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Abstract 

As more and more AI agents are used in practice, it is time to think about how to make these 

agents fully autonomous so that they can (1) learn by themselves continually in a self-motivated 

and self-initiated manner rather than being retrained offline periodically on the initiation of 

human engineers and (2) accommodate or adapt to unexpected or novel circumstances. As the 

real-world is an open environment that is full of unknowns or novelties, the capabilities of 

detecting novelties, characterizing them, accommodating/adapting to them, and gathering 

ground-truth training data and incrementally learning the unknowns/novelties become critical in 

making the AI agent more and more knowledgeable, powerful and self-sustainable over time. 

The key challenge here is how to automate the process so that it is carried out continually on the 

agent’s own initiative and through its own interactions with humans, other agents and the 

environment just like human on-the-job learning. This paper proposes a framework (called SOLA) 

for this learning paradigm to promote the research of building autonomous and continual learning 

enabled AI agents. To show feasibility, an implemented agent is also described. 

1. Introduction 

Classical machine learning (ML) makes the closed-world assumption, which means that the classes of 

objects seen by the system in testing or application must have been seen during training (Fei, Wang, and 

Liu 2016; Bendale and Boult 2015; Liu 2020), i.e., there is nothing unexpected or novel occurring in testing 

or deployment. This assumption is invalid in practice as the real world is an open environment that is full 

of unknowns or novel objects. For humans, novelties serve as an intrinsic motivation for learning. Human 

novelty detection results in a cascade of unique neural responses and behavioral changes that enable 

exploration and flexible memory encoding of the novel information. As learning occurs, this novelty 

response is soon lost as repeated exposure to novelty results in fast neural adaptation (Tulving and Kroll 

1995; Murty et al. 2013). To make an AI agent thrive in the real open world, like humans, it has to detect 

novelties and learn them incrementally to make the system more knowledgeable and adaptable over time. 

It must do so on its own initiative on the job (after deployment) rather than relying on human engineers to 

retrain the system offline periodically. That is, it must learn in the open world in a self-motivated manner 

in the context of its performance task (the main task of the agent). 

We use the hotel guest-greeting bot example from (Chen and Liu 2018) to illustrate the issues involved. 

The bot’s performance task is greeting hotel guests. When its vision system sees a guest (say, John) it has 

learned before, it greets him by saying, 

“Hi John, how are you today?” 

When it sees a new guest, it should detect this guest as new or novel. This is a novelty detection problem 

(also known as out-of-distribution (OOD) detection). upon discovering the novelty - the new guest, it 

needs to accommodate or adapt to the novel situation. The bot may say to the new guest, 

“Hello, welcome to our hotel! What is your name, sir?” 
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If the guest replies “David,” the bot takes some pictures of the guest to gather training data and then 

incrementally or continually learn to recognize David. The name “David” serves as the class label of the 

pictures taken. As for humans, the detected novelty serves as an intrinsic self-motivation for the agent/bot 

to learn. When the bot sees this guest again next time, it can say 

“Hi David, how are you today?” (David is no longer new) 

In an actual hotel, the situation is, however, much more complex than this. For example, how does the 

system know that the novel object is a person, not a dog? If the system can recognize the object as a person, 

how does it know that he/she is a hotel guest, not a service provider for services such as delivery or security? 

To adapt to the novel object or situation, the system must first characterize the novel object, as without it, 

the agent wouldn’t know how to adapt or respond. In this case, some classification or similarity comparison 

is needed to decide whether it is a person with luggage. If the object looks like a person but has no luggage, 

the bot will not respond or learn to recognize the person as it is irrelevant to its performance task. If the 

novel object looks like an animal, it should notify a hotel employee and learn to recognize the object so that 

it will no longer be novel when it is seen next time. In short, for each characterization, there is a 

corresponding response or adaptation strategy, which can be NIL (i.e., do nothing). This discussion shows 

that to characterize, the agent must already have rich world knowledge. Finally, there is also risk involved 

when making an incorrect decision. 

As classic learning matures, we should go beyond the existing paradigm to study how to enable an agent to 

learn and adapt by itself via its own interactions with humans and the environment, i.e., self-initiation, 

involving no engineers. This paper proposes a Self-initiated Open-world continual Learning and 

Adaptation (SOLA) framework to promote the research of autonomous AI agents so that they can face the 

real open world and learn by themselves. An example SOLA agent in the context of dialogue systems or 

chatbots that implements the SOLA framework is also discussed. 

2.  Comparison with Related Work 

Open world learning has been studied by many researchers (Bendale and Boult 2015; Fei, Wang, and Liu 

2016; Xu et al. 2019), but they mainly focused on novelty detection (Parmar et al. 2021), also called open 

set or out-of-distribution (OOD) detection. Some researchers have also studied learning the novel objects 

after they are detected (Bendale and Boult 2015; Fei, Wang, and Liu 2016; Xu et al. 2019) and manually 

labeled. A survey of the topic can be found in (Yang et al. 2021). A position paper (Langley 2020) recently 

presented some blue-sky ideas about open world learning, but it does not have sufficient details or an 

implemented system. SOLA differs from these prior studies in many ways, 

(1)  SOLA stresses “self-initiation” in learning, which means that all the learning activities from start to end 

are self-motivated and self-initiated by the agent itself. The process involves no human engineers. 

(2)  Due to self-initiation, SOLA enables learning after model deployment like human learning on the job 

or while working, which has barely been attempted before. In existing learning paradigms, after a model 

has been deployed, there is no more learning until the model is updated or retrained on the initiation of 

the human engineers. 

(3)  SOLA is a lifelong and continual learning paradigm again because learning is self-initiated and 

unceasing. It is thus connected with lifelong and continual learning, which is an active research area in 

machine learning, computer vision and natural language processing (Chen and Liu 2018). 

(4)  SOLA involves online interactions of the learning agent with human users, other AI agents, and the 

environment. The purpose is to acquire ground-truth training data on the fly by itself (and it is free). 

