed some preliminary mechanisms to deal with the problem in

the context of topic modeling. However, the problem is far from being solved. Much

research is needed. Clearly, this and the above problem are closely related.

3. Knowledge representation and reasoning: In the early days of AI, a significant

amount of research was done on logic-based knowledge representation and reasoning.

But in the past 20 years, AI research has shifted focus to statistical machine learning

based on optimization. Since LML has a knowledge base (KB), knowledge representa-

tion and reasoning are naturally relevant and important. Reasoning allows the system

to infer new knowledge from existing knowledge, which can be used in the new task

learning. Important questions to be answered include what forms of knowledge are

important, how to represent them, and what kinds of reasoning capabilities are use-

109

ful to LML. So far, little research has been done to address these questions in the

context of LML. Knowledge in existing LML systems is mainly represented based on

the direct needs of specific learning algorithms or applications. They still do not have

the reasoning ability except NELL Mitchell et al. [2015], which has some reasoning

capability.

4. Learning with tasks of multiple types and/or from different domains: About

all current research of LML focuses on multiple tasks of the same type. In this case,

it is easier to make use of the past knowledge. If different types of tasks are involved

(e.g., entity recognition and attribute extraction), in order to transfer past knowledge

from one type of tasks to another type, we need to make connections between these

types of tasks. Otherwise, knowledge is hard to use across tasks. Again, the NELL

system [Mitchell et al., 2015] made some attempts to do this. Ideally, this can be done

automatically, but with the current technology, it is hard because the connection needs

to be made via some higher-level knowledge, which needs to be learned separately.

When the tasks are from different domains, LML is also more challenging as it is likely

to need higher-level knowledge too to bridge the gap and to find the relatedness or

similarity among the tasks [Bou Ammar et al., 2015a] in order to ensure knowledge

applicability. In some cases, one may even need to learn from a large number of

domains because each domain only contributes a tiny amount of knowledge (some

domains may contribute none) that is useful to the new task [Chen and Liu, 2014a,b,

Wang et al., 2016]. When multiple types of tasks from very different domains are all

involved, the challenge will be even greater.

5. Self-motivated learning: Current ML techniques typically require human users to

provide a large volume of training data (except in a few cases where the agent can learn

by interacting with a simulator). If a robot is to interact with its environment and

learn continuously, it needs to collect its own training data. For example, a robot sees

a person that it has never seen before, it should take a video or many pictures of the

person to collect positive training data. Actually, in this case, recognizing a stranger

itself is already a challenge. It needs open classification [Fei et al., 2016], which most

current supervised learning algorithms cannot do because they make the closed world

assumption that only those classes appeared in training can appear in testing. In

practice, this assumption is often violated. Open classification aims at solving this

problem. Human beings do this all the time. In a more general term, self-motivated

learning normally means that the robot has a sense of curiosity and is interested in

exploring the unknown and learning new things by itself in the exploration process.

Clearly, this is closely related to unsupervised learning and reinforcement learning.

These forms of learning and, for that matter, integrated learning of all learning forms

should also be made self-motivated. Note that self-motivated learning described here is

110 7. CONCLUSION AND FUTURE DIRECTIONS

different from self-taught learning or unsupervised feature learning reported in [Raina

et al., 2007]. In self-taught learning, a large amount of unlabeled data is used to learn

a good feature representation of the input. The learned feature representation and a

small amount of labeled data are then employed to build a classifier by applying a

supervised learning method.

6. LML for natural language learning: Here we reiterate that NLP is perhaps one of

the most suitable application areas for LML. First of all, most concepts are applicable

across domains and tasks because the same words or phrases are used in different

domains with the same or very similar meanings. It is unclear whether a human brain

has a complex algorithm like HMM or CRF for extraction, but human beings clearly

can do so well in entity recognition. We believe that one of the reasons is that when

we come to extraction or recognition, we already know most of the answers because

we have accumulated a great deal of entities in the past and know how to spot an

entity in text from our past experiences. Second, all NLP tasks are closely related to

each other as we discussed in the introduction chapter, which is obvious because they

together make the meaning of a sentence. Thus, knowledge learned from one task can

help learning of other tasks.

7. Compositional learning: Learning compositionally is likely to be very important

for LML because we believe that it helps ‘understanding’ and enables us to manage

the complexity of the real world. Complex world situations are different composi-

tions and/or permutations of the automic situations. Classic machine learning is not

compositional. For example, as humans, we learn a language by learning individual

words and phrases first, and then sentences, paragraphs, and articles. This kind of

learning is highly reusable. The current learning by labeling each entire sentence or

even entire document with a single label is quite unnatural and hard to reuse. There

are simply too many, almost infinite number of possible sentences, which makes it

very difficult to learn things that do not occur frequently. For statistical machine

learning to work, the data must occur sufficiently frequently in order to compute

reliable statistics. However, if it is possible to learn in a bottom up fashion, from

words, phrases, to sentences and whole documents, it is possible to understand those

infrequent sentences because each of their component words or phrases may have

appeared frequently. The syntactic structures of the sentences may have appeared

frequently too. We believe that people learn compositionally. Compositional learning is

especially useful for image recognition and natural language processing. For example,

we not only can recognize a person as a whole, but also his/her face, head, arms, legs,

torso, etc. For the head, you can recognize, eyes, mouth, nose, eyebrows, etc. Current

learning algorithms do not learn compositionally. Compositional learning is likely to

be very important for LML because it allows the system to share knowledge at any

level of granularity.

