
Finding Unusual Review Patterns Using Unexpected Rules
Nitin Jindal

Department of Computer Science
University of Illinois at Chicago

851 S. Morgan, Chicago, IL 60607
nitin.jindal@gmail.com

Bing Liu
Department of Computer Science

University of Illinois at Chicago
851 S. Morgan, Chicago, IL 60607

liub@cs.uic.edu

Ee-Peng Lim
School of Information Systems

Singapore Management
University

eplim@smu.edu.sg

ABSTRACT
In recent years, opinion mining attracted a great deal of research
attention. However, limited work has been done on detecting
opinion spam (or fake reviews). The problem is analogous to
spam in Web search [1, 9 11]. However, review spam is harder to
detect because it is very hard, if not impossible, to recognize fake
reviews by manually reading them [2]. This paper deals with a
restricted problem, i.e., identifying unusual review patterns which
can represent suspicious behaviors of reviewers. We formulate the
problem as finding unexpected rules. The technique is domain
independent. Using the technique, we analyzed an Amazon.com
review dataset and found many unexpected rules and rule groups
which indicate spam activities.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Information filtering.

General Terms
Algorithms, Experimentation

Keywords
Reviewer behavior, review spam, unexpected patterns

1. INTRODUCTION
With the rapid growth of online reviews, it has become a common
practice for people to read reviews for many purposes. This gives
good incentives for review spam, which refers to writing fake
reviews to mislead readers or automated systems by giving bogus
positive or negative opinions to some target objects to promote
them or to damage their reputations. Detecting spam reviews is a
critical problem for opinion mining [6] and retrieval [8].

The problem can be seen as a classification problem with two
classes, spam and not-spam. However, to obtain training data by
manually labeling reviews is very hard as a spammer can easily
craft a fake review that is just like any innocent review [2]. In [2],
a learning method using duplicate reviews as positive training
data is used, but many not duplicated reviews can be spam too.
Some researchers also study the helpfulness of reviews [7, 12],
but review spam is a different concept. In [4], a user study shows
that rating behaviors are good indicators of spam.

In this paper, we study a restricted problem, identifying review
patterns representing unusual behaviors of reviewers, which can
indicate spam activities [4]. For example, if a reviewer wrote all
negative reviews on products of a brand but other reviewers are
generally positive about the brand, this reviewer is clearly a spam
suspect. To find unusual behaviors, the conventional approach is
to write an application specific heuristic program to find such
behaviors. However, this is not desirable. It is much better to
propose a general framework for solving this class of problems so
that the resulting system can also be applied to other domains.
This paper proposes such an approach and shows that the problem
can be formulated as finding unexpected rules/patterns from data.

The data that we use consists of a set of data records, which are
described by a set of normal attributes A = {A1, …, An}, and a
class attribute C = {c1, …, cm} of m discrete values, called classes.
The rules are of the form: X → ci, where X is a set of conditions
from the attributes in A and ci is a class in C. Such a rule gives the
conditional probability of Pr(ci | X) (called the confidence) and the
joint probability Pr(X, ci) (called the support) [5].

For our application, the data can be produced as follows: Each
review forms a data record with a set of attributes, e.g., reviewer-
id, brand-id, product-id, and a class. The class represents the
opinion of the reviewer, positive, negative or neutral based on the
review rating. In most review sites (e.g., amazon.com), each
review has a rating between 1 (lowest) to 5 (highest) assigned by
its reviewer. We can assign the rating of 4 and 5 as positive, 3 as
neutral, and 1 and 2 as negative. A rule could be that a reviewer
gives all positive ratings to a particular brand of products.

The issue is how we know a rule represents an abnormal behavior
of a reviewer. To decide that, we need to know what is expected.
This paper first defines several types of expectations based on the
natural distribution of the data. It then proposes the corresponding
unexpectedness measures to rank rules. This method is domain
independent as it only depends on the data and the type of rules
but not the application. It can thus be applied to other domains. In
our experimental study, we report a case study of discovering
suspicious behaviors of reviewers based on Amazon reviews,
which indicate spam activities or at least biased reviewers. For a
case study on a different domain dataset, see [3].

2. UNEXPECTEDNESS DEFINITIONS
Unexpectedness is defined as deviation from expectations. Thus,
the definition of expectations is the key. Before the definitions, we
give some more notations about the data and the resulting rules.

Given a data set D, let the domain or the set of possible values of
attribute Aj be dom(Aj). We use the data to mine class association
rules (CAR) [5] of the form, X → ci. A condition in X is an
attribute value pair: Aj=vjk (vjk ∈ dom(Aj)).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10...$10.00.