This is very similar to what we humans do when we encounter something novel or new and ask others 

interactively to acquire knowledge. It is very different from collecting a large amount of unlabeled data 

and asking human annotators to label the data (as in the case of crowdsourcing). Also, it differs from 
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active learning (Settles 2009; Ren et al. 2021) as active learning only focuses on acquiring labels from 

users for selected unlabeled examples in the given dataset. SOLA also allows learning from other 

resources, e.g., the Web or a human teacher, to gain knowledge, like a human reading a book or learning 

from a dedicated teacher. Due to space limits, this paper will not focus on these types of learning [see 

an example in (Mitchell et al. 2015; Kasaei et al. 2020)]. 

(5)  SOLA includes modules to characterize and to adapt to novel situations so that the agent can work in 

the open world environment and also continually learn and self-sustain in the process.  

In robotics research, a closely related topic is open-ended learning, where the number of classes or 

categories to be learned is not predefined. In (Seabra Lopes, and Chauhan 2007, 2008), a human teacher 

interactively teaches a robot to learn new words or new object names through a user-interface. In the process, 

the robot learns incrementally. In (Kasaei et al. 2020; Kasaei et al. 2019), a user teaches a robot to 

incrementally learn to recognize prior unknown visual objects and their affordance categories. The system 

in (Oliveira et al. 2015) also learns attributes or codebook words used to encode the objects. In all these 

cases, the teacher/user takes the initiative and decides what to teach and how to teach. In the proposed 

SOLA framework, we focus on the system itself. The system takes the initiative to detect what it does not 

know or what is novel and to incrementally learn the new/novel objects through interaction with humans 

or the environment. The SOLA framework also includes the characterization of the new objects so that the 

system can formulate a plan of actions to respond to the novel/new objects. In the process, the agent also 

considers risk and safety. The SOLA framework thus covers open-ended learning as it also has interactive 

learning and continual/incremental learning.  

Intrinsically motivated open-ended learning (IMOL) is also related. It aims to develop robots that can 

autonomously generate internal motivational signals or rewards to acquire knowledge and skills (Barto et 

al., 2004; Oudeyer et al., 2007; Santucci 2020; Mirolli and Baldassarre, 2013). It was inspired by the ability 

of humans to discover interesting things to learn driven by self-generated rewards or curiosity not related 

to any specific external tasks (White, 1959; Deci and Ryan, 1985). Knowledge-based intrinsic motivations 

(IMs) (Oudeyer and Kaplan 2007) are more closely related to our work, which are of two types, namely 

novelty-based IMs and prediction-based IMs (Barto et al. 2013; Baldassarre 2019). Novelty-based IMs try 

to detect novel items and direct attention to novel items in exploration. Prediction-based IMs try to predict 

the future and compare with the observed reality to compute the prediction error, and then direct the 

attention to the wrongly predicted items to improve the prediction accuracy. IMs are often expressed as 

internal rewards to augment sparse external rewards in reinforcement learning (Kulkarni et al., 2016; Pathak 

et al. 2017; Baldassarre 2019). Although related, IMOL is significantly different from SOLA. IMOL has 

the ambitious goal of imitating humans’ cognitive and learning process and capability in robots, while 

SOLA’s goal is more modest in the sense that it has well-defined novelty detection, continual learning and 

other computational functions. SOLA is not normally associated with reinforcement learning, and novelty 

in SOLA serves as the motivation for continual learning and triggers self-initiation.   

Human-robot teaming also has some resemblance to our work. For example, Talamadupula et al. (2017) 

proposed a system that enables human-robot interactions through natural language dialogues to jointly 

perform a task. The term “open world” in this paper means that there may be new goals, new sub-tasks, and 

new entities in the task, e.g., a search and rescue task. Apart from natural language dialogue, the system 

also performs some reasoning and open-world planning. However, this work does not involve continual 

learning or knowledge accumulation, which is the core of the proposed SOLA framework. 

In summary, SOLA makes learning autonomous and self-initiated. Although novelty detection, adaptation 

and continual learning have been studied discretely (in specific use cases or application scenarios) in many 

works over decades, we have not found any work that has discussed or provided a generic and holistic 

framework (like SOLA) that unifies the ideas of self-initiation, novelty detection, adaptation, and open-

world continual learning into one. We believe that SOLA is necessary for the next generation machine 

learning and AI agents. Finally, note that although SOLA focuses on self-initiated learning, it does not 
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mean that the learning system cannot learn a task given by humans or other AI agents (as followed in usual 

ML design practices). 

4  Novelty Detection 

Novelty is a core concept of SOLA as it triggers and motivates the whole SOLA process. Detecting novel 

objects or situations is thus a critical task. In the research community, it is often called out-of-distribution 

(OOD) detection. In general, novelty is an agent-specific concept. An object may be novel to one agent 

based on its partial knowledge of the world but not novel to another agent. We distinguish two types of 

novelty, absolute novelty and contextual novelty.  

Absolute novelty. Absolute novelty represents something that the agent has never seen before. For example, 

in the context of supervised learning, the agent’s world knowledge is learned from the training data 𝐷𝑡𝑟 =
{(𝑥𝑖, 𝑦𝑖)}𝑖=1

𝑛  with 𝑥𝑖 𝑋 is the input data and 𝑦𝑖 𝑌𝑡𝑟 is its class label. Let ℎ(𝑥) be the latent or internal 

representation of x in the agent’s mind, ℎ(𝐷𝑡𝑟
𝑖 ) be the latent representation of the training data of class 𝑦𝑖, 

and 𝑘 (= |𝑌𝑡𝑟|) be the total number of training classes. We use 𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟
𝑖 )) to denote the novelty 

score of a test instance x′ with respect to ℎ(𝐷𝑡𝑟
𝑖 ) . The degree of novelty of x′ with respect to 𝐷𝑡𝑟 , 

𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟)), is defined as the minimum novelty score with regard to every class,  

𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟)) = min {𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟
1 )), … , 𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟

𝑘 ))}     (1)  

The novelty function 𝜇 can be defined based on specific applications. For example, if the training data of 

each class follows the Gaussian distribution, one may use z-score or Mahalanobis distance as the novelty 

score. The definition is also for out-of-distribution (OOD) detection, where the training classes in 𝑌𝑡𝑟 are 

called in-distribution (IND) classes and those test instances that do not belong to the IND classes are called 

OOD instances. Thus, an OOD or novelty detection model can classify a test instance from an IND class to 

its corresponding class and detect OOD test instances that do not belong to any IND class.   

