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Abstract
Asmore andmore AI agents are used in practice, it is time to think about how to
make these agents fully autonomous so that they can (1) learn by themselves con-
tinually in a self-motivated and self-initiatedmanner rather than being retrained
offline periodically on the initiation of human engineers and (2) accommodate
or adapt to unexpected or novel circumstances. As the real-world is an open
environment that is full of unknowns or novelties, the capabilities of detecting
novelties, characterizing them, accommodating/adapting to them, and gathering
ground-truth training data and incrementally learning the unknowns/novelties
become critical in making the AI agent more and more knowledgeable, power-
ful and self-sustainable over time. The key challenge here is how to automate
the process so that it is carried out continually on the agent’s own initiative
and through its own interactions with humans, other agents and the environ-
ment just like human on-the-job learning. This paper proposes a framework
(called SOLA) for this learning paradigm to promote the research of building
autonomous and continual learning enabled AI agents. To show feasibility, an
implemented agent is also described.

INTRODUCTION

Classical machine learning (ML) makes the closed-world
assumption, which means that the classes of objects seen
by the system in testing or applicationmust have been seen
during training (Bendale and Boult 2015; Fei, Wang, and
Liu 2016; Liu 2020), that is, there is nothing unexpected or
novel occurring in testing or deployment. This assumption
is invalid in practice as the real world is an open envi-
ronment that is full of unknowns or novel objects. For
humans, novelties serve as an intrinsic motivation (IM)
for learning. Human novelty detection results in a cas-
cade of unique neural responses and behavioral changes

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. AI Magazine published by Wiley Periodicals LLC on behalf of the Association for the Advancement of Artificial Intelligence.

that enable exploration and flexible memory encoding of
the novel information. As learning occurs, this novelty
response is soon lost as repeated exposure to novelty results
in fast neural adaptation (Tulving and Kroll 1995; Murty
et al. 2013). To make an AI agent thrive in the real open
world, like humans, it has to detect novelties and learn
them incrementally to make the system more knowledge-
able and adaptable over time. It must do so on its own
initiative on the job (after deployment) rather than relying
on human engineers to retrain the system offline peri-
odically. That is, it must learn in the open world in a
self-motivated manner in the context of its performance
task (the main task of the agent).
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We use the hotel guest-greeting bot example from (Chen
and Liu 2018) to illustrate the issues involved. The bot’s
performance task is greeting hotel guests. When its vision
system sees a guest (say, John) it has learned before, it
greets him by saying,

“Hi John, how are you today?”

When it sees a new guest, it should detect this guest as
new or novel. This is a novelty detection problem (also
known as out-of-distribution (OOD) detection). Upon
discovering the novelty—the new guest, it needs toaccom-
modate or adapt to the novel situation. The bot may say
to the new guest,

“Hello, welcome to our hotel! What is your
name, sir?”

If the guest replies “David,” the bot takes some pictures
of the guest to gather training data and then incremen-
tally or continually learn to recognize David. The name
“David” serves as the class label of the pictures taken. As
for humans, the detected novelty serves as an intrinsic self-
motivation for the agent/bot to learn. When the bot sees
this guest again next time, it can say

“Hi David, how are you today?” (David is no
longer new)

In an actual hotel, the situation is, however, much more
complex than this. For example, how does the system
know that the novel object is a person, not a dog? If the
system can recognize the object as a person, how does it
know that he/she is a hotel guest, not a service provider for
services such as delivery or security? To adapt to the novel
object or situation, the system must first characterize the
novel object, as without it, the agent would not know how
to adapt or respond. In this case, some classification or
similarity comparison is needed to decide whether it is a
person with luggage. If the object looks like a person but
has no luggage, the bot will not respond or learn to recog-
nize the person as it is irrelevant to its performance task.
If the novel object looks like an animal, it should notify a
hotel employee and learn to recognize the object so that
it will no longer be novel when it is seen next time. In
short, for each characterization, there is a corresponding
response or adaptation strategy, which can be NIL (that
is, do nothing). This discussion shows that to characterize,
the agentmust already have richworld knowledge. Finally,
there is also risk involved when making an incorrect
decision.
As classic learning matures, we should go beyond the

existing paradigm to study how to enable an agent to learn

and adapt by itself via its own interactions with humans
and the environment, that is, self-initiation, involving no
engineers. This paper proposes a Self-initiatedOpen-world
continual Learning and Adaptation (SOLA) framework to
promote the research of autonomousAI agents so that they
can face the real open world and learn by themselves. An
example SOLA agent in the context of dialogue systems
or chatbots that implements the SOLA framework is also
discussed.

COMPARISONWITH RELATEDWORK

Openworld learning has been studied bymany researchers
(Bendale and Boult 2015; Fei, Wang, and Liu 2016; Xu et al.
2019), but they mainly focused on novelty detection (Par-
mar et al. 2021), also called open set or out-of-distribution
(OOD) detection. Some researchers have also studied
learning the novel objects after they are detected (Ben-
dale and Boult 2015; Fei, Wang, and Liu 2016; Xu et al.
2019) and manually labeled. A survey of the topic can be
found in Yang et al. (2021). A position paper (Langley 2020)
recently presented some blue-sky ideas about open world
learning, but it does not have sufficient details or an imple-
mented system. SOLA differs from these prior studies in
many ways as: (1) SOLA stresses “self-initiation” in learn-
ing, which means that all the learning activities from start
to end are self-motivated and self-initiated by the agent
itself. The process involves no human engineers. (2) Due to
self-initiation, SOLA enables learning after model deploy-
ment like human learning on the job or while working,
which has barely been attempted before. In existing learn-
ing paradigms, after a model has been deployed, there is
no more learning until the model is updated or retrained
on the initiation of the human engineers. (3) SOLA is a
lifelong and continual learning paradigm again because
learning is self-initiated and unceasing. It is thus con-
nected with lifelong and continual learning, which is an
active research area in machine learning, computer vision
and natural language processing (Chen and Liu 2018). (4)
SOLA involves online interactions of the learning agent
with human users, other AI agents, and the environment.
The purpose is to acquire ground-truth training data on
the fly by itself (and it is free). This is very similar to what
we humans do when we encounter something novel or
new and ask others interactively to acquire knowledge. It is
very different from collecting a large amount of unlabeled
data and asking human annotators to label the data (as
in the case of crowdsourcing). Also, it differs from active
learning (Settles 2009; Ren et al. 2021) as active learning
only focuses on acquiring labels from users for selected
unlabeled examples in the given dataset. SOLA also allows
learning from other resources, for example, the Web or a
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human teacher, to gain knowledge, like a human reading
a book or learning from a dedicated teacher. Due to space
limits, this paper will not focus on these types of learning
(see an example in Mitchell et al. [2015]; Kasaei, Seabra
Lopes, and Tomé [2020]). (5) SOLA includes modules to
characterize and to adapt to novel situations so that the
agent can work in the open world environment and also
continually learn and self-sustain in the process.
In robotics research, a closely related topic is open-