CAR mining finds all rules that satisfy the user-given minimum
support and minimum confidence constraints. However, we
cannot use them because they create holes in the rule space, and
remove the context. Here holes mean those rules that do not meet
the support and confidence constraints. However, without
minimum support and minimum confidence to ensure the
feasibility of computation, CAR mining can cause combinatorial
explosion [5]. Fortunately, practical applications have shown that
users are interested in almost only short rules as it is hard to
perform any action on long rules due to low data coverage. Thus,
in our system, we focus on mining rules with only 1-3 conditions
if their support and confidence is greater than zero.

Approach to defining expectations: Our approach begins by
assuming the knowledge of class prior probabilities (Pr(ci)), which
can be easily found from the data automatically. They give us the
natural distribution of the data to begin with. Two additional
principles govern the definition of expectations:

1. Given no prior knowledge, we expect that the data attributes
and classes have no relationships, i.e., they are statistically
independent. This is justified as it allows us to find those
patterns that show strong relationships.

2. We use shorter rules to compute the expectations of longer
rules. This is also logical due to two reasons. First, it enables
the user to see interesting short rules first. Second, more
importantly, unexpected shorter rules may be the cause of
some longer rules being abnormal (see Section 2.2), but not
the other way around. Thus knowing such short rules, the
longer rules are no longer unexpected.

Based on these two principles, we begin with the discussion of
unexpectedness of one-condition rules, and then two-condition
rules. For multi-condition rules, see [3].

2.1 Unexpectedness of One-Condition Rules
We define four types of unexpectedness. A one-condition rule is a
rule with only one condition (an attribute value pair, Aj = vjk).

2.1.1 Confidence Unexpectedness
We want to determine how unexpected the confidence of a rule is.
To simplify the notation, we use a single value vjk (vjk ∈ dom(Aj))
to denote the kth value of attribute Aj. A one-condition rule is thus
of the following form: vjk → ci. The expected confidence of the
rule is defined below.
Expectation: Since we consider one-condition rules, we use the
information from zero-condition rules to define expectations:

→ ci,
which is the class prior probability of ci, i.e., Pr(ci). Given Pr(ci)
and no other knowledge, it is reasonable to expect that attribute
values and the classes are independent. Thus, the confidence (Pr(ci
| vjk)) of the above rule (vjk → ci) is expected to be Pr(ci). We use
E(Pr(ci | vjk)) to denote the expected confidence, i.e.,

E(Pr(ci | vjk)) = Pr(ci). (1)
Confidence Unexpectedness (Cu): Confidence unexpectedness
of the rule is defined as the ratio of the deviation of the actual
confidence to the expected confidence given a support threshold
θ. Let the actual confidence of the rule be Pr(ci | vjk). We use
Cu(vjk → ci) to denote the unexpectedness of the rule vjk → ci.

))|(Pr(

))|(Pr()|Pr(
)(

jki

jkijki
ijk vcE

vcEvc
cvCu

−
=→ (2)

Unexpectedness values can be used to rank rules. One may ask if
this is the same as ranking rules based on their confidences. It is
not, because of the expectation. First of all, for different classes,
the expected confidences are different. When we discuss two-
condition rules in Section 2.2, we will see that even in the same
class, a high confidence rule may be completely expected.
Significance test: It is important to know whether the actual
confidence is significantly different from the expectation, we use
the statistical test for proportions.

2.1.2 Support Unexpectedness
The confidence measure does not consider the proportion of data
records involved, for which we need support unexpectedness.
Expectation: Given no knowledge, we expect that an attribute
value and a class are independent. Thus, we have Pr(vjk, ci)) =
Pr(vjk)Pr(ci). Pr(ci) is known, but not Pr(vjk). It is reasonable to
expect that it is the average probability of all values of Aj. Thus
we have (Pr(vjk) is unknown to the user, but is computed),

||

)Pr(
)Pr()),(Pr(

||

1

j

A

a ja
iijk A

v
ccvE

j∑ == (3)

Support Unexpectedness (Su): Support unexpectedness of a rule
is defined as follows, given a confidence threshold λ (λ is to
ensure that the rule has sufficient predictability):

)),(Pr(

)),(Pr(),Pr(
)(

ijk

ijkijk
ijk cvE

cvEcv
cvSu

−
=→ (4)

This definition of Su (Equations (3) and (4)) is reasonable as it
ranks those rules with high supports high, which is what we want.
Significance Test: The test for proportions can also be used here.