Novel instance: A test instance x′ is novel if its novelty score 𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟)) is greater than or equal to a 

threshold value γ such that x′ can be assigned a new class that is not in 𝑌𝑡𝑟. 

Novel class: A newly created class 𝑦𝑛𝑒𝑤 (𝑦𝑛𝑒𝑤𝑌𝑡𝑟) assigned to some novel instances is called a novel class 

(unknown or unseen class). The classes in 𝑌𝑡𝑟 are also called known or seen classes. 

Contextual novelty. Given that both the instance x and the context Q are not absolutely novel and the 

probability P(x|Q) of x occurring in Q is very low, but x has occurred in Q, which is surprising or unexpected. 

A contextual novelty is also commonly called a surprise or unexpected event. In human cognition, surprise 

is an emotional response to an instance that greatly exceeds the expected uncertainty within the context of 

a task. The definitions of contextual novel instance and class are like those for absolute novelty.  

Intuitively, in absolute novelty, the novelty of x is context independent. For example, if the agent has never 

seen a tiger before, it is absolutely novelty, irrespective of its context (other objects in the image). If x is 

known but is very unlikely to appear in a context, x is contextually novel, e.g., a deer (known) appears in a 

crowded city street. A related work on contextual novelty detection can be found in (Ma et al., 2021).  

Novelty is not restricted to the perceivable physical world but also includes the agent’s internal world, e.g., 

novel interpretations of world states or internal cognitive states that have no correspondence to any physical 

world state. Interested readers may also read (Boult et al. 2021) for a more nuanced and perception-based 

study of novelty. There are other related concepts to novelty, e.g., out-of-distribution (OOD) samples, 

outliers, and anomalies. An extensive work has been done on novelty detection (Yang et al. 2021). 

Outlier and anomaly: An outlier is a data point that is far away from the main data clusters, but it may not 

be unknown. For example, the salary of a company CEO is an outlier with regard to the salary distribution 

of the company employees, but that is known and thus not novel. Unknown outliers are novel. Anomalies 
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can be considered outliers or instances that are one off and never repeated. Though technically “novel” they 

may not result in a new class. Note that this paper does not deal with various types of data shift such as 

covariate shift, prior probability shift and concept drift as a large amount of work has been done (Moreno-

Torres et al. 2012). We will not discuss novelty detection further because it has been studied extensively 

(Pang et al. 2021; Parmar et al. 2021; Yang et al. 2021). 

4. Lifelong and Continual Learning 

Since SOLA at its core is a continual learning paradigm, this section introduces lifelong or continual 

learning (Chen and Liu 2018). To enable autonomous continual learning without the involvement of human 

engineers, other capabilities are needed, which we will discuss in subsequent sections. The terms lifelong 

learning and continual learning have the same meaning and are used interchangeably. 

4.1 Continual Learning (CL) 

CL is defined in (Chen and Liu 2018) as follows, which is based on the early definitions in (Thrun 1995; 

Silver, Yang, and Li 2013; Ruvolo and Eaton 2013; Chen and Liu. 2014; Mitchell et al. 2015) and more 

recent research (Rusu et al. 2016; Kirkpatrick et al. 2017; Zenke, Poole, and Ganguli 2017; Rebuffi, 

Kolesnikov, and Lampert 2017; Shin et al. 2017; Serra et al. 2018; Lee, Stokes, and Eaton 2019; Chaudhry 

et al. 2020; Ke, Liu, and Huang 2020; Ke et al. 2021; Guo et al. 2022; Kim et al. 2022b). 

Definition: Continual learning (CL) aims to learn a sequence of tasks. At any point in time, the learner is 

assumed to have N tasks, T1, T2, . . . , TN (called the previous tasks). In learning the (N + 1)th task TN+1 (called 

the new task or the current task), the learner wants to achieve two main objectives: 

(1)  Overcoming catastrophic forgetting (CF). CF refers to the phenomenon that when a neural network 

learns a sequence of tasks, the learning of each new task is likely to change the weights learned for 

previous tasks, which degrades the model performance for the previous tasks (McCloskey and 

Cohen 1989). 

(2)  Encouraging knowledge transfer (KT) across tasks. The learner should leverage the knowledge in 

the knowledge base (KB) to help learn TN+1. This is called the forward transfer. The new task should 

also help improve some previous task models if possible. This is call backward transfer. An explicit 

or implicit knowledge base (KB) is maintained to retain the knowledge learned from the previous N 

tasks. After the completion of learning TN+1, KB is updated with the knowledge gained from TN+1. 

Two CL settings have been studied extensively in the research literature. See (Kim et al. 2022b) for their 

formal definitions. 

Class incremental learning (CIL). In CIL, each task consists of one or more classes to be learned together 

but only one model is learned to classify all classes learned so far. In testing, a test instance from any class 

may be presented to the model for it to classify with no task related information provided.  

Task incremental learning (TIL). In TIL, each task is a separate classification problem (e.g., one 

classifying different breeds of dogs and one classifying different types of animals). TIL builds a set of 

classification models (one per task) in a shared neural network. In testing, the system knows to which task 

each test instance belongs and uses only the model for the task to classify the test instance.  