ended learning, where the number of classes or categories
to be learned is not predefined. In Seabra Lopes and
Chauhan (2007) and (2008), a human teacher interactively
teaches a robot to learn new words or new object names
through a user-interface. In the process, the robot learns
incrementally. In Kasaei, Seabra Lopes, and Tomé (2020)
and Kasaei et al. (2019), a user teaches a robot to incre-
mentally learn to recognize prior unknown visual objects
and their affordance categories. The system (Oliveira et al.
2015) also learns attributes or codebook words used to
encode the objects. In all these cases, the teacher/user takes
the initiative and decides what to teach and how to teach.
In the proposed SOLA framework, we focus on the sys-
tem itself. The system takes the initiative to detect what it
does not know or what is novel and to incrementally learn
the new/novel objects through interaction with humans
or the environment. The SOLA framework also includes
the characterization of the new objects so that the sys-
tem can formulate a plan of actions to respond to the
novel/new objects. In the process, the agent also con-
siders risk and safety. The SOLA framework thus covers
open-ended learning as it also has interactive learning and
continual/incremental learning.
Intrinsically motivated open-ended learning (IMOL)

is also related. It aims to develop robots that can
autonomously generate internal motivational signals or
rewards to acquire knowledge and skills (Barto et al. 2004;
Oudeyer, Kaplan, and Hafner 2007; Santucci et al. 2020;
Mirolli and Baldassarre 2013). It was inspired by the abil-
ity of humans to discover interesting things to learn driven
by self-generated rewards or curiosity not related to any
specific external tasks (White 1959; Deci and Ryan 1985).
Knowledge-based IMs (Oudeyer and Kaplan 2007) are
more closely related to our work, which are of two types,
namely novelty-based IMs and prediction-based IMs (Barto,
Mirolli, and Baldassarre 2013; Baldassarre 2019). Novelty-
based IMs try to detect novel items and direct attention to
novel items in exploration. Prediction-based IMs try to pre-
dict the future and compare with the observed reality to
compute the prediction error, and then direct the attention
to the wrongly predicted items to improve the prediction
accuracy. IMs are often expressed as internal rewards to
augment sparse external rewards in reinforcement learn-
ing (Kulkarni et al. 2016; Pathak et al. 2017; Baldassarre

2019). Although related, IMOL is significantly different
from SOLA. IMOL has the ambitious goal of imitating
humans’ cognitive and learning process and capability in
robots, while SOLA’s goal is more modest in the sense that
it has well-defined novelty detection, continual learning,
and other computational functions. SOLA is not normally
associated with reinforcement learning, and novelty in
SOLA serves as the motivation for continual learning and
triggers self-initiation.
Human-robot teaming also has some resemblance to our

work. For example, Talamadupula et al. (2017) proposed
a system that enables human-robot interactions through
natural language dialogues to jointly perform a task. The
term “open world” in this paper means that there may be
new goals, new sub-tasks, and new entities in the task, for
example, a search and rescue task. Apart from natural lan-
guage dialogue, the system also performs some reasoning
and open-world planning. However, this does not involve
continual learning or knowledge accumulation, which is
the core of the SOLA framework.
In summary, SOLA makes learning autonomous and

self-initiated. Although novelty detection, adaptation, and
continual learning have been studied discretely (in specific
use cases or application scenarios) in many works over
decades, we have not found any work that has discussed
or provided a generic and holistic framework (like SOLA)
that unifies the ideas of self-initiation, novelty detection,
adaptation, and open-world continual learning into one.
We believe that SOLA is necessary for the next genera-
tion machine learning and AI agents. Finally, note that
although SOLA focuses on self-initiated learning, it does
not mean that the learning system cannot learn a task
given by humans or other AI agents (as followed in usual
ML design practices).

NOVELTY DETECTION

Novelty is a core concept of SOLA as it triggers and moti-
vates the whole SOLA process. Detecting novel objects or
situations is thus a critical task. In the research commu-
nity, it is often called out-of-distribution (OOD) detection.
In general, novelty is an agent-specific concept. An object
may be novel to one agent based on its partial knowledge
of the world but not novel to another agent. We distin-
guish two types of novelty: absolute novelty and contextual
novelty.

Absolute novelty

Absolute novelty represents something that the agent
has never seen before. For example, in the context of
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supervised learning, the agent’s world knowledge is
learned from the training data𝐷𝑡𝑟 = {(𝑥𝑖, 𝑦𝑖)}

𝑛
𝑖=1

with 𝑥𝑖 ∈
𝑋 is the input data and 𝑦𝑖 ∈ 𝑌𝑡𝑟 is its class label. Let ℎ(𝑥)
be the latent or internal representation of 𝑥 in the agent’s
mind, ℎ(𝐷𝑖

𝑡𝑟) be the latent representation of the training
data 𝐷𝑖

tr of class 𝑦𝑖 , and 𝑘 ( = |𝑌𝑡𝑟|) be the total number of
training classes. We use 𝜇(ℎ(𝑥′), ℎ(𝐷𝑖