2.1.3 Attribute Distribution Unexpectedness
Confidence or support unexpectedness considers only a single
rule. In many cases, a group of rules together shows an interesting
scenario. Here we define an unexpectedness metric based on all
values of an attribute and a class, which thus represent multiple
rules. This unexpectedness shows how skewed the data records
are for the class, i.e., whether the data records of the class
concentrate on only a few values of the attribute or they spread
evenly to all values, which is expected given no prior knowledge.
For example, we may find that most positive reviews for a brand
of products are from only one reviewer although there are a large
number of reviewers who have reviewed products of the brand.
This reviewer is clearly a spam suspect. We use supports (or joint
probabilities) to define attribute distribution unexpectedness. Let
the attribute be Aj and the class of interest be ci. The attribute
distribution of Aj with respect to class ci is denoted by:

Aj → ci
It represents all the rules, vjk → ci, k = 1, 2, …, | Aj|, where |Aj| is
the total number of values in dom(Aj).
Expectation: We can use the expected value of Pr(vjk, ci)
computed above (Equation (3)) for our purpose here.
Attribute Distribution Unexpectedness (ADu): It is defined as
the sum of normalized support deviations of all values of Aj.

 ∑
>∧∈

=→
0)(:)Pr(

)(
)(

DevAdomvv i

jk
ij

jjkjk
c
vDev

cAADu (5)

where)),(Pr(),Pr()(ijkijkjk cvEcvvDev −= (6)

We use Pr(ci) in Equation (5) because)Pr(),Pr(||

1 i
A

k ijk ccvj =∑ =
.

Note that in this definition negative deviations are not utilized
because positive and negative deviations (Dev(vjk)) are symmetric
or equal as Pr(ci) is constant and)Pr(),Pr(||

1 i
A

k ijk ccvj =∑ =
. Thus,

considering one side is sufficient.

2.1.4 Attribute Unexpectedness
In this case, we want to discover how the values of an attribute
can predict the classes. This is denoted by

Aj → C,
where Aj represents all its values and C indicates all classes. Given
no knowledge, our expectation is that Aj and C are independent. In
the ideal case (or the most unexpected case), every rule vjk → ci
has 100% confidence. Then, the values of Aj can predict the
classes in C completely. For example, we may find that a reviewer
wrote only positive reviews to one brand, and only negative
reviews to another brand, which is clearly suspicious.

Conceptually, the idea is the same as measuring the discriminative
power of each attribute in classification learning. The information
gain measure can be used for the purpose. The expected
information is computed based on entropy. Given no knowledge,
the entropy of the original data D is (note that Pr(ci) is the
confidence of the zero-condition rule on class ci):

∑=
−=

m

i ii ccDentropy
1

)Pr(log)Pr()((7)
Expectation: The expectation is the entropy of the data D:

E(Aj → C) = entropy(D)
Attribute Unexpectedness (Au): Attribute unexpectedness is
defined as the information gained by adding the attribute Aj. After
adding Aj, we obtain the following entropy:

 ∑
=

−=
||

1
)(

||
||)(

j

j

A

k
k

k
A Dentropy

D
DDentropy (8)

Based on the values of Aj, the data set D is partitioned into |Aj|
subsets, D1, D2, …, D|Ai| (i.e., each subset has a particular value of
Aj). The unexpectedness is thus computed with (which is the
information gain measure in [10]):
)()()(DentropyDentropyCAAu

jAj −=→ (9)

2.2 Unexpectedness of Two-Condition Rules
We now consider two-condition rules. Although we can still
assume that the expected confidence of a rule is the class prior
probability of its class as for one-condition rules, it is no longer
appropriate as a two-condition rule is made up of two one-
condition rules, which we already know. As mentioned earlier, it
is possible that the unexpectedness of a two-condition rule is
caused by a one-condition rule. It is thus not suitable to attribute
unexpectedness to the two-condition rule.
For example, let us consider confidence unexpectedness. We have
a data set with two classes and each class has 50% of the data, i.e.,
the class prior probabilities are equal, Pr(c1) = Pr(c2) = 0.5. For a
rule v1 → c1 with 100% confidence (Pr(c1 | v1) = 1), it is highly
unexpected based on Equation (2). Now let us look at a two-
condition rule, v1, v2 → c1, which clearly also has 100%
confidence (Pr(c1 | v1, v2) = 1). If we assume no knowledge, its
expected confidence should be 50%. Then, we say that this rule is
highly unexpected. However, if we know v1 → c1, 100%

confidence for rule v1, v2 → c1 is completely expected. The 100%
confidence of rule v1 → c1 is the cause for rule, v1, v2 → c1, to have
the 100% confidence. More importantly, this example shows that
ranking rules according to confidence unexpectedness is not
equivalent to ranking rules purely based to their confidences.