Earlier research mainly focused on KT in TIL and assumed that the tasks are similar, which clearly 

facilitates KT across tasks (Chen and Liu 2018). Little work was done on CF, which has been researched 

only after deep learning became popular. More recent research focused on both CF and KT. When the tasks 

are similar, KT is the focus (Ke et al. 2021). When the tasks are dissimilar overcoming CF is the key (Chen 

and Liu 2018; Guo et al. 2022). Work has also been done to learn a mixed sequence of similar and dissimilar 

tasks, which must deal with both CF and KT at the same time (Ke, Liu, and Huang 2020), i.e., to perform 
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selective knowledge transfer among similar tasks and also to overcome CF for dissimilar tasks. Task 

similarity is detected automatically. 

The architecture of CL systems is given in Figure 1 without the orange-colored links. The orange-colored 

links will be discussed in the next subsection. Dealing with CF is not reflected in the architecture as it stays 

in the continual learner (C-Learner). ModelN+1 includes all the models from T1 to TN+1, which may all be in 

one neural network. In the case of TIL, they may be separate models indexed by their task identifiers. In 

the case of CIL, ModelN+1 is a single model that covers all classes of the tasks learned so far. It has been 

proven in (Kim et al. 2022b) that strong out-of-distribution (OOD) detection or novelty detection is a 

necessary condition for achieving good CIL performances. Apart from overcoming CF and encouraging 

KT in CIL, this paper also identified a new challenge of inter-task class separation (ICS) that is as hard to 

deal with as CF and KT (see (Kim et al 2022b to details)).   

Limitation. One key limitation of the existing CL paradigm is that the tasks and their training data are 

given by the user or engineers. This means that the system is not autonomous and cannot learn by itself. In 

order to do that, we extend the CL architecture with the orange-colored links in Figure 1 to enable learning 

on the job to achieve the full SOLA. 

4.2. A New CL Architecture  

The new architecture is summarized in the full diagram in Figure 1 with the orange-colored links added to 

the traditional CL. These links enable the system to learn by itself to achieve autonomy in the SOLA 

framework, i.e., to learn on the job during application or after model deployment. However, as discussed 

in the Introduction section, learning during application is more complicated and the framework also 

includes other aspects related to adaptation to the novelty, which we will detail in Section 5 with a new 

figure showing the full architecture of SOLA.  

 

Figure 1: Architecture of a typical continual learning framework incorporating on-the-job learning (best 

viewed in color). T1, ..., TN are the previously learned tasks, TN+1 is the current new task to be learned and 

DN+1 is its training data. The C-Learner (continual learner) learns by leveraging the relevant prior 

knowledge identified by the Task-based Knowledge Miner from the Knowledge Base (KB), which contains 

the knowledge retained in the past. It also deals with CF. Existing research on continual learning does not 

have the orange-colored lines. The orange-colored lines are added for on-the-job learning in SOLA. 
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The basic idea for learning in SOLA is that during application, if the system/agent encounters anything that 

is out-of-distribution or novel (a novelty), the system first creates a new task to learn and then obtains the 

needed ground-truth training data to learn the task on the initiation of the system itself through interactions 

with the humans and the environment. Some new knowledge (or auxiliary knowledge) gained from the 

application can be added to the KB that may be leveraged in future learning or to improve the current model.  

5  The Proposed SOLA Framework 

The SOLA architecture is given in Figure 2, which adds and elaborates the orange-colored links and 

associated components to the traditional CL architecture (without the orange-colored links in Figure 1). 

These newly added links and components enable the system to learn by itself and to adapt to the new 

situation to gain autonomy, which is what SOLA aims to achieve. It is called learning after deployment 

or learning on the job during application or after model deployment.  

Learning after deployment refers to learning continuously after the model has been deployed in an 

application or during model application (Liu and Mazumder 2021) on the fly. The basic idea is that during 

application, if the system/agent encounters anything that is out-of-distribution (OOD) or novel, it needs to 

detect the novelty. Based on the novelty, the system creates a new task to learn and acquires the ground-

truth training data to learn the task on the initiation of the system itself through interactions with humans, 

other agents and/or the environment. The system then learns the new task incrementally or continually. 

In the process, the system also adapts itself to the new situation and carries on its performance task. The 

whole process is carried out on the fly during application. 

5.1. Components of SOLA 

SOLA is proposed as a framework for building autonomous AI agents. An AI agent consists of a pair of 

key modules (P, S), where P is the primary task-performer that performs its performance task (e.g., the 

dialogue system of the greeting bot) and S is a set of supporting or peripheral functions (e.g., the vision 

system and the speech system of the bot) that supports the primary task-performer. The primary task-

performer P or each supporting function Si ∈ S consist of eight core sub-systems (L, K, M, R, C, A, S, I). 

Figure 2 shows the relationships and functions of the sub-systems. We do not distinguish P and Si in terms 

of techniques or subsystems as we believe they have no fundamental difference. 

• L is an OWC-Learner (Open-World Continual Learner) that builds models to not only classify the 

input into known classes but also detect novel objects that have not been seen in training. For example, 

for the greeting bot, L of the primary task performer P which is a continual learning dialogue system 

similar to that in Section 6. For the supporting vision system, L can learn to recognize guests and detect 

novel or unknown objects. Compared to C-Learner in continual learning in Figure 1, OWC-Learner in 

SOLA not only can learn continually like C-Learner but also produce models that can detect novel 

instances in testing or in application deployment (see (Kim et al. 2022a) for an example system). 

• K is the Knowledge Base & World Model (KB) that is important for the performance task, supporting 

functions and/or the OWC-Learner. KB is also in Figure 1 but plays more roles in SOLA. Apart from 

keeping the learned or prior knowledge of the domain and the world model, if needed, reasoning 

capability may also be provided to help the other modules of the system (see the orange-colored links). 

Some knowledge from the application observed by the Adaptor (see below) may be added to the KB, 

which can provide some knowledge to the Model for its decision making. World model refers to the 

representation of the task environment and the commonsense knowledge about the objects and their 

relationships within.  

