This talk was given at (1) NeurIPS AFM-2024 Workshop and (2) AIGC-2024 conference

Achieving Upper Bound Accuracy in Continual Learning

Bing Liu

Department of Computer Science

University of Illinois Chicago

Outline

- Continual learning and its key challenges
- Theory about class incremental learning (CIL)
- CIL using in-context learning
- Achieving CIL's upper bound accuracy
- Summary

Lifelong or continual learning (CL)

(Thrun 1996, Silver et al 2013; Ruvolo and Eaton, 2013; Chen and Liu, 2018)

- Learn a sequence of tasks, T_1 , T_2 , ..., T_n , ... incrementally. Each task t has a training dataset $\mathcal{D}_t = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n$ in a neural network.
 - In supervised learning, a task is a set of classes to be learned.
 - Incremental: In learning a new task, we don't see the data of previous tasks

General challenges:

- 1. Catastrophic forgetting (CF): Learning of the new task T_{N+1} should not result in accuracy degradation for any of the previous N tasks.
- 2. Knowledge transfer (KT): leveraging the knowledge learned from the previous tasks to learn the new task T_{N+1} better.

Two popular CL settings: TIL

- Task incremental learning (TIL): train a "separate" model for each task and task-id is provided during testing
 - Example: Task 1: learn to recognize different breeds of dogs. Task 2: learn to recognize different animals. Task 3: learn to recognize different types of fish.
 - Testing needs task information (e.g., task id).

Task incremental learning (TIL). TIL learns a sequence of tasks, 1, 2, ..., T. Each task k has a training dataset $\mathcal{D}_k = \{((x_k^i, k), y_k^i)_{i=1}^{n_k}\}$, where n_k is the number of data samples in task $k \in \mathbf{T} = \{1, 2, ..., T\}$, and $x_k^i \in \mathbf{X}$ is an input sample and $y_k^i \in \mathbf{Y}_k \subset \mathbf{Y}$ is its class label. The goal of TIL is to construct a predictor $f: \mathbf{X} \times \mathbf{T} \to \mathbf{Y}$ to identify the class label $y \in \mathbf{Y}_k$ for (x, k) (the given test instance x from task k).

TIL has reached its upper bound accuracy

- The upper bound of TIL is multitask learning.
- Several methods can achieve forgetting free.
 - □ E.g., HAT (Serra et al. 2018) and SupSup (Worthsman et al., 2020)
 - Parameter isolation: finding a subnetwork for each task.
- In terms of knowledge transfer, it is reaching the upper bound (Ke et al, 2021; Ke et al, 2023).
- Serra, Suris, Miron, and Karatzoglou. Overcoming catastrophic forgetting with hard attention to the task. ICML-2018.
- Wortsman, Ramanujan, Liu, Kembhavi, Rastegari, Yosinski, and Farhadi. 2020. Supermasks in superposition. NeuriPS-2020.
- Ke, Liu, Xiong, Celikyilmaz, Li. Sub-network Discovery and Soft-masking for Continual Learning of Mixed Tasks. findings, EMNLP-2023), December 6 –10, 2023, Singapore.
- Ke, Liu, Ma, Hu Xu, Shu. Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning. NeurIPS-2021.

Two popular CL settings: CIL

- Class incremental learning (CIL): produce a single model from all tasks and classify all classes during testing
 - Example: Task 1: learn to recognize pig and cat. Task 2: sheep. Task 3: chicken and dog. Task 4: horse and cow
 - Testing:

Class incremental learning (CIL). CIL learns a sequence of tasks, 1, 2, ..., T. Each task k has a training dataset $\mathcal{D}_k = \{(x_k^i, y_k^i)_{i=1}^{n_k}\}$, where n_k is the number of data samples in task k, and $x_k^i \in \mathbf{X}$ is an input sample and $y_k^i \in \mathbf{Y}_k$ (the set of all classes of task k) is its class label. All \mathbf{Y}_k 's are disjoint $(\mathbf{Y}_k \cap \mathbf{Y}_{k'} = \emptyset, \forall k \neq k')$ and $\bigcup_{k=1}^T \mathbf{Y}_k = \mathbf{Y}$. The goal of CIL is to construct a single predictive function or classifier $f: \mathbf{X} \to \mathbf{Y}$ that can identify the class label y of each given test instance x.

Additional challenge of CIL (Kim et al, 2022)

- CIL has another challenge of inter-task class separation (ICS).
 - Since after learning each task, its data is no longer accessible, then how to establish the decision boundaries between the classes of the new task and those of old tasks?
- Question: What is the right way to solve CIL regardless what classification algorithm is used?

Outline

- Continual learning and its key challenges
- Theory about class incremental learning (CIL)
- CIL using in-context learning
- Achieving CIL's upper bound accuracy
- Summary

CIL decomposition and theoretical result (Kim et al, 2022)

 CIL problem can be decomposed into two subproblems: withintask prediction (WP) and task-id prediction (TP)

$$\mathbf{P}(x \in \mathbf{X}_{k_0,j_0}|D) = \sum_{k=1,...,n} \mathbf{P}(x \in \mathbf{X}_{k,j_0}|x \in \mathbf{X}_k,D)\mathbf{P}(x \in \mathbf{X}_k|D)$$

$$= \mathbf{P}(x \in \mathbf{X}_{k_0,j_0}|x \in \mathbf{X}_{k_0},D)\mathbf{P}(\underbrace{x \in \mathbf{X}_{k_0}|D})$$
WP (i.e., TIL)

- Theoretical results: Good WP and TP (or OOD) are necessary and sufficient for good CIL.
 - TP and OOD bound each other.