𝑡𝑟)) to denote the nov-
elty score of a test instance 𝑥′ with respect to ℎ(𝐷𝑖

𝑡𝑟). The
degree of novelty of 𝑥′ with respect to𝐷𝑡𝑟, 𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟)),
is defined as the minimum novelty score with regard to
every class,

𝜇
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(
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))}
(1)

The novelty function 𝜇 can be defined based on spe-
cific applications. For example, if the training data of each
class follows the Gaussian distribution, one may use z-
score or Mahalanobis distance as the novelty score. The
definition is also for out-of-distribution (OOD) detection,
where the training classes in𝑌𝑡𝑟 are called in-distribution
(IND) classes and those test instances that do not belong
to the IND classes are called OOD instances. Thus,
an OOD or novelty detection model can classify a test
instance from an IND class to its corresponding class and
detect OOD test instances that do not belong to any IND
class.
Novel instance: A test instance 𝑥′ is novel if its novelty

score𝜇(ℎ(𝑥′), ℎ(𝐷𝑡𝑟)) is greater than or equal to a threshold
value γ such that 𝑥′ can be assigned a new class that is not
in 𝑌𝑡𝑟.
Novel class: A newly created class 𝑦𝑛𝑒𝑤 (𝑦𝑛𝑒𝑤 ∉ 𝑌𝑡𝑟)

assigned to some novel instances is called a novel class
(unknown or unseen class). The classes in 𝑌𝑡𝑟 are also
called known or seen classes.

Contextual novelty

Given that both the instance x and the context Q are not
absolutely novel and the probability P(x|Q) of x occurring
in Q is very low, but x has occurred in Q, which is surpris-
ing or unexpected. A contextual novelty is also commonly
called a surprise or unexpected event. In human cogni-
tion, surprise is an emotional response to an instance that
greatly exceeds the expected uncertainty within the con-
text of a task. The definitions of contextually novel instance
and class are like those for absolute novelty.
Intuitively, in absolute novelty, the novelty of x is con-

text independent. For example, if the agent has never seen
a tiger before, it is absolutely novelty, irrespective of its
context (other objects in the image). If x is known but is

very unlikely to appear in a context, x is contextually novel,
for example, a deer (known) appearing in a crowded city
street. Related work on contextual novelty detection can
be found in Ma et al. (2021; 2022).
Novelty is not restricted to the perceivable physical

world but also includes the agent’s internal world, for
example, novel interpretations of world states or internal
cognitive states that have no correspondence to any phys-
ical world state. Interested readers may also read (Boult
et al. 2021) for a more nuanced and perception-based study
of novelty. There are other related concepts to novelty, for
example, out-of-distribution (OOD) samples, outliers, and
anomalies. An extensive work has been done on novelty
detection (Yang et al. 2021).

Outlier and anomaly

An outlier is a data point that is far away from the main
data clusters, but it may not be unknown. For example,
the salary of a company CEO is an outlier with regard to
the salary distribution of the company employees, but that
is known and thus not novel. Unknown outliers are novel.
Anomalies can be considered outliers or instances that are
one off and never repeated. Though technically “novel”
they may not result in a new class. Note that this paper
does not dealwith various types of data shift such as covari-
ate shift, prior probability shift and concept drift as a large
amount of work has been done (Moreno-Torres et al. 2012).
Wewill not discuss novelty detection further because it has
been studied extensively (Pang et al. 2021; Parmar et al.
2021; Yang et al. 2021).

LIFELONG AND CONTINUAL LEARNING

Since SOLA at its core is a continual learning paradigm,
this section introduces lifelong or continual learning
(Chen and Liu 2018). To enable autonomous continual
learning without the involvement of human engineers,
other capabilities are needed, which we will discuss in
subsequent sections. The terms lifelong learning and con-
tinual learning have the same meaning and are used
interchangeably.

Continual learning (CL)

CL is defined in Chen and Liu (2018) as follows, which is
based on the early definitions (Thrun 1995; Silver, Yang,
and Li 2013; Ruvolo and Eaton 2013; Chen and Liu 2014;
Mitchell et al. 2015) and more recent research (Rusu
et al. 2016; Kirkpatrick et al. 2017; Zenke, Poole, and
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Ganguli 2017; Rebuffi, Kolesnikov, and Lampert 2017; Shin
et al. 2017; Serra et al. 2018; Lee, Stokes, and Eaton 2019;
Chaudhry et al. 2020; Ke, Liu, and Huang 2020; Ke et al.
2021; Guo et al. 2022; Kim et al. 2022b).
Definition: Continual learning (CL) aims to learn a

sequence of tasks. At any point in time, the learner is
assumed to have N tasks, T1, T2, . . . , TN (called the previ-
ous tasks). In learning the (N + 1)th task TN+1 (called the
new task or the current task), the learner wants to achieve
two main objectives: (1)Overcoming catastrophic forgetting
(CF). CF refers to the phenomenon that when a neural net-
work learns a sequence of tasks, the learning of each new
task is likely to change the weights learned for previous
tasks, which degrades the model performance for the pre-
vious tasks (McCloskey and Cohen 1989). (2) Encouraging
knowledge transfer (KT) across tasks. The learner should
leverage the knowledge in the knowledge base (KB) to help
learn TN+1. This is called the forward transfer. The new
task should also help improve some previous task mod-
els if possible. This is call backward transfer. An explicit
or implicit knowledge base (KB) is maintained to retain
the knowledge learned from the previous N tasks. After
the completion of learning TN+1, KB is updated with the
knowledge gained from TN+1.
Two CL settings have been studied extensively in the

research literature. See Kim et al. (2022b) for their formal
definitions.
Class incremental learning (CIL). In CIL, each task

consists of one or more classes to be learned together but
only one model is learned to classify all classes learned so
far. In testing, a test instance from any class may be pre-
sented to the model for it to classify with no task related
information provided.
Task incremental learning (TIL). In TIL, each task

is a separate classification problem (that is, one classify-
ing different breeds of dogs and one classifying different
types of animals). TIL builds a set of classification mod-
els (one per task) in a shared neural network. In testing,
the system knows to which task each test instance belongs
and uses only the model for the task to classify the test
instance.
Earlier research mainly focused on KT in TIL and