• M is the Model learned by L. M takes the input or perception signals from the application environment 

and make a decision to perform actions in the application. The decision making involves detecting novel 

or normal input instances, besides performing its intended task (on normal instances) as defined in the 
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application. M may also use some input or knowledge from the other supporting functions and task-

specific auxiliary knowledge from K to help the inference process. 

• R is the Relevance Module or focusing mechanism that decides whether the detected novelty is relevant 

to the current task or not. If it’s relevant, the agent should respond to the novelty (discussed below); 

otherwise simply ignore it. For example, in the greeting bot application, if the bot sees a new inanimate 

object in its viewing zone, even if the object is novel (never seen before), the bot should ignore it as an 

inanimate object should not be greeted! So, novelty in inanimate objects is considered as irrelevant. 

• C is the Novelty Characterizer that characterizes the detected novelty based on the knowledge in the 

KB so that the adaptor (below) can formulate a course of actions to respond or adapt to the novelty. For 

the characterizer C of P of the greeting bot, as P is a dialogue system, when it cannot understand the 

utterance of a hotel guest (a novelty), it should decide what it can and cannot understand (see Section 6) 

and ask the guest based on its partial understanding (see below). In the case of the supporting vision 

system, when a novel object it detected, the charaterizer may decide what the object looks like and its 

physical attributes. For example, the novel object may look like a dog based on the greeting bot’s KB. 

(see Section 5.4 for more discussions). 

• A is the Adaptor that adapts to or accommodates the novelty based on the characterization result. It is a 

planner that produces a plan of actions for the executor E (it can be a task user interface, not considered 

as a core component of SOLA) or the interactive module I to perform. The goal here is to formulate a 

strategy to respond to the novelty (e.g., acquiring knowledge to learn the detected novelty or reporting 

it to some other agents in the environment). Given the characterization (e.g., partial understanding) 

above, A may adapt by asking the guest to clarify (see Section 6) and then learn to understand the 

utterance. In the case of the vision system, if the characterizer believes that the novel object looks like a 

dog, the adaptor may decide to report to a hotel employee and then learns the new object by taking some 

pictures as the training data. It can also ask the hotel employee for the name of the object as the class 

label. In the latter two cases, A needs to invoke I to interact with the human and L to learn the novelty 

so that it will not be novel in the future. That is, A is also responsible for creating new tasks (e.g., learning 

to recognize new objects by the greeting bot) on the fly and proceeds to acquire ground truth training 

 

Figure 2: Architecture of the primary task performer or any supporting function. OWC-Learner means 

Open-World Continual Learner. 
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data with the help of I (discussed below) to be learned by L. This adaptation process often involves 

reasoning and may utilize knowledge from K. 

• S is the Risk Assessment module. Novelty implies uncertainty in adapting to the novel situation. In 

making each response decision, risk needs to be assessed (see Section 5.5 for more discussions). 

• I is the Interactive Module for the agent to communicate with humans or other agents, e.g., to acquire 

ground-truth training data or to get instructions when the agent does not know what to do in a unfamiliar 

situation. It may use the natural language (for interaction with humans) or an agent language (for 

interaction with other agents) for communication. 

Several remarks are in order. (1) not all agents need all these sub-systems, and some sub-systems may also 

be shared. For example, the primary task performer P in the greeting bot application is a dialogue system. 

Its interaction module I can use the same dialogue system. In some cases, the model M may also be able to 

determine the relevance of a novel object to the application and even characterize the novelty because 

characterization in many cases is about classification and similarity comparison. (2) as we will see, every 

sub-system can and should have its own local learning capability. (3) the interaction module I and the 

adapter A will create new tasks to learn and gather ground truth training data for learning. (4) most links in 

Figure 2 are bidirectional, which means that the sub-systems may need to interact with each other to perform 

their tasks. The interactions may involve requesting for information, passing messages, and/or going back 

and forth with hypothesis generation, revision and evaluation to make more informed decisions. 

Since the primary task performer P and each supporting sub-system Si has the same components or sub-

systems, we will discuss them in general rather than distinguishing them. 

5.2. Open World Continual Learning 

The classical machine learning (ML) makes the i.i.d assumption, which is often violated in practice. Here 

we first define several related concepts and then the idea of open world continual learning in SOLA.  

Let the training data that have been seen so far from previous tasks be 𝐷𝑡𝑟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  with 𝑥𝑖 𝑋 as 

the input data and 𝑦𝑖 𝑌𝑡𝑟  as its class label. Let the set of class labels that may appear in testing or 

application be 𝑌𝑡𝑠𝑡. Classical ML makes the closed-world assumption. 

Closed-world assumption: There are no new or novel instances or classes that may appear in testing or 

application, i.e., 𝑌𝑡𝑠𝑡 ⊆ 𝑌𝑡𝑟. In other words, every class seen in testing or application must have been seen 

in training.  

Open world: There are test classes that have not been seen in training, i.e., 𝑌𝑡𝑠𝑡 − 𝑌𝑡𝑟 ≠ ∅. 

Definition (closed-world learning): It refers to the learning paradigm that makes the closed-world 

assumption.  

Definition (open world learning): It refers to the learning paradigm that performs the following functions: 

(1) classify test instances belonging to training classes to their respective classes and detect novel or out-

of-distribution instances, and (2) learn the novel classes labeled by humans for the identified novel instances 

to update the model using the labeled data. The model updating is initiated by human engineers and involves 

re-training or incremental learning. 

Definition (SOLA): SOLA is a learning paradigm that performs open-world learning but the learning 

process is initiated by the agent itself after deployment with no involvement of human engineers. The new 

task creation and ground-truth training data acquisition are done by the agent via its interaction with the 

user and the environment. The learning of the new task is incremental, i.e., no re-training of previous 

tasks/classes. The process is lifelong or continuous, which makes the agent more knowledgeable over time. 