111

8. Learning in interaction with humans and systems: It is very inefficient and

perhaps even unlikely for an intelligent system to learn completely by exploring the

world itself to become very intelligent. It should also learn from humans and other

systems. This is the case for human learning. Much of our knowledge was taught by

our teachers, parents, and other people who we have interacted with in our daily lives.

Although in supervised learning, human beings can label data for an LML system,

it is far from enough and quite unnatural too. It also seems that we humans seldom

learn by using labeled data. Depending on the developers of the system or the user to

provide knowledge to the system is also not sufficient. As different types of software

and hardware robots are getting increasingly popular, these systems must be able to

learn from humans and other robots who have the knowledge in a lifelong fashion. In

this way, they will learn much quicker and become more knowledgeable and intelligent.

This list of directions or challenging problems is by no means exhaustive. There are

many other challenges too. As an emerging field, current LML methods and systems are

still primitive. The research area is a wide open field. A significant amount of research

is still needed in order to make breakthroughs. Yet practical applications and intelligent

systems call for this type of advanced machine learning in order to fundamentally advance

the artificial intelligence research and applications. In the near future, we envisage that a

number of large and complex learning systems will be built with the LML capability. Such

systems with large knowledge bases will enable major progresses to be made. Without a

great deal of prior knowledge already, it is difficult to learn more.

112 7. CONCLUSION AND FUTURE DIRECTIONS

113

Bibliography

Gediminas Adomavicius and Alexander Tuzhilin. Toward the Next Generation of Recom-

mender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans.

on Knowl. and Data Eng., 17(6):734–749, 2005.

Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Association Rules.

In VLDB, pages 487–499, 1994.

Naomi S Altman. An introduction to kernel and nearest-neighbor nonparametric regression.

The American Statistician, 46(3):175–185, 1992.

Rie Kubota Ando and Tong Zhang. A High-performance Semi-supervised Learning Method

for Text Chunking. In ACL, pages 1–9, 2005.

David Andrzejewski, Xiaojin Zhu, and Mark Craven. Incorporating Domain Knowledge

into Topic Modeling via Dirichlet Forest Priors. In ICML, pages 25–32, 2009.

David Andrzejewski, Xiaojin Zhu, Mark Craven, and Benjamin Recht. A framework for

incorporating general domain knowledge into latent Dirichlet allocation using first-order

logic. In IJCAI, pages 1171–1177, 2011.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex Multi-task Fea-

ture Learning. Machine Learning, 73(3):243–272, 2008.

Bikramjit Banerjee and Peter Stone. General Game Learning Using Knowledge Transfer.

In IJCAI, pages 672–677, 2007.

Michele Banko and Oren Etzioni. Strategies for Lifelong Knowledge Extraction from the

Web. In K-CAP, pages 95–102, 2007.

Jonathan Baxter. A Model of Inductive Bias Learning. Journal of Artificial Intelligence

Research, 12:149–198, 2000.

Shai Ben-David and Reba Schuller. Exploiting Task Relatedness for Multiple Task Learning.

In COLT, 2003.

Yoshua Bengio. Learning deep architectures for AI. Foundations and trends{ R©} in Machine

Learning, 2(1):1–127, 2009.

Yoshua Bengio. Deep Learning of Representations for Unsupervised and Transfer Learning.

Unsupervised and Transfer Learning Challenges in Machine Learning, 7, 2012.

114 BIBLIOGRAPHY

Steffen Bickel, Michael Brückner, and Tobias Scheffer. Discriminative Learning for Differing

Training and Test Distributions. In ICML, pages 81–88, 2007.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. The

Journal of Machine Learning Research, 3:993–1022, 2003.

John Blitzer, Ryan McDonald, and Fernando Pereira. Domain Adaptation with Structural

Correspondence Learning. In EMNLP, pages 120–128, 2006.

John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood, Boom-boxes

and Blenders: Domain Adaptation for Sentiment Classification. In ACL, pages 440–447,

2007.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training.

In COLT, pages 92–100, 1998.

Botond Bocsi, Lehel Csató, and Jan Peters. Alignment-based transfer learning for robot

models. In IJCNN, pages 1–7, 2013.

Edwin V Bonilla, Kian M Chai, and Christopher Williams. Multi-task Gaussian Process

Prediction. In NIPS, pages 153–160. 2008.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast Kernel Classifiers

with Online and Active Learning. The Journal of Machine Learning Research, 6:1579–

1619, 2005.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E Taylor. Online Multi-Task

Learning for Policy Gradient Methods. In ICML, pages 1206–1214, 2014.

Haitham Bou Ammar, Eric Eaton, Jose Marcio Luna, and Paul Ruvolo. Autonomous

Cross-Domain Knowledge Transfer in Lifelong Policy Gradient Reinforcement Learning.