assumed that the tasks are similar, which clearly facilitates
KT across tasks (Chen and Liu 2018). Little work was done
on CF, which has been researched only after deep learn-
ing became popular. More recent research focused on both
CF and KT.When the tasks are similar, KT is the focus (Ke
et al. 2021). When the tasks are dissimilar overcoming CF
is the key (Chen and Liu 2018; Guo et al. 2022). Work has
also been done to learn a mixed sequence of similar and
dissimilar tasks, which must deal with both CF and KT at
the same time (Ke, Liu, and Huang 2020), that is, to per-
form selective knowledge transfer among similar tasks and

also to overcome CF for dissimilar tasks. Task similarity is
detected automatically.
The architecture of CL systems is given in Figure 1 with-

out the orange-colored links. The orange-colored links will
be discussed in the next subsection. Dealing with CF is
not reflected in the architecture as it stays in the contin-
ual learner (C-Learner).ModelN+1 includes all the models
from T1 to TN+1, which may all be in one neural network.
In the case of TIL, they may be separate models indexed
by their task identifiers. In the case of CIL, ModelN+1 is
a single model that covers all classes of the tasks learned
so far. It has been proven in Kim et al. (2022b) that strong
out-of-distribution (OOD) detection or novelty detection is a
necessary condition for achieving good CIL performances.
Apart from overcoming CF and encouraging KT in CIL,
this paper also identified a new challenge of inter-task class
separation (ICS) that is as hard to deal with as CF and KT
(see Kim et al. [2022b] for details).

Limitation

One key limitation of the existing CL paradigm is that the
tasks and their training data are given by the user or engi-
neers. This means that the system is not autonomous and
cannot learn by itself. In order to do that, we extend the
CL architecture with the orange-colored links in Figure 1
to enable learning on the job to achieve the full SOLA.

A new CL architecture

The new architecture is summarized in the full diagram in
Figure 1 with the orange-colored links added to the tradi-
tional CL. These links enable the system to learn by itself
to achieve autonomy in the SOLA framework, that is, to
learn on the job during application or after model deploy-
ment. However, as discussed in the Introduction section,
learning during application is more complicated and the
framework also includes other aspects related to adapta-
tion to the novelty, which we will detail in section “The
Proposed SOLA Framework” with a new figure showing
the full architecture of SOLA.
The basic idea for learning in SOLA is that during appli-

cation, if the system/agent encounters anything that is
out-of-distribution or novel (a novelty), the system first
creates a new task to learn and then obtains the needed
ground-truth training data to learn the task on the ini-
tiation of the system itself through interactions with the
humans and the environment. Some new knowledge (or
auxiliary knowledge) gained from the application can be
added to the KB that may be leveraged in future learning
or to improve the current model.
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F IGURE 1 Architecture of a typical continual learning framework incorporating on-the-job learning (best viewed in color). T1, . . . , TN
are the previously learned tasks, TN+1 is the current new task to be learned and DN+1 is its training data. The C-Learner (continual learner)
learns by leveraging the relevant prior knowledge identified by the Task-based Knowledge Miner from the Knowledge Base (KB), which
contains the knowledge retained in the past. It also deals with CF. Existing research on continual learning does not have the orange-colored
lines. The orange-colored lines are added for on-the-job learning in SOLA.

F IGURE 2 Architecture of the primary task performer or any supporting function. OWC-Learner means Open-World Continual Learner.

THE PROPOSED SOLA FRAMEWORK

The SOLAarchitecture is given inFigure 2,which adds and
elaborates the orange-colored links and associated com-
ponents to the traditional CL architecture (without the
orange-colored links in Figure 1). These newly added links
and components enable the system to learn by itself and to
adapt to the new situation to gain autonomy, which is what

SOLA aims to achieve. It is called learning after deploy-
ment or learning on the job during application or after
model deployment.
Learning after deployment refers to learning contin-

uously after themodel has been deployed in an application
or during model application (Liu and Mazumder 2021) on
the fly. The basic idea is that during application, if the sys-
tem/agent encounters anything that is out-of-distribution



AI MAGAZINE 191

(OOD) or novel, it needs to detect the novelty. Based
on the novelty, the system creates a new task to learn
and acquires the ground-truth training data to learn the
task on the initiation of the system itself through interac-
tions with humans, other agents and/or the environment.
The system then learns the new task incrementally or
continually. In the process, the system also adapts itself
to the new situation and carries on its performance
task. The whole process is carried out on the fly during
application.

Components of SOLA

SOLA is proposed as a framework for building
autonomous AI agents. An AI agent consists of a pair of
key modules (P, S), where P is the primary task-performer
that performs its performance task (for example, the
dialogue system of the greeting bot) and S is a set of
supporting or peripheral functions (that is, the vision
system and the speech system of the bot) that supports
the primary task-performer. The primary task-performer
P or each supporting function Si ∈ S consist of eight core
sub-systems (L, K, M, R, C, A, S, I). Figure 2 shows the
relationships and functions of the sub-systems. We do not
distinguish P and Si in terms of techniques or subsystems
as we believe they have no fundamental difference.

∙ L is an OWC-Learner (Open-World Continual Learner)
that builds models to not only classify the input into
known classes but also detect novel objects that have not
been seen in training. For example, for the greeting bot,
L of the primary task performer P is a continual learn-
ing dialogue system similar to that in section “CML: An
Example SOLA System.” For the supporting vision sys-
tem, L can learn to recognize guests and detect novel or
unknown objects. Compared to C-Learner in continual
learning in Figure 1, OWC-Learner in SOLA not only
can learn continually like C-Learner but also produce
models that can detect novel instances in testing or in
application deployment (see Kim, Ke, and Liu (2022a)
for an example system).

∙ K is the Knowledge Base & World Model (KB) that
is important for the performance task, supporting func-
tions and/or the OWC-Learner. KB is also in Figure 1
but plays more roles in SOLA. Apart from keeping the
learned or prior knowledge of the domain and the world
model, if needed, reasoning capability may also be pro-
vided to help the other modules of the system (see the
orange-colored links). Some knowledge from the appli-
cation observed by the Adaptor (see below) may be
added to the KB, which can provide some knowledge to
the Model for its decision making. World model refers

to the representation of the task environment and the
commonsense knowledge about the objects and their
relationships within.