Intuition of the theory

- In learning a new class or task,
 - the system does not see the data of previous tasks, and
 - yet it needs to learn decision boundaries separating the classes of the current task and those of previous tasks,
- The only possible solution is
 - Each task is good at OOD detection.

Based on this, we also proved that CIL is learnable (Kim et al, 2023)

One proposed method (no pre-trained model)

(Kim et al, 2022)

- Theory-based methods outperform baselines by a large margin
 - (Kim et al 2022)
- No replay or pre-training
- Combination of
 - a TIL method to tackle CF
 - E.g., HAT and SupSup
 - a strong OOD detection
 - E.g., CSI.
- HAT+CSI and Sup+CSI

Method	M-5T	C10-5T	C100-10T	C100-20T	T-5T	T-10T
OWM	95.8±0.13	51.8±0.05	28.9±0.60	24.1±0.26	10.0±0.55	8.6±0.42
MUC	74.9 ± 0.46	52.9 ± 1.03	30.4 ± 1.18	14.2 ± 0.30	33.6 ± 0.19	17.4 ± 0.17
$PASS^{\dagger}$	76.6 ± 1.67	47.3 ± 0.98	33.0 ± 0.58	25.0 ± 0.69	28.4 ± 0.51	19.1 ± 0.46
LwF	85.5 ± 3.11	54.7 ± 1.18	45.3 ± 0.75	44.3 ± 0.46	32.2 ± 0.50	24.3 ± 0.26
iCaRL*	96.0 ± 0.43	63.4 ± 1.11	51.4 ± 0.99	47.8 ± 0.48	37.0 ± 0.41	$28.3 {\pm} 0.18$
Mnemonics ^{†*}	96.3 ± 0.36	64.1 ± 1.47	51.0 ± 0.34	47.6 ± 0.74	37.1 ± 0.46	28.5 ± 0.72
BiC	94.1 ± 0.65	61.4 ± 1.74	52.9 ± 0.64	48.9 ± 0.54	41.7 ± 0.74	33.8 ± 0.40
DER++	95.3 ± 0.69	66.0 ± 1.20	53.7 ± 1.30	46.6 ± 1.44	35.8 ± 0.77	30.5 ± 0.47
$\mathrm{Co^2L}$		65.6				
CCG	97.3	70.1				
HAT	81.9 ± 3.74	62.7 ± 1.45	41.1 ± 0.93	25.6 ± 0.51	$38.5 {\pm} 1.85$	29.8 ± 0.65
HyperNet	56.6 ± 4.85	53.4 ± 2.19	30.2 ± 1.54	18.7 ± 1.10	7.9 ± 0.69	5.3 ± 0.50
Sup	70.1 ± 1.51	62.4 ± 1.45	44.6 ± 0.44	34.7 ± 0.30	41.8 ± 1.50	36.5 ± 0.36
PR-Ent	74.1	61.9	45.2			
HAT+CSI	94.4 ± 0.26	87.8 ± 0.71	63.3±1.00	54.6 ± 0.92	45.7 ± 0.26	47.1±0.18
Sup+CSI	80.7 ± 2.71	86.0 ± 0.41	65.1 ± 0.39	60.2 ± 0.51	48.9 ± 0.25	45.7 ± 0.76
HAT+CSI+c	96.9 ± 0.30	88.0 ± 0.48	65.2 ± 0.71	58.0 ± 0.45	51.7 ± 0.37	47.6 ± 0.32
Sup+CSI+c	81.0 ± 2.30	87.3 ± 0.37	65.2 ± 0.37	60.5 ± 0.64	49.2 ± 0.28	46.2 ± 0.53

Proposed method 2 (using a pre-trained model)

(Lin et al. 2024)