In AAAI, 2015a.

Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E Taylor. Unsupervised

cross-domain transfer in policy gradient reinforcement learning via manifold alignment.

In AAAI, 2015b.

Haitham Bou Ammar, Rasul Tutunov, and Eric Eaton. Safe policy search for lifelong

reinforcement learning with sublinear regret. In ICML, 2015c.

Samir Bouabdallah. Design and control of quadrotors with application to autonomous flying.

PhD thesis, Ecole Polytechnique Federale de Lausanne, 2007.

Jordan L Boyd-Graber, David M. Blei, and Xiaojin Zhu. A Topic Model for Word Sense

Disambiguation. In EMNLP-CoNLL, pages 1024–1033, 2007.

BIBLIOGRAPHY 115

Emma Brunskill and Lihong Li. PAC-inspired Option Discovery in Lifelong Reinforcement

Learning. In ICML, pages 316–324, 2014.

Chris Buckley, Gerard Salton, and James Allan. The Effect of Adding Relevance Informa-

tion in a Relevance Feedback Environment. In SIGIR, pages 292–300, 1994.

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement

learning and dynamic programming using function approximators, volume 39. CRC press,

2010.

Andrew Carlson, Justin Betteridge, and Bryan Kisiel. Toward an Architecture for Never-

Ending Language Learning. In AAAI, pages 1306–1313, 2010a.

Andrew Carlson, Justin Betteridge, Richard C Wang, Estevam R Hruschka Jr., and Tom M

Mitchell. Coupled Semi-supervised Learning for Information Extraction. In WSDM,

pages 101–110, 2010b.

Rich Caruana. Multitask Learning. Machine learning, 28(1):41–75, 1997.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

Jonathan Chang, Jordan Boyd-Graber, Wang Chong, Sean Gerrish, and David M. Blei.

Reading Tea Leaves: How Humans Interpret Topic Models. In NIPS, pages 288–296,

2009.

Jianhui Chen, Lei Tang, Jun Liu, and Jieping Ye. A convex formulation for learning shared

structures from multiple tasks. In ICML, pages 137–144, 2009.

Jianhui Chen, Jiayu Zhou, and Jieping Ye. Integrating low-rank and group-sparse structures

for robust multi-task learning. In KDD, pages 42–50, 2011.

Zhiyuan Chen and Bing Liu. Topic Modeling using Topics from Many Domains, Lifelong

Learning and Big Data. In ICML, pages 703–711, 2014a.

Zhiyuan Chen and Bing Liu. Mining Topics in Documents : Standing on the Shoulders of

Big Data. In KDD, pages 1116–1125, 2014b.

Zhiyuan Chen, Bing Liu, and M Hsu. Identifying Intention Posts in Discussion Forums. In

NAACL-HLT, number June, pages 1041–1050, 2013a.

Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhiman

Ghosh. Discovering Coherent Topics Using General Knowledge. In CIKM, pages 209–218,

2013b.

116 BIBLIOGRAPHY

Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhiman

Ghosh. Exploiting Domain Knowledge in Aspect Extraction. In EMNLP, pages 1655–

1667, 2013c.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. Aspect Extraction with Automated Prior

Knowledge Learning. In ACL, pages 347–358, 2014.

Zhiyuan Chen, Nianzu Ma, and Bing Liu. Lifelong Learning for Sentiment Classification.

In ACL, pages 750–756, 2015.

Hao Cheng, Hao Fang, and Mari Ostendorf. Open-Domain Name Error Detection using a

Multi-Task RNN. In EMNLP, pages 737–746, 2015.

Kenneth Ward Church and Patrick Hanks. Word Association Norms, Mutual Information,

and Lexicography. Computational Linguistics, 16(1):22–29, mar 1990.

Ronan Collobert and Jason Weston. A Unified Architecture for Natural Language Process-

ing: Deep Neural Networks with Multitask Learning. In ICML, pages 160–167, 2008.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and

Pavel Kuksa. Natural Language Processing (Almost) from Scratch. Journal of Machine

Learning Research, 12:2493–2537, 2011.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal

Nigam, and Seán Slattery. Learning to Extract Symbolic Knowledge from the World

Wide Web. In AAAI, pages 509–516, 1998.

Wenyuan Dai, Gui-Rong Xue, Qiang Yang, and Yong Yu. Co-clustering Based Classification

for Out-of-domain Documents. In KDD, pages 210–219, 2007a.

Wenyuan Dai, Gui-rong Xue, Qiang Yang, and Yong Yu. Transferring naive bayes classifiers

for text classification. In AAAI, 2007b.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for Transfer Learning.

In ICML, pages 193–200, 2007c.

Hal Daume III. Frustratingly Easy Domain Adaptation. In ACL, pages 256–263, 2007.

Hal Daumé III. Bayesian Multitask Learning with Latent Hierarchies. In UAI, pages

135–142, 2009.

Marc Peter Deisenroth, Peter Englert, Jochen Peters, and Dieter Fox. Multi-task policy

search for robotics. In ICRA, pages 3876–3881, 2014.