∙ M is theModel learned by L. M takes the input or per-
ception signals from the application environment and
make a decision to perform actions in the application.
The decisionmaking involves detecting novel or normal
input instances, besides performing its intended task (on
normal instances) as defined in the application. M may
also use some input or knowledge from the other sup-
porting functions and task-specific auxiliary knowledge
from K to help the inference process.

∙ R is the Relevance Module or focusing mechanism
that decides whether the detected novelty is relevant
to the current task or not. If it’s relevant, the agent
should respond to the novelty (discussed below); other-
wise simply ignore it. For example, in the greeting bot
application, if the bot sees a new inanimate object in
its viewing zone, even if the object is novel (never seen
before), the bot should ignore it as an inanimate object
should not be greeted! So, novelty in inanimate objects
is considered as irrelevant.

∙ C is the Novelty Characterizer that characterizes the
detected novelty based on the knowledge in the KB
so that the adaptor (below) can formulate a course of
actions to respond or adapt to the novelty. For the char-
acterizer C of P of the greeting bot, as P is a dialogue
system, when it cannot understand the utterance of a
hotel guest (a novelty), it should decide what it can
and cannot understand (see section “CML: An Example
SOLA System”) and ask the guest based on its partial
understanding (see below). In the case of the support-
ing vision system, when a novel object it detected, the
charaterizer may decide what the object looks like and
its physical attributes. For example, the novel object
may look like a dog based on the greeting bot’s KB (see
section “Novelty Characterization and Adaptation” for
more discussions).

∙ A is the Adaptor that adapts to or accommodates the
novelty based on the characterization result. It is a plan-
ner that produces a plan of actions for the executor E
(it can be a task user interface, not considered as a core
component of SOLA) or the interactive module I to per-
form. The goal here is to formulate a strategy to respond
to the novelty (that is, acquiring knowledge to learn the
detected novelty or reporting it to some other agents in
the environment). Given the characterization (that is,
partial understanding) above,Amay adapt by asking the
guest to clarify (see section “CML: An Example SOLA
System”) and then learn to understand the utterance. In
the case of the vision system, if the characterizer believes
that the novel object looks like a dog, the adaptor may
decide to report to a hotel employee and then learns the
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new object by taking some pictures as the training data.
It can also ask the hotel employee for the name of the
object as the class label. In the latter two cases, A needs
to invoke I to interact with the human and L to learn the
novelty so that it will not be novel in the future. That
is, A is also responsible for creating new tasks (that is,
learning to recognize new objects by the greeting bot)
on the fly and proceeds to acquire ground truth training
data with the help of I (discussed below) to be learned by
L. This adaptation process often involves reasoning and
may utilize knowledge from K.

∙ S is the Risk Assessment module. Novelty implies
uncertainty in adapting to the novel situation. In mak-
ing each response decision, risk needs to be assessed
(see section “Risk Assessment and Learning” for more
discussions).

∙ I is the Interactive Module for the agent to commu-
nicate with humans or other agents, for example, to
acquire ground-truth training data or to get instructions
when the agent does not knowwhat to do in a unfamiliar
situation. It may use the natural language (for interac-
tion with humans) or an agent language (for interaction
with other agents) for communication.

Several remarks are in order. (1) Not all agents need
all these sub-systems, and some sub-systems may also be
shared. For example, the primary task performer P in the
greeting bot application is a dialogue system. Its interac-
tion module I can use the same dialogue system. In some
cases, the model M may also be able to determine the
relevance of a novel object to the application and even
characterize the novelty because characterization in many
cases is about classification and similarity comparison. (2)
As we will see, every sub-system can and should have its
own local learning capability. (3) The interaction module
I and the adapter A will create new tasks to learn and
gather ground truth training data for learning. (4) Most
links in Figure 2 are bidirectional, which means that the
sub-systems may need to interact with each other to per-
form their tasks. The interactions may involve requesting
for information, passing messages, and/or going back and
forth with hypothesis generation, revision and evaluation
to make more informed decisions.
Since the primary task performer P and each supporting

sub-system Si has the same components or sub-systems,
we will discuss them in general rather than distinguishing
them.

Open-world continual learning

The classical machine learning (ML) makes the i.i.d
assumption, which is often violated in practice. Here we

first define several related concepts and then the idea of
open world continual learning in SOLA.
Let the training data that have been seen so far from pre-

vious tasks be 𝐷𝑡𝑟 = {(𝑥𝑖, 𝑦𝑖)}
𝑛
𝑖=1

with 𝑥𝑖 ∈ 𝑋 as the input
data and 𝑦𝑖 ∈ 𝑌𝑡𝑟 as its class label. Let the set of class labels
that may appear in testing or application be 𝑌𝑡𝑠𝑡. Classical
ML makes the closed-world assumption.
Closed-world assumption: There are no new or novel

instances or classes that may appear in testing or applica-
tion, that is, 𝑌𝑡𝑠𝑡 ⊆ 𝑌𝑡𝑟. In other words, every class seen in
testing or application must have been seen in training.
Open world: There are test classes that have not been

seen in training, that is, 𝑌𝑡𝑠𝑡 − 𝑌𝑡𝑟 ≠ ∅.
Definition (closed-world learning): It refers to the

learning paradigm that makes the closed-world assump-
tion.
Definition (open world learning): It refers to the

learning paradigm that performs the following functions:
(1) classify test instances belonging to training classes
to their respective classes and detect novel or out-of-
distribution instances, and (2) learn the novel classes
labeled by humans for the identified novel instances to
update the model using the labeled data. The model
updating is initiated by human engineers and involves
re-training or incremental learning.
Definition (SOLA): SOLA is a learning paradigm that