With the knowledge of one-condition rules, we define different
types of unexpectedness of two-condition rules of the form:

vjk, vgh → ci.

2.2.1 Confidence Unexpectedness
We first compute the expected confidence of the two-condition
rule based on two one-condition rules:
 vjk → ci and vgh → ci
Expectation: Given the confidences of the two rules, Pr(ci | vjk)
and Pr(ci | vgh), we compute the expected probability of Pr(ci | vjk,
vgh) using the Bayes’ rule and obtain:

∑ =

= m

r rrghjk

iighjk
ghjki

ccvv

ccvv
vvc

1
)Pr()|,Pr(

)Pr()|,Pr(
),|Pr((10)

The first term of the numerator can be further written as

)|Pr(),|Pr()|,Pr(ighighjkighjk cvcvvcvv = (11)

Conditional independence assumption: With no prior knowledge,
it is reasonable to expect that all attributes are conditionally
independent given class ci. Formally, we expect that

)|Pr(),|Pr(ijkighk cvcvv = (12)

Based on Equation (10), the expected value of Pr(ci | vjk, vgh) is:

∑ =

= m

r rrghrjk

iighijk
ghjki

ccvcv

ccvcv
vvcE

1
)Pr()|Pr()|Pr(

)Pr()|Pr()|Pr(
)),|(Pr((13)

Since we know Pr(ci | vjk) and Pr(ci | vgh), we finally have:

∑ =

=
m

r
r

ghrjkr
i

ghijki
ghjki

c
vcvc

c

vcvc
vvcE

1)Pr(
)|Pr()|Pr(

)Pr(

)|Pr()|Pr(
)),|(Pr((14)

Confidence Unexpectedness (Cu):

)),|(Pr(

)),|(Pr(),|Pr(
),(

ghjki

ghjkighjki
ighjk vvcE

vvcEvvc
cvvCu

−
=→ (15)

2.2.2 Support Unexpectedness
As above, we first compute the expected support of vjk, vgh → ci.

Expectation: The expected support Pr(vjk, vgh, ci) is computed
based on the following:
),Pr(),|Pr(),,Pr(ghjkghjkiighjk vvvvccvv = (16)

Using the conditional independence assumption above, we know
the value for Pr(ci | vjk, vgh). Let us compute the value for Pr(vjk,
vgh) based on the same assumption:

 ∑
=

=
m

r r

ghrjkr
ghjkghjk c

vcvc
vvvv

1)Pr(
)|Pr()|Pr(

)Pr()Pr(),Pr((17)

By combining Equations (10) and (17), we obtain,

)Pr(

),Pr(),Pr(
)),,(Pr(

i

ighijk
ighjk c

cvcv
cvvE = (18)

Support Unexpectedness (Su):

)),,(Pr(

)),,(Pr(),,Pr(
),(

ighjk

ighjkighjk
ighjk cvvE

cvvEcvv
cvvSu

−
=→ (19)

2.2.3 Attribute Distribution Unexpectedness
Since for two-condition rules, two attributes are involved. To
compute attribute distribution unexpectedness, we need to fix an
attribute. Without loss of generality, we assume vjk is fixed, and
include (or vary) all the values of attribute Ag. We thus compute
the unexpectedness of:

igjk cAv →,

This attribute distribution represents all rules, vjk, vgh → ci, h = 1,
2, …, |Ag|, where |Ag| is the number of values of attribute Ag.

Expectation: We can make use of the expected value of Pr(vjk,
vgh, ci) computed above in Equation (18).

Attribute Distribution Unexpectedness (ADu):

 ∑
>∧∈

=→
0)(:),Pr(

)(
),(

DevAdomvv ijk

gh
igjk

gghgh
cv

vDev
cAvADu (20)

)),,(Pr(),,Pr()(ighjkighjkgh cvvEcvvvDev −=

2.2.4 Attribute Unexpectedness
In this case, we compute the unexpectedness of an attribute given
a constraint, which is of the form:
 vjk, Ag → C.
Attribute unexpectedness can be defined easily (see [3]).