Chuong Do and Andrew Y Ng. Transfer learning for text classification. In NIPS, pages

299–306, 2005.

BIBLIOGRAPHY 117

Mark Dredze and Koby Crammer. Online Methods for Multi-domain Learning and Adap-

tation. In EMNLP, pages 689–697, 2008.

Vladimir Eidelman, Jordan Boyd-Graber, and Philip Resnik. Topic Models for Dynamic

Translation Model Adaptation. In ACL, pages 115–119, 2012.

Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu, Tal

Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates. Web-scale Information

Extraction in Knowitall: (Preliminary Results). In WWW, pages 100–110, 2004.

Theodoros Evgeniou and Massimiliano Pontil. Regularized Multi–task Learning. In KDD,

pages 109–117, 2004.

Geli Fei and Bing Liu. Social Media Text Classification under Negative Covariate Shift. In

EMNLP, pages 2347–2356, 2015.

Geli Fei, Zhiyuan Chen, and Bing Liu. Review Topic Discovery with Phrases using the

Pólya Urn Model. In COLING, pages 667–676, 2014.

Geli Fei, Shuai Wang, and Bing Liu. Learning Cumulatively to Become More Knowledge-

able. In KDD, 2016.

Fernando Fernández and Manuela Veloso. Learning domain structure through probabilistic

policy reuse in reinforcement learning. Progress in Artificial Intelligence, 2(1):13–27,

2013.

Eli M Gafni and Dimitri P Bertsekas. Two-metric projection methods for constrained

optimization. SIAM Journal on Control and Optimization, 22(6):936–964, 1984.

Jing Gao, Wei Fan, Jing Jiang, and Jiawei Han. Knowledge Transfer via Multiple Model

Local Structure Mapping. In KDD, pages 283–291, 2008.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale

sentiment classification: A deep learning approach. In ICML, pages 513–520, 2011.

Pinghua Gong, Jieping Ye, and Changshui Zhang. Robust Multi-task Feature Learning. In

KDD, pages 895–903, 2012.

Thomas L Griffiths and Mark Steyvers. Finding scientific topics. PNAS, 101 Suppl:5228–

5235, 2004.

James J Heckman. Sample selection bias as a specification error. Econometrica: Journal

of the econometric society, pages 153–161, 1979.

Gregor Heinrich. A Generic Approach to Topic Models. In ECML PKDD, pages 517 – 532,

2009.

118 BIBLIOGRAPHY

Mark Herbster, Massimiliano Pontil, and Lisa Wainer. Online Learning over Graphs. In

ICML, pages 305–312, 2005.

Matthew Hoffman, Francis R Bach, and David M Blei. Online learning for latent dirichlet

allocation. In NIPS, pages 856–864, 2010.

Thomas Hofmann. Probabilistic Latent Semantic Analysis. In UAI, pages 289–296, 1999.

Yuening Hu, Jordan Boyd-Graber, and Brianna Satinoff. Interactive Topic Modeling. In

ACL, pages 248–257, 2011.

Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Improving

word representations via global context and multiple word prototypes. In ACL, pages

873–882, 2012.

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan Gong. Cross-language knowledge

transfer using multilingual deep neural network with shared hidden layers. In 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing, pages 7304–7308,

2013a.

Yan Huang, Wei Wang, Liang Wang, and Tieniu Tan. Multi-task deep neural network for

multi-label learning. In 2013 IEEE International Conference on Image Processing, pages

2897–2900, 2013b.

Robert A Hummel and Steven W Zucker. On the foundations of relaxation labeling pro-

cesses. IEEE Transactions on Pattern Analysis and Machine Intelligence, (3):267–287,

1983.

David Isele, Mohammad Rostami, and Eric Eaton. Using Task Features for Zero-Shot

Knowledge Transfer in Lifelong Learning. In IJCAI, 2016.

Laurent Jacob, Jean-philippe Vert, and Francis R Bach. Clustered Multi-Task Learning: A

Convex Formulation. In NIPS, pages 745–752. 2009.

Jagadeesh Jagarlamudi, Hal Daumé III, and Raghavendra Udupa. Incorporating Lexical

Priors into Topic Models. In EACL, pages 204–213, 2012.

Jing Jiang. A literature survey on domain adaptation of statistical classifiers. Technical

report, 2008.

Jing Jiang and ChengXiang Zhai. Instance weighting for domain adaptation in NLP. In

ACL, pages 264–271, 2007.

Nitin Jindal and Bing Liu. Opinion Spam and Analysis. In WSDM, pages 219–230, 2008.

BIBLIOGRAPHY 119

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning:

A survey. Journal of Artificial Intelligence Research, pages 237–285, 1996.

Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with Whom to Share in Multi-

task Feature Learning. In ICML, pages 521–528, 2011.

Ashish Kapoor and Eric Horvitz. Principles of lifelong learning for predictive user modeling.

In User Modeling, pages 37–46. 2009.

Hajime Kimura. Reinforcement learning by stochastic hill climbing on discounted reward.