performs open-world learning but the learning process
is initiated by the agent itself after deployment with no
involvement of human engineers. The new task creation
and ground-truth training data acquisition are done by the
agent via its interactionwith the user and the environment.
The learning of the new task is incremental, that is, no re-
training of previous tasks/classes. The process is lifelong or
continuous, which makes the agent more knowledgeable
over time. In addition to learning, SOLA also characterizes
and adapt/respond to the novelty so that its performance
task can still be carried out without stopping.
Steps in learning in SOLA. The main continual

learning process in SOLA involves the following three
steps, which can be part of the novelty adaptation or
accommodation (see section “Novelty Characterization
and Adaptation”).
Step 1 - Novelty detection. This step detects data

instanceswhose classes do not belong to𝑌𝑡𝑟. A fair amount
of research has been done on this (see the surveys: Pang
et al. 2021; Parmar et al. 2021; Yang et al. 2021).
Step 2 - Acquiring class labels and creating a new learn-

ing task on the fly: This step first clusters the detected
novel instances. Each cluster represents a new class. It
may be done automatically or through interactions with
humans using the interaction module I. Interacting with
human users should produce more accurate clusters and
obtain meaningful class labels. If the detected data is
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insufficient for building an accuratemodel to recognize the
new classes, additional ground-truth datamay be collected
via interaction with users (and/or passively by download-
ing data from theWeb like searching and scrapping images
of objects of a given class). A new learning task is then
created.
In the case of our hotel greeting bot, since the bot detects

a single new guest (automatically), no clustering is needed.
It then asks the guest for his/her name as the class label.
It also takes more pictures as the training data. With the
labeled ground-truth data, a new learning task is created
to incrementally learn to recognize the new guest on the
fly.
The learning agent may also interact with the envi-

ronment to obtain training data. In this case, the agent
must have an internal evaluation system that can assign
rewards to different states of the world, for example, for
reinforcement learning.
Step 3 - Incrementally learn the new task. After ground-

truth training data has been obtained, the learner L
incrementally learns the new task. This is continual learn-
ing (Chen and Liu 2018). We will not discuss it further
as there are already numerous existing techniques (Parisi
et al. 2019; Kim et al. 2022b; Lomonaco et al. 2022). Many
can leverage existing knowledge to learn the new task
better (Chen and Liu 2018).

Relevance of novelty

Due to the performance task, the agent should focus on
novelties that are critical to the performance task. For
example, a self-driving car should focus on novel objects
or events that are or may potentially appear on the road
in front of the car. It should not pay attention to novel
objects in the shops along the street (off the road) as they do
not affect driving. This relevance check involves gathering
information about the novel object to make a classification
decision.

Novelty characterization and adaptation

In a real-life application, classification may not be the pri-
mary task of an agent. For example, in a self-driving car,
object classification supports its primary performance task
of driving. To drive safely, the carmust take actions to adapt
or respond to the novel/new objects, for example, slowing
down and avoiding the objects. To know what actions to
take to adapt, the agent must characterize the new object.
The characterization of a novel object is a description of
the object based on the agent’s existing knowledge of the
world and/or description of agent’s uncertainty about the

object. Based on the characterization, appropriate actions
are formulated toadapt or respond to the novel object. The
process may also involve learning.
Novelty characterization and adaptation (or response)

form a pair (c, r), where c is the characterization of the
novelty and r is the adaptation response to the novelty,
which is a plan of dynamically formulated actions based
on the characterization of the novelty. The two activities
go together. If the system cannot characterize a novelty, it
takes a low risk-assessed default response. In our greeting
bot example, when it can characterize a novelty as a new
guest, its response is to say “Hello, welcome to our hotel!
What is your name, sir?” If the bot has difficulty with char-
acterization, it can take a default action, for example, “do
nothing.” The set of responses are specific to the applica-
tion. For a self-driving car, the default response to a novel
object is to slow down or stop the car so that it will not hit
the object.
In some situations, the agent must take an action

under low confidence circumstances, the agents engage
in reinforcement learning, that is, trying actions and then
assessing outcomes.
Characterization can be done at different levels of detail,

whichmay result in more precise or less precise responses.
Based on an ontology and object attributes related to the
performance task in the domain, the characterization can
be described based on the type of the object and the
attribute of the object. For example, in the greeting bot
application, it is useful to determine whether the novel
object is a human or an animal because the responses to
them are different. For self-driving cars, when sensing a
novel object on the road, it should focus on those aspects
that are important to driving, that is, whether it is a still
or a moving object. If it is a moving object, the car should
determine its direction and speed of moving. Thus, the
classification ofmovement is needed in this case to charac-
terize the novelty, which, in turn, facilitates determination
of the agent’s responding action(s). For instance, if the
novel object is a mobile object, the car may wait for the
object to leave the road before driving.
Another characterization strategy is to compare the

similarity between the novel object and the existing
known objects. For example, if it is believed that the novel
object looks like a dog (assuming the agent can recognize
a dog), the agent may react like when it sees a dog on the
road.
Dealing with characterization and adaptation. The

above discussion implies that to effectively characterize a
novelty, the agent must already have a great deal of world
knowledge that it can use to describe the novelty. Addition-
ally, the characterization and response processes are often
interactive in the sense that the agent may choose a course
of actions based on the initial characterization. After some
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actions are taken, it will get some feedback from the envi-
ronment. Based on the feedback and the agent’s additional
observations, the course of actions may change.
Novelty characterization and response generation sound

extremely challenging. However, it is not impossible to
do because in most applications the set of responses is
finite. For example, in self-driving cars, the set of responses
includes slowing down, stopping the car, and swerving.
Based on the set of responses, we can work backward to
build the needed systems to detect the characteristics of
the detected novelty. See section “CML:AnExample SOLA
System” for an example.
Learning to respond. In some situations, the sys-

tem may not know how to respond to a novel object or
situation. It may try any of the following ways:

1. Asking a human user. In the case of the self-driving
car, when it does not know what to do, it may ask
the passenger using the interactive module I in natural
language and then follow the instruction from the pas-
senger and learn it for future use. For example, if the
car sees a black patch on the road that it has never seen
before, it can ask “what is that black thing in front?” The
passenger may answer “that is tar.” If there is no ready
response, for example, no prior information on tar, the
system may progress with a further inquiry, asking the
passenger “what should I do?”