	C10	0-5T	C100)-10T	C100)-20T	T-	5T	T- 1	10T	Ave	rage
	Last	AIA	Last	AIA	Last	AIA	Last	AIA	Last	AIA	Last	AIA
Non-CL	$95.79^{\pm0.15}$	$97.01^{\pm0.14}$	$82.76^{\pm0.22}$	$87.20^{\pm0.29}$	$82.76^{\pm0.22}$	$87.53^{\pm0.31}$	$72.52^{\pm0.41}$	$77.03^{\pm0.47}$	$72.52^{\pm0.41}$	$77.03^{\pm0.41}$	81.27	85.16
OWM	$41.69^{\pm6.34}$	$56.00^{\pm3.46}$	$21.39^{\pm3.18}$	$40.10^{\pm 1.86}$	$16.98^{\pm4.44}$	$32.58^{\pm1.58}$	$24.55^{\pm 2.48}$	$45.18^{\pm0.33}$	$17.52^{\pm3.45}$	$35.75^{\pm 2.21}$	24.43	41.92
ADAM	$83.92^{\pm0.51}$	$90.33^{\pm0.42}$	$61.21^{\pm0.36}$	$72.55^{\pm0.41}$	$58.99^{\pm0.61}$	$70.89^{\pm0.51}$	$50.11^{\pm0.46}$	$61.85^{\pm0.51}$	$49.68^{\pm0.40}$	$61.44^{\pm0.44}$	60.78	71.41
PASS	86.21 ^{±1.10}	$89.03^{\pm 7.13}$	$68.90^{\pm0.94}$	$77.01^{\pm 2.44}$	$66.77^{\pm 1.18}$	$76.42^{\pm 1.23}$	$61.03^{\pm0.38}$	$67.12^{\pm 6.26}$	$58.34^{\pm0.42}$	$67.33^{\pm 3.63}$	68.25	75.38
HAT_{CIL}	$82.40^{\pm0.12}$	$91.06^{\pm0.36}$	$62.91^{\pm0.24}$	$73.99^{\pm0.86}$	$59.54^{\pm0.41}$	$69.12^{\pm 1.06}$	$59.22^{\pm0.10}$	$69.38^{\pm 1.14}$	$54.03^{\pm0.21}$	$65.63^{\pm 1.64}$	63.62	73.84
SLDA	$88.64^{\pm0.05}$	$93.54^{\pm0.66}$	$67.82^{\pm0.05}$	$77.72^{\pm0.58}$	$67.80^{\pm0.05}$	$78.51^{\pm0.58}$	$57.93^{\pm0.05}$	$66.03^{\pm 1.35}$	$57.93^{\pm0.06}$	$67.39^{\pm1.81}$	68.02	76.64
L2P	$73.59^{\pm 4.15}$	$84.60^{\pm 2.28}$	$61.72^{\pm0.81}$	$72.88^{\pm1.18}$	$53.84^{\pm1.59}$	$66.52^{\pm 1.61}$	$59.12^{\pm0.96}$	$67.81^{\pm 1.25}$	$54.09^{\pm 1.14}$	$64.59^{\pm 1.59}$	60.47	71.28
A-GEM EEIL	87.55 ^{±0.99}	$89.74^{\pm 6.63}$	$68.90^{\pm0.47}$	$76.50^{\pm3.56}$	$69.15^{\pm0.99}$	$77.06^{\pm 2.36}$	53.13 ^{±1.04}	$61.36^{\pm 6.21}$	$51.88^{\pm 2.36}$	$63.56^{\pm3.08}$	66.12	73.64
	56.33 ^{±7.77}	$68.19^{\pm3.24}$	$25.21^{\pm4.00}$	$43.83^{\pm0.69}$	$21.99^{\pm4.01}$	$35.97^{\pm 1.15}$	$30.53^{\pm 3.99}$	$49.26^{\pm0.64}$	$21.90^{\pm 5.52}$	$39.58^{\pm3.32}$	31.19	47.37
	$82.34^{\pm3.13}$	$90.50^{\pm0.72}$	$68.08^{\pm0.51}$	$81.10^{\pm0.37}$	$63.79^{\pm0.66}$	$79.54^{\pm0.69}$	$53.34^{\pm0.54}$	$66.63^{\pm0.40}$	$50.38^{\pm0.97}$	$66.54^{\pm0.61}$	63.59	76.86
GD	$89.16^{\pm0.53}$	$94.22^{\pm0.75}$	$64.36^{\pm0.57}$	$80.51^{\pm0.57}$	$60.10^{\pm0.74}$	$78.43^{\pm0.76}$	$53.01^{\pm0.97}$	$67.51^{\pm0.38}$	$42.48^{\pm 2.53}$	$63.91^{\pm0.40}$	61.82	76.92
DER++	84.63 ^{±2.91}	$89.01^{\pm 6.29}$	$69.73^{\pm0.99}$	$80.64^{\pm 2.74}$		$81.72^{\pm 1.76}$	$55.84^{\pm 2.21}$	$66.55^{\pm3.73}$	$54.20^{\pm 3.28}$	$67.14^{\pm 1.40}$	66.89	77.01
HAL	$84.38^{\pm 2.70}$	$87.00^{\pm 7.27}$	$67.17^{\pm 1.50}$	$77.42^{\pm 2.73}$	$67.37^{\pm 1.45}$	$77.85^{\pm1.71}$	$52.80^{\pm2.37}$	$65.31^{\pm3.68}$	$55.25^{\pm3.60}$	$64.48^{\pm 1.45}$	65.39	74.41
DER	$86.79^{\pm1.20}$	$92.83^{\pm 1.10}$	$73.30^{\pm0.58}$	$82.89^{\pm0.45}$	$72.00^{\pm0.57}$	$82.79^{\pm0.76}$	$59.57^{\pm0.89}$	$70.32^{\pm0.57}$	$57.18^{\pm 1.40}$	$70.21^{\pm0.86}$	69.77	79.81
FOSTER	$86.09^{\pm0.38}$	$91.54^{\pm0.65}$	$71.69^{\pm0.24}$	$81.16^{\pm0.39}$	$72.91^{\pm0.45}$	$83.02^{\pm0.86}$	$54.44^{\pm0.28}$	$69.95^{\pm0.28}$	$55.70^{\pm0.40}$	$70.00^{\pm0.26}$	68.17	79.13
BEEF	$87.10^{\pm1.38}$	$93.10^{\pm 1.21}$	$72.09^{\pm0.33}$	$81.91^{\pm0.58}$		$81.45^{\pm0.74}$	$61.41^{\pm0.38}$	$71.21^{\pm0.57}$	$58.16^{\pm0.60}$	$71.16^{\pm0.82}$	70.13	79.77
MORE	$89.16^{\pm0.96}$	$94.23^{\pm0.82}$	$70.23^{\pm 2.27}$	$81.24^{\pm 1.24}$	$70.53^{\pm 1.09}$	$81.59^{\pm0.98}$	$64.97^{\pm 1.28}$	$74.03^{\pm 1.61}$	$63.06^{\pm 1.26}$	$72.74^{\pm1.04}$	71.59	80.77
ROW	$90.97^{\pm0.19}$	$94.45^{\pm0.21}$	$74.72^{\pm0.48}$	$82.87^{\pm0.41}$	$74.60^{\pm0.12}$	$83.12^{\pm0.23}$	$65.11^{\pm 1.97}$	$74.16^{\pm 1.34}$	$63.21^{\pm 2.53}$	$72.91^{\pm 2.12}$	73.72	81.50
TPL (ours)	92.33 ^{±0.32}	$95.11^{\pm0.44}$	76.53 $^{\pm0.27}$	84.10 $^{\pm0.34}$	76.34 $^{\pm0.38}$	84.46 ^{±0.28}	$68.64^{\pm0.44}$	76.77 $^{\pm0.23}$	67.20 ^{±0.51}	$75.72^{\pm0.37}$	76.21	83.23
Non-CL _{PFI}	$96.90^{\pm0.07}$	$97.96^{\pm0.05}$	$83.61^{\pm0.33}$	$89.72^{\pm0.10}$		$88.89^{\pm0.06}$			$85.71^{\pm0.14}$	$88.66^{\pm0.01}$	87.08	90.70
TPL_{PFI}	$94.86^{\pm0.02}$	$96.89^{\pm0.02}$	$82.43^{\pm0.12}$	$88.28^{\pm0.17}$	$80.86^{\pm0.07}$	$87.32^{\pm0.07}$	$84.06^{\pm0.11}$	$87.19^{\pm0.11}$	$83.87^{\pm0.07}$	$87.40^{\pm0.16}$	85.22	89.42