In ICML, pages 295–303, 1995.

Jyrki Kivinen, Alexander J Smola, and Robert C Williamson. Online learning with kernels.

IEEE Transactions on Signal Processing, 52(8):2165–2176, 2004.

Jens Kober and Jan Peters. Policy Search for Motor Primitives in Robotics. Machine

Learning, 84(1):171–203, 2011.

George Konidaris and Andrew Barto. Autonomous shaping: Knowledge transfer in rein-

forcement learning. In ICML, pages 489–496, 2006.

Abhishek Kumar, Hal Daum, and Hal Daume Iii. Learning Task Grouping and Overlap in

Multi-task Learning. In ICML, pages 1383–1390, 2012.

Neil D Lawrence and John C Platt. Learning to Learn with the Informative Vector Machine.

In ICML, 2004.

Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement

learning. In ICML, pages 599–606, 2010.

Su-In Lee, Vassil Chatalbashev, David Vickrey, and Daphne Koller. Learning a Meta-level

Prior for Feature Relevance from Multiple Related Tasks. In ICML, pages 489–496, 2007.

Hui Li, Xuejun Liao, and Lawrence Carin. Multi-task reinforcement learning in partially

observable stochastic environments. The Journal of Machine Learning Research, 10:

1131–1186, 2009.

Xuejun Liao, Ya Xue, and Lawrence Carin. Logistic Regression with an Auxiliary Data

Source. In ICML, pages 505–512, 2005.

Bing Liu. Web Data Mining. Springer, 2007.

Bing Liu. Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language

Technologies, 5(1):1–167, 2012.

120 BIBLIOGRAPHY

Bing Liu. Sentiment Analysis Mining Opinions, Sentiments, and Emotions. Cambridge

University Press, 2015.

Bing Liu, Wynne Hsu, and Yiming Ma. Mining association rules with multiple minimum

supports. In KDD, pages 337–341. ACM, 1999.

Bing Liu, Wee Sun Lee, Philip S Yu, and Xiaoli Li. Partially Supervised Classification of

Text Documents. In ICML, pages 387–394, 2002.

Qian Liu, Zhiqiang Gao, Bing Liu, and Yuanlin Zhang. Automated rule selection for aspect

extraction in opinion mining. In IJCAI, pages 1291–1297, 2015a.

Qian Liu, Bing Liu, Yuanlin Zhang, Doo Soon Kim, and Zhiqiang Gao. Improving Opinion

Aspect Extraction using Semantic Similarity and Aspect Associations. In AAAI, 2016.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang. Repre-

sentation learning using multi-task deep neural networks for semantic classification and

information retrieval. In NAACL, 2015b.

Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Identifying Suspicious

URLs: An Application of Large-scale Online Learning. In ICML, pages 681–688, 2009.

Hosam Mahmoud. Polya Urn Models. Chapman & Hall/CRC Texts in Statistical Science,

2008.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online Dictionary Learning

for Sparse Coding. In ICML, pages 689–696, 2009.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online Learning for Matrix

Factorization and Sparse Coding. The Journal of Machine Learning Research, 11:19–60,

2010.

Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, and Others. Introduction

to information retrieval, volume 1. Cambridge university press Cambridge, 2008.

Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. Sparse coding for

multitask and transfer learning. In ICML, pages 343–351, 2013.

Andrew McCallum and Kamal Nigam. A comparison of event models for Naive Bayes text

classification. In AAAI Workshop Learning for Text Categorization, 1998.

Neville Mehta, Sriraam Natarajan, Prasad Tadepalli, and Alan Fern. Transfer in variable-

reward hierarchical reinforcement learning. Machine Learning, 73(3):289–312, 2008.

BIBLIOGRAPHY 121

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In NIPS, pages 3111–

3119, 2013.

George A Miller. WordNet: A Lexical Database for English. Commun. ACM, 38(11):39–41,

1995.

David Mimno, Hanna M. Wallach, Edmund Talley, Miriam Leenders, and Andrew Mc-

Callum. Optimizing semantic coherence in topic models. In EMNLP, pages 262–272,

2011.

T Mitchell, W Cohen, E Hruschka, P Talukdar, J Betteridge, A Carlson, B Dalvi, M Gard-

ner, B Kisiel, J Krishnamurthy, N Lao, K Mazaitis, T Mohamed, N Nakashole, E Platan-

ios, A Ritter, M Samadi, B Settles, R Wang, D Wijaya, A Gupta, X Chen, A Saparov,

M Greaves, and J Welling. Never-Ending Learning. In AAAI, 2015.

Joseph Modayil, Adam White, and Richard S Sutton. Multi-timescale nexting in a rein-

forcement learning robot. Adaptive Behavior, 22(2):146–160, 2014.

Arjun Mukherjee and Bing Liu. Aspect Extraction through Semi-Supervised Modeling. In

ACL, pages 339–348, 2012.

Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Trans. Knowl.

Data Eng., 22(10):1345–1359, 2010.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Cross-domain

sentiment classification via spectral feature alignment. In WWW, pages 751–760, 2010.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global Vectors

for Word Representation. In EMNLP, pages 1532–1543, 2014.