2. Imitation learning. On seeing a novel object, if the car
in front drives through it with no issue, the car may
choose the same course of action as well and also learn
it for future use if the car drives through without any
problem.

3. Reinforcement learning. By interacting with the envi-
ronment through trial-and-error exploration, the agent
learns a good response policy. This is extremely chal-
lenging in a real-life environment as any action taken
has consequences and cannot be reversed. For this to
work, the agent must have an internal evaluation sys-
tem that can assign rewards to states and assess risk or
safety of each action.

4. Transfer learning: The agent may transfer knowl-
edge from previous similar environments to the new
unknown environment. Note that researchers in the
control community have worked on the topic of find-
ing a feasible trajectory for a new task in an unknown
environment. For example, Vallon and Borrelli (2020)
proposed a hierarchical learning architecture for pre-
dictive control in unknown environments, which is
based on generalization and knowledge transfer from
previous familiar and similar environments. However,
for such transfers to be successful, novelty characteri-
zation is critical; otherwise, knowledge transfer can be
detrimental, for example, resulting in negative transfer.

If multiple novelties are detected at the same time, it
is more difficult to respond as the agent must reason
over the characteristics of all novel objects to dynamically
formulate an overall plan of actions that prioritizes the
responses.

Risk assessment and learning

There is risk in achieving performance goals of an agent
when making an incorrect decision. For example, classi-
fying a known guest as unknown or an unknown guest as
knownmaynegatively affect guest impressions resulting in
negative reviews. For a self-driving car, misidentifications
can result in wrong responses, which could be a matter
of life and death. Thus, risk assessment must be made in
making each decision. Risk assessment can also be learned
from experiences or mistakes. In the example of a car pass-
ing over tar, after the experience of passing over shiny
black surfaces safely many times, if the car slips in one
instance, the car agent must assess the risk of continuing
the prior procedure. Given the danger, a car may weigh the
risk excessively, slowing down on new encounters of shiny
black surfaces.
Another aspect of risk is in the adaptation process. The

planned or learned actions should be safe. In the con-
trol and reinforcement learning community, many safe
reinforcement learning methods have been proposed. For
example, Mazouchi, Nageshrao, and Modares (2021) pre-
sented a conflict-aware safe reinforcement learning algo-
rithm to control autonomous systems. Instead of providing
safety and performance guarantees for a single environ-
ment or circumstance, this paper proposes a method to
provide safety and performance guarantees across a variety
of circumstances that the system might encounter.

CML: AN EXAMPLE SOLA SYSTEM

Although novelty detection (Yang et al. 2021; Pang et al.
2021) and incremental or continual learning (Chen and
Liu 2018; Parisi et al. 2019; Lomonaco et al. 2022) have
been studied widely, little work has been done to build
a SOLA system. Here we describe an implemented task-
oriented dialogue system or chatbot, CML (Command
Matching and Learning), that follows the SOLA frame-
work. CML performs each function in SOLA continually
by itself on the job during conversation. Below, we provide
an overview of the system and highlight each corre-
sponding component in the SOLA framework and discuss
how it works. Details of the system and experimental
evaluations can be found in Mazumder et al. (2020b).
Another two related systems that learn factual knowledge
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during conversation can be found in Mazumder et al.
(2019, 2020a).
CML1 is a natural language interface (NLI) like Amazon

Alexa andApple Siri. Itsperformance task is to take a user
command in natural language (NL) and perform the user
requestedAPI action in the underlying application. Since it
is a text-based system, no other support function is needed.
The key issue is how to understand paraphrased NL com-
mands from the user to map a user command to a system’s
API call.
CML is based on natural language to natural lan-

guage (NL2NL)matching to automatically build NLIs. The
approach is application-independent and requires no pre-
collected application-specific training data, and thus can
be easily adapted to different applications, for example,
robot navigation and command systems, virtual assistants
like Siri and Alexa, and GUI-based software applications
(for example, manipulating objects in MSWord, MS Paint,
Windows). To build a new NLI (or to incrementally add a
new task/skill to an existing NLI), the application devel-
oper only needs to write a set 𝑆𝑖 of seed commands (SCs)
in NL to represent each API 𝑎𝑖 ∈ 𝐴 (which is the set of all
API actions that can be performed in the application). SCs
in 𝑆𝑖 are just like paraphrased NL commands from the end
users to invoke 𝑎𝑖 . The only difference is that the objects
to be acted upon in each SC are replaced with variables,
which are the arguments of API 𝑎𝑖 . When the user issues
a command C, the system simply matches C with a SC 𝑠∗

𝑘
of the correct action 𝑎∗ and in doing so, it also instanti-
ates the variables/arguments for the associated API 𝑎∗ to
be executed. For example, the table below shows three API
actions (column 1) for switching on the light in a location,
switching off the light in a location, and change the light color
of a location, respectively. Two example SCs are given for
each API action in column 2. An example user command
(without XI or X2) is given in column 3 for each API. Here,
X1 and X2 are variables or place holders for location and
color, respectively.

APR(arg: arg
type)

Seed Commands
(SCs)

Example User
Command

SwitchOnLight
(X1: location)

1. Switch on the
light in X1

2. Put on light in
X1

Switch on the light
in the bedroom
(X1).

