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ABSTRACT 
In recent years, opinion mining attracted a great deal of research 
attention. However, limited work has been done on detecting 
opinion spam (or fake reviews). The problem is analogous to 
spam in Web search [1, 9 11]. However, review spam is harder to 
detect because it is very hard, if not impossible, to recognize fake 
reviews by manually reading them [2]. This paper deals with a 
restricted problem, i.e., identifying unusual review patterns which 
can represent suspicious behaviors of reviewers. We formulate the 
problem as finding unexpected rules. The technique is domain 
independent. Using the technique, we analyzed an Amazon.com 
review dataset and found many unexpected rules and rule groups 
which indicate spam activities. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Information filtering. 

General Terms 
Algorithms, Experimentation  

Keywords 
Reviewer behavior, review spam, unexpected patterns 

1. INTRODUCTION 
With the rapid growth of online reviews, it has become a common 
practice for people to read reviews for many purposes. This gives 
good incentives for review spam, which refers to writing fake 
reviews to mislead readers or automated systems by giving bogus 
positive or negative opinions to some target objects to promote 
them or to damage their reputations. Detecting spam reviews is a 
critical problem for opinion mining [6] and retrieval [8].  

The problem can be seen as a classification problem with two 
classes, spam and not-spam. However, to obtain training data by 
manually labeling reviews is very hard as a spammer can easily 
craft a fake review that is just like any innocent review [2]. In [2], 
a learning method using duplicate reviews as positive training 
data is used, but many not duplicated reviews can be spam too. 
Some researchers also study the helpfulness of reviews [7, 12], 
but review spam is a different concept. In [4], a user study shows 
that rating behaviors are good indicators of spam.   

In this paper, we study a restricted problem, identifying review 
patterns representing unusual behaviors of reviewers, which can 
indicate spam activities [4]. For example, if a reviewer wrote all 
negative reviews on products of a brand but other reviewers are 
generally positive about the brand, this reviewer is clearly a spam 
suspect. To find unusual behaviors, the conventional approach is 
to write an application specific heuristic program to find such 
behaviors. However, this is not desirable. It is much better to 
propose a general framework for solving this class of problems so 
that the resulting system can also be applied to other domains. 
This paper proposes such an approach and shows that the problem 
can be formulated as finding unexpected rules/patterns from data.  

The data that we use consists of a set of data records, which are 
described by a set of normal attributes A = {A1, …, An}, and a 
class attribute C = {c1, …, cm} of m discrete values, called classes. 
The rules are of the form: X → ci, where X is a set of conditions 
from the attributes in A and ci is a class in C. Such a rule gives the 
conditional probability of Pr(ci | X) (called the confidence) and the 
joint probability Pr(X, ci) (called the support) [5].  

For our application, the data can be produced as follows: Each 
review forms a data record with a set of attributes, e.g., reviewer-
id, brand-id, product-id, and a class. The class represents the 
opinion of the reviewer, positive, negative or neutral based on the 
review rating. In most review sites (e.g., amazon.com), each 
review has a rating between 1 (lowest) to 5 (highest) assigned by 
its reviewer. We can assign the rating of 4 and 5 as positive, 3 as 
neutral, and 1 and 2 as negative. A rule could be that a reviewer 
gives all positive ratings to a particular brand of products.  

The issue is how we know a rule represents an abnormal behavior 
of a reviewer. To decide that, we need to know what is expected. 
This paper first defines several types of expectations based on the 
natural distribution of the data. It then proposes the corresponding 
unexpectedness measures to rank rules. This method is domain 
independent as it only depends on the data and the type of rules 
but not the application. It can thus be applied to other domains. In 
our experimental study, we report a case study of discovering 
suspicious behaviors of reviewers based on Amazon reviews, 
which indicate spam activities or at least biased reviewers. For a 
case study on a different domain dataset, see [3].  

2. UNEXPECTEDNESS DEFINITIONS 
Unexpectedness is defined as deviation from expectations. Thus, 
the definition of expectations is the key. Before the definitions, we 
give some more notations about the data and the resulting rules.  

Given a data set D, let the domain or the set of possible values of 
attribute Aj be dom(Aj). We use the data to mine class association 
rules (CAR) [5] of the form, X → ci. A condition in X is an 
attribute value pair: Aj=vjk (vjk ∈ dom(Aj)).  
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CAR mining finds all rules that satisfy the user-given minimum 
support and minimum confidence constraints. However, we 
cannot use them because they create holes in the rule space, and 
remove the context. Here holes mean those rules that do not meet 
the support and confidence constraints. However, without 
minimum support and minimum confidence to ensure the 
feasibility of computation, CAR mining can cause combinatorial 
explosion [5]. Fortunately, practical applications have shown that 
users are interested in almost only short rules as it is hard to 
perform any action on long rules due to low data coverage. Thus, 
in our system, we focus on mining rules with only 1-3 conditions 
if their support and confidence is greater than zero.  