3. A CASE STUDTY
We present a case study to show the effectiveness of the proposed
system. We used reviews of manufactured products from Amazon
crawled in 2006 [2]. The class attribute is the review rating. Three
classes are made from the ratings. Table 1 shows the classes,
ratings and class prior probabilities. Note that we only assigns the
rating of 5 to positive, and assigns the rating of 4 to neutral as we
want to study extreme behaviors of reviewers.
Table 1. Classes, ratings and Table 2: The review data set
 class prior probabilities
Class (ci) Ratings Pr(ci) # of Reviews 415179

Positive Rating = 5 0.47 # of Products 32714
Neutral Rating = 3 or 4 0.29 # of Reviewers 311428

Negative Rating = 1 or 2 0.24 # of Product Brands 3757

In our data, each review forms a data record with three attributes
and a class, i.e., reviewer-id, product-id, brand-id and class. We
have a total of 475K reviews, out of which 50K were written by
anonymous reviewers, which were removed in our analysis. Then,
we have about 415K data records. A brief description of the data
set is given below in Table 2. Due to space limitations, we only
show some findings of unexpected confidences and unexpected
supports. For other results, see [3].

One-Condition Rules
Confidence Unexpectedness: The top ranked rules show that out
of 17863 reviewers with at least 3 reviews (support threshold),
4340 of them have the confidence of 1, meaning they always gave
only one class of rating. Those reviewers who wrote only positive
(2602 reviewers) and only negative (807 reviewers) reviews are
somewhat suspicious or unexpected. Some may be involved in

spam activities, writing fake reviews. Since the negative class had
the lowest expectation (Pr(negative) = 0.24), the reviewers who
wrote many negative reviews had the highest unexpectedness. For
example, the top ranked reviewer wrote 16 all negative reviews
(for rules with the same unexpectedness values, we also sort them
using their supports). This reviewer is quite abnormal.

Support Unexpectedness: In this case, people who write more
reviews will have higher support unexpectedness. The top ranked
rule shows a particular reviewer wrote 626 reviews and all of
them have positive ratings, which is highly unusual or suspicious.

Two-Condition Rules
Confidence Unexpectedness: Here we also found many
unexpected/interesting rules. Although in one-condition rules, we
know that many people write a combination of positive, neutral
and negative reviews, here we found many such reviewers
actually wrote only positive or only negative reviews on some
specific brands. This is suspicious. For example, the top ranked
reviewer wrote 27 positive reviews on products of a particular
brand (confidence is 1 for positive class), while the expected
confidence is only 0.45 as this reviewer wrote many other reviews
with varied ratings (the average rating for this brand from all
reviewers is only 3.6). There are hundreds of such reviewers.

Support Unexpectedness: Since the data is sparse in the brands
and the reviewers, the expected support of a reviewer writing on a
brand is low. So, the support unexpectedness is generally high.
Using 80% as the confidence cutoff, the top ranked rule shows
that a reviewer wrote 30 positive reviews for a particular brand.

4. CONCLUSIONS
This paper studied the problem of identifying atypical behaviors
of reviewers. The problem was formulated as finding unexpected
rules and rule groups. A set of expectations was defined, and their
corresponding unexpectedness measures were proposed.
Unexpected rules and groups represent abnormal or unusual
behaviors of reviewers, which indicate spam activities. In our
experiment, we reported a case study using reviews from
Amazon.com, where we found many suspicious reviewers.

5. REFERENCES
[1] Gyongyi, Z. and Garcia-Molina, H. Web Spam Taxonomy.

Technical Report, Stanford University, 2004.
[2] Jindal, N, Liu, B, Opinion spam and analysis. WSDM, 2008.
[3] Jindal, N., Liu, B. and Lim, E-P. Finding atypical review

patterns for detecting opinion spammers. UIC Tech. Rep., 2010.
[4] Lim, E-P., Nguyen, V-A., Jindal, N., Liu, B. and Lauw, H. W.

Detecting product review spammers using rating behaviors.
CIKM, 2010.

[5] Liu, B., Hsu W., and Ma Y. Integrating classification and
association rule mining. KDD, 1998.

[6] Liu, B. Sentiment Analysis and Subjectivity. Chapter in the 2nd
Edition, Natural Language Processing Handbook, 2010.

[7] Liu, J. Cao, Y. Lin, C. Huang, Y. Zhou, M. Low-quality product
review detection in opinion summarization. EMNLP, 2007.

[8] MacDonald, C. Ounis, I, and Soboroff, I. Overview of the
TREC2007 Blog Track. 2007.

[9] Ntoulas, A., Najork, M., Manasse M., Fetterly, D. Detecting
Spam Web Pages through Content Analysis. WWW, 2006.

[10] Quinlan J.R. C4.5: Programs for Machine Learning. 1993.
[11] Wu, B., Goel V. & Davison, B. D. Topical TrustRank: using

topicality to combat Web spam. WWW, 2006.
[12] Zhang, Z. and Varadarajan, B. Utility scoring of product

reviews, CIKM, 2006.