Lin, Shao, Qian, Pan, Guo, and Liu. Class Incremental Learning Via Likelihood Ratio Based Task Prediction. ICLR-2024

Graph Class Incremental Learning (Niu et al, NeurIPS-2024)

Methods	Data	Cor	aFull	A	rixv	Re	ddit	Pro	ducts
Wiethods	Replay	AA/%↑	AF/%↑	AA/%↑	AF/%↑	AA/%↑	AF/%↑	AA/%↑	AF/%↑
Fine-tune	×	3.5±0.5	-95.2 ± 0.5	4.9±0.0	-89.7 ± 0.4	5.9 ± 1.2	-97.9 ± 3.3	7.6±0.7	-88.7±0.8
Joint	×	81.2±0.4	-	51.3±0.5	-	97.1 ± 0.1	-	71.5 ± 0.1	-
EWC	×	52.6±8.2	-38.5±12.1	8.5±1.0	-69.5 ± 8.0	10.3±11.6	-33.2±26.1	23.8±3.8	-21.7±7.5
MAS	×	6.5 ± 1.5	-92.3 ± 1.5	4.8 ± 0.4	-72.2 ± 4.1	9.2 ± 14.5	-23.1 ± 28.2	16.7±4.8	-57.0 ± 31.9
GEM	×	8.4±1.1	-88.4 ± 1.4	4.9±0.0	-89.8 ± 0.3	11.5 ± 5.5	-92.4 ± 5.9	4.5±1.3	-94.7 ± 0.4
LwF	×	33.4±1.6	-59.6 ± 2.2	9.9±12.1	-43.6 ± 11.9	86.6 ± 1.1	-9.2 ± 1.1	48.2±1.6	-18.6 ± 1.6
TWP	×	62.6±2.2	-30.6 ± 4.3	6.7±1.5	-50.6 ± 13.2	8.0 ± 5.2	-18.8 ± 9.0	14.1 ± 4.0	-11.4 ± 2.0
ERGNN	✓	34.5±4.4	-61.6 ± 4.3	21.5±5.4	-70.0 ± 5.5	82.7 ± 0.4	-17.3 ± 0.4	48.3±1.2	-45.7 ± 1.3
SSM-uniform	✓	73.0±0.3	-14.8 ± 0.5	47.1±0.5	-11.7 ± 1.5	94.3 ± 0.1	-1.4 ± 0.1	62.0±1.6	-9.9 ± 1.3
SSM-degree	✓	75.4 ± 0.1	-9.7 ± 0.0	48.3±0.5	-10.7 ± 0.3	94.4 ± 0.0	-1.3 ± 0.0	63.3±0.1	-9.6 ± 0.3
SEM-curvature	✓	77.7±0.8	-10.0 ± 1.2	49.9±0.6	-8.4 ± 1.3	96.3 ± 0.1	-0.6 ± 0.1	65.1±1.0	-9.5 ± 0.8
CaT	✓	80.4±0.5	-5.3 ± 0.4	48.2±0.4	-12.6 ± 0.7	97.3 ± 0.1	-0.4 ± 0.0	70.3±0.9	-4.5 ± 0.8
DeLoMe	✓	81.0±0.2	-3.3 ± 0.3	50.6±0.3	5.1 ± 0.4	97.4 ± 0.1	-0.1 ± 0.1	67.5±0.7	-17.3 ± 0.3
OODCIL	\checkmark	71.3±0.5	-1.1 ± 0.1	19.3±1.4	-1.0 ± 0.4	79.3 ± 0.8	-0.1 ± 0.0	41.6±0.9	-1.6 ± 0.4
TPP (Ours)	×	93.4±0.4	$0.0 {\pm} 0.0$	85.4±0.1	$0.0 {\pm} 0.0$	99.5 ± 0.0	$\boldsymbol{0.0 {\pm} 0.0}$	94.0±0.5	$\boldsymbol{0.0{\pm}0.0}$
Oracle Model	×	95.5±0.2	-	90.3±0.4	-	99.5±0.0	-	95.3±0.8	-