Anastasia Pentina and Christoph H Lampert. A PAC-Bayesian Bound for Lifelong Learn-

ing. In ICML, pages 991–999, 2014.

Jan Peters and J Andrew Bagnell. Policy gradient methods. In Encyclopedia of Machine

Learning, pages 774–776. Springer, 2011.

Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In IROS, pages 2219–

2225, 2006.

James Petterson, Alex Smola, Tibério Caetano, Wray Buntine, and Shravan Narayana-

murthy. Word Features for Latent Dirichlet Allocation. In NIPS, pages 1921–1929, 2010.

John Platt and Others. Probabilistic outputs for support vector machines and comparisons

to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3):61–74,

1999.

122 BIBLIOGRAPHY

Dean A Pomerleau. Neural network perception for mobile robot guidance, volume 239.

Springer Science & Business Media, 2012.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. Opinion Word Expansion and Target

Extraction through Double Propagation. Computational Linguistics, 37(1):9–27, 2011.

J Ross Quinlan and R Mike Cameron-Jones. FOIL: A Midterm Report. In ECML, pages

3–20, 1993.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught

Learning : Transfer Learning from Unlabeled Data. In ICML, pages 759–766, 2007.

Leonardo Rigutini, Marco Maggini, and Bing Liu. An EM based training algorithm for

cross-language text categorization. In Proceedings of the 2005 IEEE/WIC/ACM Inter-

national Conference on Web Intelligence, pages 529–535, 2005.

Mark B Ring. CHILD: A first step towards continual learning. In Learning to learn, pages

261–292. 1998.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-

sentations by error propagation. Technical report, DTIC Document, 1985.

Paul Ruvolo and Eric Eaton. Active Task Selection for Lifelong Machine Learning. In

AAAI, pages 862–868, 2013a.

Paul Ruvolo and Eric Eaton. ELLA: An efficient lifelong learning algorithm. In ICML,

pages 507–515, 2013b.

Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E Boult.

Toward open set recognition. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 35(7):1757–1772, 2013.

Mark Schmidt, Glenn Fung, and Rómer Rosales. Fast Optimization Methods for L1 Regu-

larization: A Comparative Study and Two New Approaches. In ECML, pages 286–297,

2007.

Anton Schwaighofer, Volker Tresp, and Kai Yu. Learning Gaussian process kernels via

hierarchical Bayes. In NIPS, pages 1209–1216, 2004.

Michael L. Seltzer and Jasha Droppo. Multi-task learning in deep neural networks for

improved phoneme recognition. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing, pages 6965–6969, 2013.

Nicholas Shackel. Bertrand’s Paradox and the Principle of Indifference*. Philosophy of

Science, 74(2):150–175, 2007.

BIBLIOGRAPHY 123

Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In

Proceedings of the 1968 23rd ACM national conference, pages 517–524, 1968.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting

the log-likelihood function. Journal of statistical planning and inference, 90(2):227–244,

2000.

Lei Shu, Bing Liu, Hu Xu, and Annice Kim. Separating Entities and Aspects in Opinion

Targets using Lifelong Graph Labeling. In EMNLP, 2016.

Lei Shu, Hu Xu, and Bing Liu. Lifelong Learning CRF for Supervised Aspect Extraction. In

Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL-

2017, short paper), 2017a.

Lei Shu, Hu Xu, and Bing Liu. DOC: Deep Open Classification of Text Documents. In

Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing

(EMNLP-2017, short papre)), 2017b.

Daniel L Silver and Robert Mercer. The parallel transfer of task knowledge using dynamic

learning rates based on a measure of relatedness. Connection Science, 8(2):277–294, 1996.

Daniel L Silver and Robert E Mercer. The Task Rehearsal Method of Life-Long Learning:

Overcoming Impoverished Data. In Proceedings of the 15th Conference of the Canadian

Society for Computational Studies of Intelligence on Advances in Artificial Intelligence,

pages 90–101, 2002.

Daniel L Silver and Ryan Poirier. Sequential consolidation of learned task knowledge.

In Conference of the Canadian Society for Computational Studies of Intelligence, pages

217–232, 2004.

Daniel L Silver and Ryan Poirier. Context-Sensitive MTL Networks for Machine Lifelong

Learning. In FLAIRS Conference, pages 628–633, 2007.

Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong Machine Learning Systems: Beyond

Learning Algorithms. In AAAI Spring Symposium: Lifelong Machine Learning, pages 49–

55, 2013.

Daniel L. Silver, Geoffrey Mason, and Lubna Eljabu. Consolidation Using Sweep Task

Rehearsal: Overcoming the Stability-Plasticity Problem. In Advances in Artificial Intel-

ligence, volume 9091, pages 307–322. 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George van den

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-

tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,

124 BIBLIOGRAPHY

Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis

Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature,

529(7587):484–489, 2016.

Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker. Tangent prop-a formal-

ism for specifying selected invariances in an adaptive network. In NIPS, pages 895–903,

1992.