In addition to learning, SOLA also characterizes and adapt/respond to the novelty so that its performance 

task can still be carried out without stopping.   
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Steps in learning in SOLA. The main continual learning process in SOLA involves the following three 

steps, which can be part of the novelty adaptation or accommodation (see Section 5.5). 

Step 1 - Novelty detection. This step detects data instances whose classes do not belong to 𝑌𝑡𝑟. A fair amount 

of research has been done on this (see the surveys (Pang et al. 2021; Parmar et al. 2021; Yang et al. 2021)).  

Step 2 - Acquiring class labels and creating a new learning task on the fly: This step first clusters the 

detected novel instances. Each cluster represents a new class. It may be done automatically or through 

interactions with humans using the interaction module I. Interacting with human users should produce more 

accurate clusters and obtain meaningful class labels. If the detected data is insufficient for building an 

accurate model to recognize the new classes, additional ground-truth data may be collected via interaction 

with users (and/or passively by downloading data from the Web like searching and scrapping images of 

objects of a given class). A new learning task is then created. 

In the case of our hotel greeting bot, since the bot detects a single new guest (automatically), no clustering 

is needed. It then asks the guest for his/her name as the class label. It also takes more pictures as the training 

data. With the labeled ground-truth data, a new learning task is created to incrementally learn to recognize 

the new guest on the fly.  

The learning agent may also interact with the environment to obtain training data. In this case, the agent 

must have an internal evaluation system that can assign rewards to different states of the world, e.g., for 

reinforcement learning. 

Step 3 - Incrementally learn the new task. After ground-truth training data has been obtained, the learner L 

incrementally learns the new task. This is continual learning (Chen and Liu 2018). We will not discuss it 

further as there are already numerous existing techniques (Parisi et al. 2019; Kim et al. 2022b; Lomonaco 

et al. 2022). Many can leverage existing knowledge to learn the new task better (Chen and Liu 2018). 

5.3.  Relevance of Novelty 

Due to the performance task, the agent should focus on novelties that are critical to the performance task. 

For example, a self-driving car should focus on novel objects or events that are or may potentially appear 

on the road in front of the car. It should not pay attention to novel objects in the shops along the street (off 

the road) as they do not affect driving. This relevance check involves gathering information about the novel 

object to make a classification decision. 

5.4.  Novelty Characterization and Adaptation 

In a real-life application, classification may not be the primary task of an agent. For example, in a self-

driving car, object classification supports its primary performance task of driving. To drive safely, the car 

must take actions to adapt or respond to the novel/new objects, e.g., slowing down and avoiding the objects. 

To know what actions to take to adapt, the agent must characterize the new object. The characterization of 

a novel object is a description of the object based on the agent’s existing knowledge of the world and/or 

description of agent’s uncertainty about the object. Based on the characterization, appropriate actions are 

formulated to adapt or respond to the novel object. The process may also involve learning. 

Novelty characterization and adaptation (or response) form a pair (c, r), where c is the characterization of 

the novelty and r is the adaptation response to the novelty, which is a plan of dynamically formulated 

actions based on the characterization of the novelty. The two activities go together. If the system cannot 

characterize a novelty, it takes a low risk-assessed default response. In our greeting bot example, when it 

can characterize a novelty as a new guest, its response is to say ”Hello, welcome to our hotel! What is your 

name, sir?” If the bot has difficulty with characterization, it can take a default action, e.g., ‘do nothing.’ 

The set of responses are specific to the application. For a self-driving car, the default response to a novel 

object is to slow down or stop the car so that it will not hit the object. 
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In some situations, the agent must take an action under low confidence circumstances, the agents engage in 

reinforcement learning, i.e., trying actions and then assessing outcomes.  

Characterization can be done at different levels of detail, which may result in more precise or less precise 

responses. Based on an ontology and object attributes related to the performance task in the domain, the 

characterization can be described based on the type of the object and the attribute of the object. For example, 

in the greeting bot application, it is useful to determine whether the novel object is a human or an animal 

because the responses to them are different. For self-driving cars, when sensing a novel object on the road, 

it should focus on those aspects that are important to driving, i.e., whether it is a still or a moving object. If 

it is a moving object, the car should determine its direction and speed of moving. Thus, the classification 

of movement is needed in this case to characterize the novelty, which, in turn, facilitates determination of 

the agent’s responding action(s). For instance, if the novel object is a mobile object, the car may wait for 

the object to leave the road before driving. 

Another characterization strategy is to compare the similarity between the novel object and the existing 

known objects. For example, if it is believed that the novel object looks like a dog (assuming the agent can 

recognize a dog), the agent may react like when it sees a dog on the road. 

Dealing with characterization and adaptation. The above discussion implies that to effectively 

characterize a novelty, the agent must already have a great deal of world knowledge that it can use to 

describe the novelty. Additionally, the characterization and response processes are often interactive in the 

sense that the agent may choose a course of actions based on the initial characterization. After some actions 

are taken, it will get some feedback from the environment. Based on the feedback and the agent’s additional 

observations, the course of actions may change. 

Novelty characterization and response generation sound extremely challenging. However, it is not 

impossible to do because in most applications the set of responses is finite. For example, in self-driving 

cars, the set of responses includes slowing down, stopping the car, and swerving. Based on the set of 

responses, we can work backward to build the needed systems to detect the characteristics of the detected 

novelty. See Section 6 for an example.  

Learning to respond. In some situations, the system may not know how to respond to a novel object or 

situation. It may try any of the following ways. 

(1)  Asking a human user. In the case of the self-driving car, when it does not know what to do, it may ask 

the passenger using the interactive module I in natural language and then follow the instruction from 

the passenger and learn it for future use. For example, if the car sees a black patch on the road that it 

has never seen before, it can ask “what is that black thing in front?” The passenger may answer “that 

is tar.” If there is no ready response, e.g., no prior information on tar, the system may progress with a 

further inquiry, asking the passenger “what should I do?” 