Outline

- Continual learning and its key challenges
- Theory about class incremental learning (CIL)
- CIL using in-context learning
- Achieving CIL's upper bound accuracy
- Summary

CIL using in-context learning: Naïve approach

- When a task arrives, we can simply add new classes and their training samples to the prompt.
- This approach does not work due to the LLM token limit
 - Long context LLMs don't work well for CL.

(1). Incremental summarization (Qiu et al, Coling-2025)

- Online or stream continual learning
- Training: Each class is represented by a summary that is incrementally updated as new samples arrive
- Testing: for each test instance x, we
 - Divide classes learned so far into chunks such that each chunk is within the token limit of the LLM
 - Prompt LLM to generate confidence that x belongs to each class in a chunk,
 - Get the top k classes with the highest confidences from all chunks
 - Prompt the LLM again with only the resulting k classes,
 - Select the class with the highest confidence for x.

Results

• (Qiu et al, Coling-2025)

	CIS (Llama)			Joint (Llama)			CL Baselines					
	3/4-Blurry	4/3-Blurry	Zero-shot	Prompting	ing Fine-tuning		EWC LAI			MOL VAG		AG
	7 samples	7 samples	no sample	7 samples	7 samples	full data	7 samples	full data	7 samples	full data	7 samples	full data
Banking-77	78.78 ±1.68	79.23 ±2.50	50.22 ±0.00	87.92 ±0.60	69.39 ±0.17	91.19 ±0.08	2.14 ±0.35	9.09 ±0.84	3.50 ±0.04	33.43 ±0.18	36.25 ±3.80	55.19 ±1.54
CLINC-80	91.51 ±4.35	90.40 ±5.46	80.67 ±0.00	95.10 ±2.51	91.18 ±0.46	97.92 ±0.06	1.14 ±0.33	8.26 ±0.76	17.60 ±0.19	52.20 ±0.09	64.75 ±0.69	80.68 ±0.72
DBpedia-14	92.07 ±1.07	92.26 ±0.76	93.36 ±0.00	90.50 ±0.40	93.74 ±0.11	99.00 ±0.00	6.55 ±0.73	23.14 ±1.55	0.70 ±0.14	28.61 ±0.02	55.36 ±3.30	56.58 ±1.22
Reuters-14	83.97 ±1.08	84.61 ±1.24	92.55 ±0.48	77.82 ±2.99	82.64 ±0.33	92.55 ±0.48	7.70 ±0.70	12.79 ±0.14	0.95 ±0.07	29.93 ±0.17	44.08 ±0.27	58.71 ±1.92

(2). ICL with the help of an external learner

- Employ an external continual learner (ECL) that has no forgetting, but inaccurate (Momeni et al, 2025a)
 - Training: ECL uses only the features from the LLM, no parameter updating
 - Generating tags for training examples using ICL
 - Compute a mean of tag embeddings for each class and a shared covariance matrix of the embeddings for all classes
 - Testing: apply linear discriminant analysis (LDA),
 - (1) Given a test sample, ECL identifies the top-k candidate classes
 - (2) Summaries of the top-k classes are used by ICL for final classification.

Results (Momeni et al, 2025a)

Dataset	#Tasks	Vanilla	EWC	L2P	LAMOL	VAG	INCA	JOINT
CLINC	10	$51.27_{\ \pm 1.26}$	$54.22_{\pm 1.14}$	$52.53_{\pm 1.72}$	$58.42_{\pm0.84}$	$76.42_{\pm 0.90}$	94.40	97.60
Banking	7	$27.77_{\ \pm 2.46}$	$29.10_{\pm 1.78}$	$25.78_{\pm 1.21}$	$42.60_{\pm 1.36}$	$59.34_{\pm 1.28}$	84.90	92.50
DBpedia	7	39.02 ± 2.68	$40.30{\scriptstyle \pm 2.89}$	$42.84_{\pm5.47}$	$48.61 \pm\! 1.82$	$65.40{\scriptstyle\pm1.52}$	84.20	95.70
HWU	8	$38.38 {\scriptstyle \pm 4.01}$	42.72 ± 2.62	$28.77 {\scriptstyle \pm 3.18}$	$44.85 {\scriptstyle \pm 1.57}$	$56.88 {\scriptstyle\pm1.22}$	86.61	90.43