Malcolm Strens. A Bayesian framework for reinforcement learning. In ICML, pages 943–

950, 2000.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A Core of Semantic

Knowledge. In WWW, pages 697–706, 2007.

Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul V Buenau, and Motoaki

Kawanabe. Direct importance estimation with model selection and its application to

covariate shift adaptation. In NIPS, pages 1433–1440, 2008.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, and Others.

Policy Gradient Methods for Reinforcement Learning with Function Approximation. In

NIPS, pages 1057–1063, 2000.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam

White, and Doina Precup. Horde: A scalable real-time architecture for learning knowledge

from unsupervised sensorimotor interaction. In The 10th International Conference on

Autonomous Agents and Multiagent Systems-Volume 2, pages 761–768, 2011.

Csaba Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial

intelligence and machine learning, 4(1):1–103, 2010.

Fumihide Tanaka and Masayuki Yamamura. An approach to lifelong reinforcement learning

through multiple environments. In 6th European Workshop on Learning Robots, pages

93–99, 1997.

Matthew E Taylor and Peter Stone. Cross-domain transfer for reinforcement learning. In

ICML, pages 879–886, 2007.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains:

A survey. The Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings

for temporal difference learning. The Journal of Machine Learning Research, 8:2125–

2167, 2007.

BIBLIOGRAPHY 125

Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-

based reinforcement learning. In ECML PKDD, pages 488–505, 2008.

William R Thompson. On the likelihood that one unknown probability exceeds another in

view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Sebastian Thrun. Explanation-Based Neural Network Learning: A Lifelong Learning Ap-

proach. Kluwer Academic Publishers, 1996a.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In NIPS,

pages 640–646, 1996b.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Springer, 1995.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and

general method for semi-supervised learning. In ACL, pages 384–394, 2010.

Michel F Valstar, Bihan Jiang, Marc Mehu, Maja Pantic, and Klaus Scherer. The first

facial expression recognition and analysis challenge. In IEEE International Conference

on Automatic Face & Gesture Recognition, pages 921–926. IEEE, 2011.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting

and Composing Robust Features with Denoising Autoencoders. In ICML, pages 1096–

1103, 2008.

Alexander Waibel, Toshiyuki Hanazawa, Geofrey Hinton, Kiyohiro Shikano, and Kevin J

Lang. Phoneme recognition using time-delay neural networks. IEEE Transactions on

Acoustics, Speech, and Signal Processing, pages 328–339, 1989.

Chang Wang and Sridhar Mahadevan. Manifold Alignment Using Procrustes Analysis. In

ICML, pages 1120–1127, 2008.

Chang Wang and Sridhar Mahadevan. Manifold Alignment without Correspondence. In

IJCAI, pages 1273–1278, 2009.

Richard C Wang and William W Cohen. Character-level analysis of semi-structured doc-

uments for set expansion. In EMNLP, pages 1503–1512, 2009.

Shuai Wang, Zhiyuan Chen, and Bing Liu. Mining Aspect-Specific Opinion using a Holistic

Lifelong Topic Model. In WWW, 2016.

Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse sam-

pling for on-line reward optimization. In ICML, pages 956–963, 2005.

Xing Wei and W Bruce Croft. LDA-based document models for ad-hoc retrieval. In SIGIR,

pages 178–185, 2006.

126 BIBLIOGRAPHY

Marco Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, Learning,

and Optimization, 12, 2012.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement

learning: a hierarchical Bayesian approach. In ICML, pages 1015–1022, 2007.

Pengtao Xie, Diyi Yang, and Eric P Xing. Incorporating Word Correlation Knowledge into

Topic Modeling. In NAACL-HLT, pages 725–734, 2015.

Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-Task Learning for

Classification with Dirichlet Process Priors. The Journal of Machine Learning Research,

8:35–63, 2007.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features

in deep neural networks? In NIPS, pages 3320–3328. 2014.

Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning Gaussian Processes from Multiple

Tasks. In ICML, pages 1012–1019, 2005.

Shipeng Yu, Volker Tresp, and Kai Yu. Robust Multi-task Learning with T-processes. In

ICML, pages 1103–1110, 2007.

Bianca Zadrozny. Learning and evaluating classifiers under sample selection bias. In ICML,

page 114. ACM, 2004.

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Facial Landmark Detec-

tion by Deep Multi-task Learning. In ECCV, pages 94–108. 2014.

Wayne Xin Zhao, Jing Jiang, Hongfei Yan, and Xiaoming Li. Jointly Modeling Aspects

and Opinions with a MaxEnt-LDA Hybrid. In EMNLP, pages 56–65, 2010.

George Kingsley Zipf. Selected Papers of the Principle of Relative Frequency in Language.

Harvard University Press, 1932.

127

Authors’ Biographies

ZHIYUAN CHEN

Zhiyuan Chen completed his Ph.D. at the University of Illinois at Chicago (UIC) under

the direction of Professor Bing Liu. He joined Google in 2016. His Ph.D. thesis title was

“Lifelong Machine Learning for Topic Modeling and Classification.” His research interests

include Machine Learning, Natural Language Processing, Text Mining, and Data Mining.