(2)  Imitation learning. On seeing a novel object, if the car in front drives through it with no issue, the car 

may choose the same course of action as well and also learn it for future use if the car drives through 

without any problem. 

(3)  Reinforcement learning. By interacting with the environment through trial-and-error exploration, the 

agent learns a good response policy. This is extremely challenging in a real-life environment as any 

action taken has consequences and cannot be reversed. For this to work, the agent must have an internal 

evaluation system that can assign rewards to states and assess risk or safety of each action.  

(4) Transfer learning: The agent may transfer knowledge from previous similar environments to the new 

unknown environment. Note that researchers in the control community have worked on the topic of 

finding a feasible trajectory for a new task in an unknown environment. For example, Vallon and 

Borrelli (2020) proposed a hierarchical learning architecture for predictive control in unknown 

environments, which is based on generalization and knowledge transfer from previous familiar and 
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similar environments. However, for such transfers to be successful, novelty characterization is critical; 

otherwise, knowledge transfer can be detrimental, e.g., resulting in negative transfer.  

If multiple novelties are detected at the same time, it is more difficult to respond as the agent must reason 

over the characteristics of all novel objects to dynamically formulate an overall plan of actions that 

prioritizes the responses. 

5.5.  Risk Assessment and Learning 

There is risk in achieving performance goals of an agent when making an incorrect decision. For example, 

classifying a known guest as unknown or an unknown guest as known may negatively affect guest 

impressions resulting in negative reviews. For a self-driving car, misidentifications can result in wrong 

responses, which could be a matter of life and death. Thus, risk assessment must be made in making each 

decision. Risk assessment can also be learned from experiences or mistakes. In the example of a car passing 

over tar, after the experience of passing over shiny black surfaces safely many times, if the car slips in one 

instance, the car agent must assess the risk of continuing the prior procedure. Given the danger, a car may 

weigh the risk excessively, slowing down on new encounters of shiny black surfaces. 

Another aspect of risk is in the adaptation process. The planned or learned actions should be safe. In the 

control and reinforcement learning community, many safe reinforcement learning methods have been 

proposed. For example, Mazouchi et al. (2021) presented a conflict-aware safe reinforcement learning 

algorithm to control autonomous systems. Instead of providing safety and performance guarantees for a 

single environment or circumstance, this paper proposes a method to provide safety and performance 

guarantees across a variety of circumstances that the system might encounter. 

6. CML: An Example SOLA System 

Although novelty detection (Yang et al. 2021; Pang et al. 2021) and incremental or continual learning (Chen 

and Liu 2018; Parisi et al. 2019; Lomonaco et al. 2022) have been studied widely, little work has been done 

to build a SOLA system. Here we describe an implemented task-oriented dialogue system or chatbot, CML 

(Command Matching and Learning), that follows the SOLA framework. CML performs each function in 

SOLA continually by itself on the job during conversation. Below, we provide an overview of the system 

and highlight each corresponding component in the SOLA framework and discuss how it works. Details of 

the system and experimental evaluations can be found in (Mazumder et al. 2020b). Another two related 

systems that learn factual knowledge during conversation can be found in (Mazumder et al. 2019, 2020a).  

CML1 is a natural language interface (NLI) like Amazon Alexa and Apple Siri. Its performance task is to 

take a user command in natural language (NL) and perform the user requested API action in the underlying 

application. Since it is a text-based system, no other support function is needed. The key issue is how to 

understand paraphrased NL commands from the user to map a user command to a system’s API call.  

CML is based on natural language to natural language (NL2NL) matching to automatically build NLIs. 

The approach is application-independent and requires no pre-collected application-specific training data, 

and thus can be easily adapted to different applications, e.g., robot navigation and command systems, virtual 

assistants like Siri and Alexa, and GUI-based software applications (e.g., manipulating objects in MS Word, 

MS Paint, Windows). To build a new NLI (or to incrementally add a new task/skill to an existing NLI), the 

application developer only needs to write a set 𝑆𝑖 of seed commands (SCs) in NL to represent each API 𝑎𝑖 

∈ 𝐴 (which is the set of all API actions that can be performed in the application). SCs in 𝑆𝑖 are just like 

paraphrased NL commands from the end users to invoke 𝑎𝑖. The only difference is that the objects to be 

 
1 We note that many terminologies used here are different from those used the original CML paper. This is because 

when the CML paper was written, the SOLA framework had not been conceived yet. However, since CML is an open-

world continual learning system, its steps and modules naturally map well to those of the SOLA framework. 
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acted upon in each SC are replaced with variables, which are the arguments of API 𝑎𝑖. When the user issues 

a command C, the system simply matches C with a SC 𝑠𝑘
∗  of the correct action 𝑎∗ and in doing so, it also 

instantiates the variables/arguments for the associated API 𝑎∗ to be executed. For example, the table below 

shows three API actions (column 1) for switching on the light in a location, switching off the light in a 

location, and change the light color of a location, respectively. Two example SCs are given for each API 

action in column 2. An example user command (without XI or X2) is given in column 3 for each API. Here, 

X1 and X2 are variables or place holders for location and color respectively.  

APR(arg: arg type) Seed Commands (SCs) Example User Command 

SwitchOnLight(X1: location) 1. Switch on the light in X1 

2. Put on light in X1 

Switch on the light in the bedroom 

(X1).  

SwitchOffLight(X1: location) 1. Switch off the light in X1 

2. Put off light in X1 

Switch off the light in the bedroom 

(X1) 

ChangeLightColor (X1: location, X2: color) 1. Change the X1 light to X2 

2. I want X1 light to be X2 

Change the bedroom (X1) light to 

blue (X2) 

CML has three main modules: (1) A SC specification language for the application developer to specify the 

initial SCs for its application, (2) a command grounding module (CGM) to match/ground a user command 

(e.g., “power on the light in the bedroom”) to a SC (e.g., [Put on the light in X1], where the grounded API 

argument is {X1 = ‘bedroom’}) for the associated API action (e.g., SwitchOffLight(X1:location)) to be 

performed, and (3) an interactive learner to continually learn new SCs from users during application.  