■ Table 1: LLM is Mistral 7B

Table 2: with or without ECL

Model	CLINC	Banking	DBpedia	HWU						
Mistral-7B	94.40%	84.90%	84.20%	86.61%						
Llama3-8B	95.73%	84.30%	87.60%	87.45%						
Gemini 1.5 flash	95.32%	86.15%	91.63%	89.22%						
		Without ECL								
Mistral-7B	86.93%	65.90%	65.30%	81.04%						
Llama3-8B	83.73%	77.80%	72.70%	83.27%						
Gemini 1.5 flash	93.86%	83.52%	79.64%	87.27%						
LongAlpaca-7B	45.87%	33.20%	24.90%	35.97%						
LongAlpaca-13B	51.20%	63.60%	59.10%	62.83%						
LongLlama-3B	62.00%	52.80%	38.90%	58.46%						
LongLlama-7B	84.67%	73.10%	61.00%	77.88%						

Not a good idea

- Weird idea: Generating tags from training samples and then getting their embeddings to compute mean and covariance.
 - We did this because we originally want to do retrieval-augmented CL
 - Retrieval uses TF-IDF to obtain the top k classes. Each class is represented by a set of tags generated from its training documents.
 - Sadly, nobody liked the idea. The paper got rejected multiple times.
- Why not extracting features of training samples directly from an LLM to compute the mean and covariance?
 - This did wonders!

Outline

- Continual learning and its key challenges
- Theory about class incremental learning (CIL)
- CIL using in-context learning
- Achieving CIL's upper bound accuracy
- Summary

KLDA: kernel linear discriminant analysis

(Momeni et al, 2025b)

- Using only large foundation models as feature extractors, no training.
 - The extracted features are kernelled using the RBF kernel and random Fourier features
 - Training / Learning
 - Compute a feature mean for each class and a shared covariance matrix
 - Testing
 - Using LDA

KLDA for CIL using text datasets

(Momeni et al, 2025b)

■ LM = BART-base as VAG (Shao et al, ACL-2023) uses BART-base

Method	CLINC (10-T)	Banking (7-T)	DBpedia (7-T)	HWU (8-T)
(upper bound) Joint Fine-tuning	95.33 ± 0.04	91.36 ± 0.32	94.83 ± 0.16	88.60 ± 0.29
Vanilla Vanilla	$-4\overline{2.06}\pm_{1.53}$	-31.80 ± 1.20	$-4\overline{3}.\overline{45}\pm_{2.54}$	$\bar{30.95} \pm \bar{3.37}$
EWC	45.73 ± 0.46	38.40 ± 2.70	44.99 ± 2.90	34.01 ± 3.46
KD	36.33 ± 0.86	27.40 ± 1.59	42.10 ± 2.40	25.46 ± 2.13
L2P	30.66 ± 2.46	31.45 ± 0.55	23.52 ± 1.54	24.04 ± 0.88
LAMOL	58.42 ± 0.84	42.60 ± 1.36	48.61 ± 1.82	44.85 ± 1.57
VAG	76.42 ± 0.90	59.34 ± 1.28	65.40 ± 1.52	56.88 ± 1.22
NCM	$-8\overline{3.60}\pm0.00$	$-71.\overline{10}\pm0.\overline{00}$	-75.70 ± 0.00	-73.30 ± 0.00
LDA	93.71 ± 0.00	89.09 ± 0.00	93.42 ± 0.00	86.41 ± 0.00
KLDA	95.90 ± 0.68	92.23 ± 0.32	94.13 ± 0.32	87.27 ± 1.39
KLDA with Ensemble	96.62 ± 0.08	93.03 ± 0.06	94.53 ± 0.12	89.78 ± 0.09

More results

(Momeni et al, 2025b)

Using more LMs

	Model	Dataset	KLDA-E	Joint	(upper bound)
	MiniLM	CLINC	94.53±0.00	93.20±0.16	_
		Banking	91.73±0.09	$90.90\pm_{0.08}$	
	3 layers	DBpedia	86.83 ± 0.17	87.43±0.16	
	384 dimensions	HWU	87.95 ± 0.23	87.13±0.12	
S	BERT-base	CLINC	94.98±0.31	$94.56\pm_{0.04}$	_
		Banking	$91.00\pm_{0.24}$	88.96±0.16	
	12 layers 768 dimensions	DBpedia	$95.40\pm_{0.08}$	$95.03\pm_{0.09}$	
	706 difficusions	HWU	88.32±0.31	87.26 ± 0.28	
	DoREDTo lorgo	CLINC	96.31±0.06	$95.96\pm_{0.30}$	_
	RoBERTa-large 24 layers	Banking	92.93 ± 0.05	91.16 ± 0.04	
		DBpedia	$94.60\pm_{0.08}$	$94.99\pm_{0.21}$	
	1024 dimensions	HWU	89.25±0.04	88.40±0.29	
	T5-3b	CLINC	$96.04\pm_{0.17}$	$96.86\pm_{0.06}$	_
		Banking	93.77 ± 0.05	$92.30\pm_{0.10}$	
	24 layers 1024 dimensions	DBpedia	95.33 ± 0.09	$94.60\pm_{0.03}$	
	1024 difficusions	HWU	89.31 ± 0.27	$90.30\pm_{0.10}$	
	Mistral-7b	CLINC	97.13±0.11	$97.60\pm_{0.11}$	_
		Banking	$92.53\pm_{0.12}$	$92.50\pm_{0.14}$	
	32 layers 4096 dimensions	DBpedia	$96.00\pm_{0.08}$	95.70 ± 0.07	
	4090 difficusions	HWU	90.02 ± 0.09	$90.43\pm_{0.11}$	
<u>_</u>	d Liu Continual Loarning Hein	a a Karnal Basad Matha	d over Foundation M		