SwitchOffLight
(X1: location)

1. Switch off the
light in X1

2. Put off light in
X1

Switch off the light
in the bedroom
(X1)

ChangeLightColor
(X1: location, X2:
color)

1. Change the X1
light to X2

2. I want X1 light
to be X2

Change the
bedroom (X1)
light to blue (X2)

CML has threemainmodules: (1) A SC specification lan-
guage for the application developer to specify the initial
SCs for its application, (2) a command grounding module
(CGM) to match/ground a user command (for example,
“power on the light in the bedroom”) to a SC (for example,
[Put on the light in X1], where the grounded API argu-
ment is {X1= ‘bedroom’}) for the associated API action (for
example, SwitchOffLight(X1:location)) to be performed,
and (3) an interactive learner to continually learn new SCs
from users during application.
Novelty equates to the CGM’s failure in grounding a

user command.When the system detects a novelty (a hard-
to-understand user command), it tries to understand the
command and also learn the command so that it will be
able to understand it and similar commands in the future.
The system also assumes that every novelty is relevant
to the application. The novelty characterization step of
CML, which is also done by CGM, tries to identify the part
of the user command that the system does not understand
and how similar it is to some known commands. CGMuses
an information retrieval (IR) based matching model. A
Pre-trained language model can also be employed to build
CGM.
Based on the characterization, the system adapts by

asking the user via an interactive dialogue to obtain the
ground truth API action requested by the user, which also
serves as a piece of training data for continual learning.
In the adaptation or accommodation process, risk is also
considered.
Consider the following example. The user issues the

command “turn off the light in the kitchen” that the system
does not understand (that is, a novelty), that is, the CGM
module fails to ground/match the command. Based on the
current system state, it decides which part of the command
it can understand or ground, which part it has difficulty
with, and what known commands are similar to the user
command (that is, characterization). Based on the char-
acterization result, the interactive learner provides the user
a list of top-k predicted actions (see below) described in NL
and asks the user to select themost appropriate action from
the given list (that is, adaptation).

User: Turn off the light in the kitchen
Bot: Sorry, I didn’t get you. Do you mean to:
option-1. switch off the light in the kitchen,
option-2. switch on the light in the kitchen, or
option-3. change the color of the light?

The user selects the desired action (option-1). The action
API [SwitchOffLight(X1:location)] corresponding to the
selected action (option-1) is retained as the ground truth
action for the issued user command. In subsequent turns
of the dialogue, the interactive learner will ask the user
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questions to acquire ground truth values associated with
the arguments of the selected action, as defined in the
API. This process is controlled by an action planner.
CML then incrementally learns tomap the original com-
mand “turn off the light in the kitchen” to the API action,
SwitchOffLight(arg:location). Learning here means to cre-
ate a new SC [turn off the light in X1] and add it to the list of
SCs for the API SwitchOffLight(X1:location) so that in the
future, when this user or any other user issues the same or
a similar command, CML will have no problem in under-
standing or grounding it, that is, mapping the command
to this new SC. Over time, CML learns more and more
from users and becomes more and more knowledgeable
and powerful in serving them.
Risk is considered in CML in twoways. First, it does not

ask the user too many questions in order not to annoy the
user. Second, when the characterization is not confident,
the system simply asks the user to say his/her command
again in an alternative way (which may be easier for the
system to ground or understand) rather than providing a
list of random options for the user to choose from. If the
options have nothing to do with the user command, the
user may lose confidence in the system.

KEY CHALLENGES

Although novelty detection and continual learning have
been researched extensively, they remain challenging.
Limited work has been done to address the following (this
list is by no means exhaustive):
Learning everything and everywhere. As indicated

earlier, every module or sub-system in Figure 2 needs to
learn continually, that is, everywhere needs learning. Sim-
ilarly, everything can be learned. For example, from each
user’s dialogue history with a chatbot, the system can learn
whether a user feels more excited or gets annoyed while
conversing on a particular topic, and what he/she likes
and dislikes. The chatbot can then utilize this user’s pro-
file in modeling future conversations to make them more
engaging with the user.
In this paper, we focus only on the open world continual

learning of the main task. A general framework is needed
to integrate all the learning activities and their resulting
knowledge to make the agent work even better.
Obtaining training data on the fly. A key feature

of SOLA is the interaction with human users to obtain
ground-truth training data,whichneeds a dialogue system.
Building an effective dialogue system for this purpose is
challenging. We are unaware of any such system for SOLA
except CML (Mazumder et al. 2020b), but CML is only for
simple command learning.

Few-shot continual learning. It is unlikely for the
learning agent to collect a large volume of training data
via interaction with the user,. Then, an effective and accu-
rate few-shot continual/incremental learning method is
necessary.
Novelty characterization and adaptation. Charac-

terization is critical because it defines the characteristics
used to recognize world state and determine the best
response strategy. We have given several examples of char-
acterization and adaptation in the domains of self-driving
cars and greeting bots. However, little research has been
done on the topics in the academic community. They are
extremely challenging as they require the system to have
a large amount of prior knowledge and a domain world
model, and to reason based on this knowledge and the
current observations.
Learning to respond/adapt. As indicated earlier, this

is especially challenging in a physical environment (Dulac-
Arnold et al. 2021). For example, due to safety concerns,
learning during driving by a self-driving car using rein-
forcement learning (RL) is very dangerous because every
action has potentially life and death consequences and
cannot be undone. Furthermore, for RL to work, the agent
must have a highly effective internal reward or evalua-
tion system to assign rewards to actions and states and be
aware of safety constraints automatically without detailed
manual specifications. So far limited work has been done.
Knowledge representation, reasoning, and revi-

sion. SOLA has so many components, but it is not known
what knowledge representation & reasoning scheme best
suits all modules and facilitates their integration. Further,
it is inevitable that the system may misinterpret, general-
ize or otherwise assemble incorrect knowledge. A system
must have a mechanism to detect and revise the inaccu-
rate knowledge on its own. Little work has been done in
this area.

CONCLUSION

A truly intelligent system must be able to learn
autonomously and continually in the open world on
its own initiative after deployment, adapt to the ever-
changing world, and learn more and more to become
more and more powerful over time. This paper proposed
the self-initiated open-world continual learning and
adaptation (SOLA) framework for this purpose, and
presented the concepts, steps, a general framework and
key challenges. An implemented SOLA system called
CML in the context of dialogue systems (or chatbots) was
also described. We believe that future research in SOLA
will bring AI to the next level.
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NOTE
1We note that many terminologies used here are different from those
used the original CML paper. This is because when the CML paper
was written, the SOLA framework had not been conceived yet.
However, since CML is an open-world continual learning system,
its steps and modules naturally map well to those of the SOLA
framework.
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