Novelty equates to the CGM’s failure in grounding a user command. When the system detects a novelty (a 

hard-to-understand user command), it tries to understand the command and also learn the command so that 

it will be able to understand it and similar commands in the future. The system also assumes that every 

novelty is relevant to the application. The novelty characterization step of CML, which is also done by 

CGM, tries to identify the part of the user command that the system does not understand and how similar 

it is to some known commands. CGM uses an information retrieval (IR) based matching model. A Pre-

trained language model can also be employed to build CGM.  

Based on the characterization, the system adapts by asking the user via an interactive dialogue to obtain the 

ground truth API action requested by the user, which also serves as a piece of training data for continual 

learning. In the adaptation or accommodation process, risk is also considered. 

Consider the following example. The user issues the command “turn off the light in the kitchen” that the 

system does not understand (i.e., a novelty), i.e., the CGM module fails to ground/match the command. 

Based on the current system state, it decides which part of the command it can understand or ground, which 

part it has difficulty with, and what known commands are similar to the user command (i.e., 

characterization). Based on the characterization result, the interactive learner provides the user a list of 

top-k predicted actions (see below) described in NL and asks the user to select the most appropriate action 

from the given list (i.e., adaptation). 

User: Turn off the light in the kitchen 

Bot: Sorry, I didn’t get you. Do you mean to: 

option-1. switch off the light in the kitchen, or 

option-2. switch on the light in the kitchen, 

option-3. change the color of the light? 

The user selects the desired action (option-1). The action API [SwitchOffLight(X1:location)] corresponding 

to the selected action (option-1) is retained as the ground truth action for the issued user command. In 

subsequent turns of the dialogue, the interactive learner will ask the user questions to acquire ground truth 

values associated with the arguments of the selected action, as defined in the API. This process is controlled 

by an action planner. CML then incrementally learns to map the original command “turn off the light in 
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the kitchen” to the API action, SwitchOffLight(arg:location). Learning here means to create a new SC [turn 

off the light in X1] and add it to the list of SCs for the API SwitchOffLight(X1:location) so that in the 

future, when this user or any other user issues the same or a similar command, CML will have no problem 

in understanding or grounding it, i.e., mapping the command to this new SC. Over time, CML learns more 

and more from users and becomes more and more knowledgeable and powerful in serving them.  

Risk is considered in CML in two ways. First, it does not ask the user too many questions in order not to 

annoy the user. Second, when the characterization is not confident, the system simply asks the user to say 

his/her command again in an alternative way (which may be easier for the system to ground or understand) 

rather than providing a list of random options for the user to choose from. If the options have nothing to do 

with the user command, the user may lose confidence in the system. 

7  Key Challenges 

Although novelty detection and continual learning have been researched extensively, they remain 

challenging. Limited work has been done to address the following (this list is by no means exhaustive):  

Learning everything and everywhere. As indicated earlier, every module or sub-system in Figure 2 needs 

to learn continually, i.e., everywhere needs learning. Similarly, everything can be learned. For example, 

from each user’s dialogue history with a chatbot, the system can learn whether a user feels more excited or 

gets annoyed while conversing on a particular topic, and what he/she likes and dislikes. The chatbot can 

then utilize this user’s profile in modeling future conversations to make them more engaging with the user.   

In this paper, we focus only on the open world continual learning of the main task. A general framework is 

needed to integrate all the learning activities and their resulting knowledge to make the agent work even 

better.  

Obtaining training data on the fly. A key feature of SOLA is the interaction with human users to obtain 

ground-truth training data, which needs a dialogue system. Building an effective dialogue system for this 

purpose is challenging. We are unaware of any such system for SOLA except CML (Mazumder et al. 

2020b), but CML is only for simple command learning. 

Few-shot continual learning. It is unlikely for the learning agent to collect a large volume of training data 

via interaction with the user. Then, an effective and accurate few-shot continual/incremental learning 

method is necessary.  

Novelty characterization and adaptation. Characterization is critical because it defines the characteristics 

used to recognize world state and determine the best response strategy. We have given several examples of 

characterization and adaptation in the domains of self-driving cars and greeting bots. However, little 

research has been done on the topics in the academic community. They are extremely challenging as they 

require the system to have a large amount of prior knowledge and a domain world model, and to reason 

based on this knowledge and the current observations. 

Learning to respond/adapt. As indicated earlier, this is especially challenging in a physical environment 

(Dulac-Arnold et al. 2021). For example, due to safety concerns, learning during driving by a self-driving 

car using reinforcement learning (RL) is very dangerous because every action has potentially life and death 

consequences and cannot be undone. Furthermore, for RL to work, the agent must have a highly effective 

internal reward or evaluation system to assign rewards to actions and states and be aware of safety 

constraints automatically without detailed manual specifications. So far limited work has been done. 

Knowledge representation, reasoning, and revision. SOLA has so many components, but it is not known 

what knowledge representation & reasoning scheme best suits all modules and facilitates their integration. 

Further, it is inevitable that the system may misinterpret, generalize or otherwise assemble incorrect 
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knowledge. A system must have a mechanism to detect and revise the inaccurate knowledge on its own. 

Little work has been done in this area. 

8.  Conclusion 

A truly intelligent system must be able to learn autonomously and continually in the open world on its own 

initiative after deployment, adapt to the ever-changing world, and learn more and more to become more 

and more powerful over time. This paper proposed the self-initiated open-world continual learning and 

adaptation (SOLA) framework for this purpose, and presented the concepts, steps, a general framework and 

key challenges. An implemented SOLA system called CML in the context of dialogue systems (or chatbots) 

was also described. We believe that future research in SOLA will bring AI to the next level. 
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