He has proposed several lifelong machine learning algorithms to automatically mine infor-

mation from text documents, and published more than 15 full research papers in premier

conferences such as KDD, ICML, ACL, WWW, IJCAI, and AAAI. He has given threes

tutorials about lifelong machine learning at IJCAI-2015, KDD-2016 and EMNLP-2016. He

has served as a PC member for many prestigious natural language processing, data min-

ing, AI, and Web research conferences. In recognizing his academic contributions, he was

awarded Fifty For The Future from Illinois Technology Foundation in 2015. His homepage

is: https://www.cs.uic.edu/~zchen/.

BING LIU

Bing Liu is a professor of Computer Science at the University of Illinois at Chicago. He

received his PhD in Artificial Intelligence from the University of Edinburgh. His research

interests include lifelong machine learning, sentiment analysis and opinion mining, data

mining, machine learning, and natural language processing. He has published extensively

in top conferences and journals in these areas, including a number of papers on lifelong

machine learning. Two of his papers have received 10-year Test-of-Time awards from KDD,

the premier conference of data mining and data science. He also authored three books:

one on Web data mining and two on sentiment analysis. Some of his work has been widely

reported in the press, including a front-page article in The New York Times. On professional

services, he serves as the current Chair of ACM SIGKDD. He has served as program chairs

of many leading data mining conferences including KDD, ICDM, CIKM, WSDM, SDM

and PAKDD, as associate editors of leading journals such as TKDE, TWEB, and DMKD,

and as area chairs of numerous natural language processing, AI, Web research, and data

mining conferences. He is an ACM Fellow, an AAAI Fellow, and an IEEE Fellow.

https://www.cs.uic.edu/~zchen/

	Preface
	Acknowledgments
	Introduction
	A Brief History of Lifelong Learning
	Definition of Lifelong Learning
	Lifelong Learning System Architecture
	Evaluation Methodology
	Role of Big Data in Lifelong Learning
	Outline of the Book

	Related Learning Paradigms
	Transfer Learning
	Structural Correspondence Learning
	Naïve Bayes Transfer Classifier
	Deep Learning in Transfer Learning
	Difference from Lifelong Learning

	Multi-Task Learning
	Task Relatedness in Multi-Task Learning
	GO-MTL: Multi-Task Learning using Latent Basis
	Deep Learning in Multi-Task Learning
	Difference from Lifelong Learning

	Online Learning
	Difference from Lifelong Learning

	Reinforcement Learning
	Difference from Lifelong Learning

	Summary

	Lifelong Supervised Learning
	Definition and Overview
	Lifelong Memory-based Learning
	Two Memory-based Learning Methods
	Learning a New Representation for Lifelong Learning

	Lifelong Neural Networks
	MTL Net
	Lifelong EBNN

	Cumulative Learning in the Open World
	Training a Cumulative Learning Model
	Testing a Cumulative Learning Model
	Open World Learning for Unseen Class Detection

	ELLA: An Efficient Lifelong Learning Algorithm
	Problem Setting
	Objective Function
	Dealing with the First Inefficiency
	Dealing with the Second Inefficiency
	Active Task Selection

	LSC: Lifelong Sentiment Classification
	Naïve Bayesian Text Classification
	Basic Ideas of LSC
	LSC Technique

	Summary and Evaluation Datasets

	Lifelong Unsupervised Learning
	Lifelong Topic Modeling
	LTM: A Lifelong Topic Model
	LTM Model
	Topic Knowledge Mining
	Incorporating Past Knowledge
	Conditional Distribution of Gibbs Sampler

	AMC: A Lifelong Topic Model for Small Data
	Overall Algorithm of AMC
	Mining Must-Link Knowledge
	Mining Cannot-Link Knowledge
	Extended Pólya Urn Model
	Sampling Distributions in Gibbs Sampler

	Lifelong Information Extraction
	Lifelong Learning through Recommendation
	AER Algorithm
	Knowledge Learning
	Recommendation Using Past Knowledge

	Lifelong-RL: Lifelong Relaxation Labeling
	Relaxation Labeling
	Lifelong Relaxation Labeling

	Summary and Evaluation Datasets

	Lifelong Semi-Supervised Learning for Information Extraction
	NELL: A Never Ending Language Learner
	NELL Architecture
	Extractors and Learning in NELL
	Coupling Constraints in NELL
	Summary

	Lifelong Reinforcement Learning
	Lifelong Reinforcement Learning through Multiple Environments
	Acquiring and Incorporating Bias

	Hierarchical Bayesian Lifelong Reinforcement Learning
	Motivation
	Hierarchical Bayesian Approach
	MTRL Algorithm
	Updating Hierarchical Model Parameters
	Sampling an MDP

	PG-ELLA: Lifelong Policy Gradient Reinforcement Learning
	Policy Gradient Reinforcement Learning
	Policy Gradient Lifelong Learning Setting
	Objective Function and Optimization
	Safe Policy Search for Lifelong Learning
	Cross-Domain Lifelong Reinforcement Learning

	Summary and Evaluation Datasets

	Conclusion and Future Directions
	Bibliography
	Authors' Biographies