Momeni, Mazumder, and Liu, Continual Learning Using a Kernel-Based Method over Foundation Models. AAAI-2025

KLDA for CIL using image datasets

(Momeni et al, 2025b)

- DINOv2: a pre-trained model trained with self-supervision
 - Using a pre-trained foundation model trained using supervised data is problematic: information leak

Model	Dataset	KLDA	Joint	(upper bound)
DINOv2-small	CIFAR10	97.00±0.07	97.02±0.09	-
	CIFAR100	84.21±0.08	85.52 ± 0.17	
12 layers	T-ImageNet	78.67 ± 0.08	81.30±0.17	
384 dimensions	Cars	81.94±0.11	81.88±0.23	
DINOv2-base	CIFAR10	98.45±0.04	98.54±0.06	-
	CIFAR100	88.81±0.07	90.30±0.09	
12 layers 768 dimensions	T-ImageNet	83.18±0.11	86.43±0.14	
/oo dimensions	Cars	87.45±0.14	87.47 ± 0.21	_

Note the gap: Last and upper bound in (Lin et al 2024)

Non-CL is Joint (upper bound)

	C10	0-5T	C100	-10T	C100	-20T	T-	5T	T-1	10T	Ave	rage
	Last	AIA	Last	AIA	Last	AIA	Last	AIA	Last	AIA	Last	AIA
Non-CL	95.79 ^{±0.15}	$97.01^{\pm0.14}$	$82.76^{\pm0.22}$	$87.20^{\pm0.29}$	$82.76^{\pm0.22}$	$87.53^{\pm0.31}$	$72.52^{\pm0.41}$	$77.03^{\pm0.47}$	$72.52^{\pm0.41}$	$77.03^{\pm0.41}$	81.27	85.16
OWM	$41.69^{\pm 6.34}$	$56.00^{\pm3.46}$		$40.10^{\pm 1.86}$	$16.98^{\pm4.44}$	$32.58^{\pm1.58}$	$24.55^{\pm 2.48}$	$45.18^{\pm0.33}$	$17.52^{\pm3.45}$	$35.75^{\pm 2.21}$	24.43	41.92
ADAM	$83.92^{\pm0.51}$	$90.33^{\pm0.42}$	$61.21^{\pm0.36}$	$72.55^{\pm0.41}$	$58.99^{\pm0.61}$	$70.89^{\pm0.51}$	$50.11^{\pm0.46}$	$61.85^{\pm0.51}$	$49.68^{\pm0.40}$	$61.44^{\pm0.44}$	60.78	71.41
PASS	86.21 ^{±1.10}						$61.03^{\pm0.38}$	$67.12^{\pm 6.26}$	$58.34^{\pm0.42}$	$67.33^{\pm 3.63}$	68.25	75.38
HAT_{CIL}	$82.40^{\pm0.12}$		$62.91^{\pm0.24}$	$73.99^{\pm0.86}$	$59.54^{\pm0.41}$	$69.12^{\pm 1.06}$	$59.22^{\pm0.10}$	$69.38^{\pm 1.14}$	$54.03^{\pm0.21}$	$65.63^{\pm 1.64}$	63.62	73.84
SLDA	88.64 ^{±0.05}			$77.72^{\pm0.58}$	$67.80^{\pm0.05}$	$78.51^{\pm0.58}$	$57.93^{\pm0.05}$	$66.03^{\pm 1.35}$	$57.93^{\pm0.06}$	$67.39^{\pm1.81}$	68.02	76.64
L2P	$73.59^{\pm 4.15}$	$84.60^{\pm 2.28}$	$61.72^{\pm0.81}$	$72.88^{\pm1.18}$	$53.84^{\pm1.59}$	$66.52^{\pm 1.61}$	$59.12^{\pm0.96}$	$67.81^{\pm 1.25}$	$54.09^{\pm 1.14}$	$64.59^{\pm1.59}$	60.47	71.28
iCaRL	87.55 ^{±0.99}			$76.50^{\pm3.56}$		$77.06^{\pm 2.36}$		$61.36^{\pm 6.21}$	$51.88^{\pm 2.36}$	$63.56^{\pm3.08}$	66.12	73.64
A-GEM	56.33 ^{±7.77}	$68.19^{\pm 3.24}$	$25.21^{\pm 4.00}$	$43.83^{\pm0.69}$	$21.99^{\pm 4.01}$	$35.97^{\pm 1.15}$	$30.53^{\pm 3.99}$	$49.26^{\pm0.64}$	$21.90^{\pm 5.52}$	$39.58^{\pm3.32}$	31.19	47.37
EEIL	82.34 ^{±3.13}	$90.50^{\pm0.72}$		$81.10^{\pm0.37}$		$79.54^{\pm0.69}$	$53.34^{\pm0.54}$	$66.63^{\pm0.40}$	$50.38^{\pm0.97}$	$66.54^{\pm0.61}$	63.59	76.86
GD	89.16 ^{±0.53}			$80.51^{\pm0.57}$			$53.01^{\pm0.97}$	$67.51^{\pm0.38}$	$42.48^{\pm 2.53}$	$63.91^{\pm0.40}$	61.82	76.92
DER++	84.63 ^{±2.91}			$80.64^{\pm 2.74}$	$70.03^{\pm 1.46}$	$81.72^{\pm 1.76}$	$55.84^{\pm 2.21}$	$66.55^{\pm3.73}$	$54.20^{\pm 3.28}$	$67.14^{\pm1.40}$	66.89	77.01
HAL	84.38 ^{±2.70}		$67.17^{\pm 1.50}$		$67.37^{\pm1.45}$	$77.85^{\pm1.71}$	$52.80^{\pm 2.37}$	$65.31^{\pm3.68}$	$55.25^{\pm 3.60}$	$64.48^{\pm1.45}$	65.39	74.41
DER	$86.79^{\pm1.20}$			$82.89^{\pm0.45}$	$72.00^{\pm0.57}$	$82.79^{\pm0.76}$		$70.32^{\pm0.57}$	$57.18^{\pm1.40}$	$70.21^{\pm0.86}$	69.77	79.81
FOSTER	$86.09^{\pm0.38}$		$71.69^{\pm0.24}$	$81.16^{\pm0.39}$	$72.91^{\pm0.45}$	$83.02^{\pm0.86}$	$54.44^{\pm0.28}$	$69.95^{\pm0.28}$	$55.70^{\pm0.40}$	$70.00^{\pm0.26}$	68.17	79.13
BEEF	87.10 ^{±1.38}		$72.09^{\pm0.33}$	$81.91^{\pm0.58}$	$71.88^{\pm0.54}$		$61.41^{\pm0.38}$	$71.21^{\pm0.57}$	$58.16^{\pm0.60}$	$71.16^{\pm0.82}$	70.13	79.77
MORE	89.16 ^{±0.96}			$81.24^{\pm 1.24}$	$70.53^{\pm1.09}$	$81.59^{\pm0.98}$	$64.97^{\pm 1.28}$	$74.03^{\pm 1.61}$	$63.06^{\pm1.26}$	$72.74^{\pm1.04}$	71.59	80.77
ROW	$90.97^{\pm0.19}$	$94.45^{\pm0.21}$	$74.72^{\pm0.48}$	$82.87^{\pm0.41}$	$74.60^{\pm0.12}$	$83.12^{\pm0.23}$	$65.11^{\pm 1.97}$	$74.16^{\pm1.34}$	$63.21^{\pm 2.53}$	$72.91^{\pm 2.12}$	73.72	81.50
TPL (ours)	92.33 ^{±0.32}	95.11 ^{±0.44}	76.53 ^{±0.27}	$84.10^{\pm0.34}$	76.34 $^{\pm0.38}$	84.46 ^{±0.28}	$68.64^{\pm0.44}$	76.77 ^{±0.23}	$67.20^{\pm0.51}$	75.72 ^{±0.37}	76.21	83.23

Lin, Shao, Qian, Pan, Guo, and Liu. Class Incremental Learning Via Likelihood Ratio Based Task Prediction. ICLR-2024

Outline

- Continual learning and its key challenges
- Theory about class incremental learning (CIL)
- CIL using in-context learning
- Enabling CIL to achieve joint training accuracy (upper bound)
- Summary

Summary

- Foundation models are critical for continual learning (CIL)
 - Eliminate catastrophic forgetting and inter-task class separation challenges
 - Help CIL achieve upper bound accuracy
- The new methods are theoretically justified
 - They are all good at OOD detection for each task/class
 - Summary represents a class only (Qiu et al 2025):
 - Mean and covariance represent the distribution of a class (Momeni et al 2025)
- Controversial questions?
 - Does continual learning need to learn features?
 - Do humans learn features? Are they in-built?

Thank You

Q&A

Students: Zhiyuan Chen (ex), Sepideh Esmaeilpour (ex), Zixuan Ke (ex), Gyuhak Kim (ex), Nianzu

Ma (ex), Sahisnu Mazumder (ex), Saleh Momeni, Jade Qiu, Lei Shu (ex), Hu Xu (ex)

Collaborators: Wenpeng Hu, Scott Grigsby, Yiduo Guo, Tatsuya Konishi, Haowei Lin, Eric Robertson,

Yijia Shao, Changnan Xiao.

Funding:

4th Conference on Lifelong Learning Agents

Abstract Deadline: Feb 21

Paper Submission: Feb 26

- · Theory for continual/lifelong learning
- Continual learning paradigms (class-incremental, task incremental, domain incremental, curriculum learning, active learning, federated learning, online learning, meta-learning, few-shot learning, and other non-stationary learning paradigms)
- Challenges with non-stationary learning (loss of plasticity, catastrophic forgetting, policy collapse, unlearning, OOD generalization, distribution shift, etc.)
- Continual reinforcement learning (options, skill discovery, hierarchical RL, intrinsically motivated learning, multi-agent RL)
- Continual learning in LLMs (in-context learning, pre-training, model editing, fine-tuning, adaptation)
- Knowledge transfer (transfer learning, multi-task learning, domain adaptation, sim2real, meta-learning)
- Non-stationary Optimization
- Streaming learning, on-device, real-time learning
- Open-world learning, open-ended learning
- Neuroscience-inspired continual/lifelong learning
- Applications (control, robotics, healthcare, etc.)
- · Datasets, benchmarks, evaluation, software libraries