Approach to defining expectations: Our approach begins by 
assuming the knowledge of class prior probabilities (Pr(ci)), which 
can be easily found from the data automatically. They give us the 
natural distribution of the data to begin with. Two additional 
principles govern the definition of expectations:  

1. Given no prior knowledge, we expect that the data attributes 
and classes have no relationships, i.e., they are statistically 
independent. This is justified as it allows us to find those 
patterns that show strong relationships.   

2. We use shorter rules to compute the expectations of longer 
rules. This is also logical due to two reasons. First, it enables 
the user to see interesting short rules first. Second, more 
importantly, unexpected shorter rules may be the cause of 
some longer rules being abnormal (see Section 2.2), but not 
the other way around. Thus knowing such short rules, the 
longer rules are no longer unexpected.  

Based on these two principles, we begin with the discussion of 
unexpectedness of one-condition rules, and then two-condition 
rules. For multi-condition rules, see [3].  

2.1 Unexpectedness of One-Condition Rules 
We define four types of unexpectedness. A one-condition rule is a 
rule with only one condition (an attribute value pair, Aj = vjk). 

2.1.1 Confidence Unexpectedness 
We want to determine how unexpected the confidence of a rule is. 
To simplify the notation, we use a single value vjk (vjk ∈ dom(Aj)) 
to denote the kth value of attribute Aj. A one-condition rule is thus 
of the following form: vjk → ci. The expected confidence of the 
rule is defined below.  
Expectation: Since we consider one-condition rules, we use the 
information from zero-condition rules to define expectations:  

→ ci,  
which is the class prior probability of ci, i.e., Pr(ci). Given Pr(ci) 
and no other knowledge, it is reasonable to expect that attribute 
values and the classes are independent. Thus, the confidence (Pr(ci 
| vjk)) of the above rule (vjk → ci) is expected to be Pr(ci). We use 
E(Pr(ci | vjk)) to denote the expected confidence, i.e.,  

E(Pr(ci | vjk)) = Pr(ci).  (1) 
Confidence Unexpectedness (Cu): Confidence unexpectedness 
of the rule is defined as the ratio of the deviation of the actual 
confidence to the expected confidence given a support threshold 
θ. Let the actual confidence of the rule be Pr(ci | vjk). We use 
Cu(vjk → ci) to denote the unexpectedness of the rule vjk → ci. 
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Unexpectedness values can be used to rank rules. One may ask if 
this is the same as ranking rules based on their confidences. It is 
not, because of the expectation. First of all, for different classes, 
the expected confidences are different. When we discuss two-
condition rules in Section 2.2, we will see that even in the same 
class, a high confidence rule may be completely expected.  
Significance test: It is important to know whether the actual 
confidence is significantly different from the expectation, we use 
the statistical test for proportions.  

2.1.2 Support Unexpectedness 
The confidence measure does not consider the proportion of data 
records involved, for which we need support unexpectedness.   
Expectation: Given no knowledge, we expect that an attribute 
value and a class are independent. Thus, we have Pr(vjk, ci)) = 
Pr(vjk)Pr(ci). Pr(ci) is known, but not Pr(vjk). It is reasonable to 
expect that it is the average probability of all values of Aj. Thus 
we have (Pr(vjk) is unknown to the user, but is computed),  
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Support Unexpectedness (Su): Support unexpectedness of a rule 
is defined as follows, given a confidence threshold λ (λ is to 
ensure that the rule has sufficient predictability): 
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This definition of Su (Equations (3) and (4)) is reasonable as it 
ranks those rules with high supports high, which is what we want.  
Significance Test: The test for proportions can also be used here.  

2.1.3 Attribute Distribution Unexpectedness 
Confidence or support unexpectedness considers only a single 
rule. In many cases, a group of rules together shows an interesting 
scenario. Here we define an unexpectedness metric based on all 
values of an attribute and a class, which thus represent multiple 
rules. This unexpectedness shows how skewed the data records 
are for the class, i.e., whether the data records of the class 
concentrate on only a few values of the attribute or they spread 
evenly to all values, which is expected given no prior knowledge. 
For example, we may find that most positive reviews for a brand 
of products are from only one reviewer although there are a large 
number of reviewers who have reviewed products of the brand. 
This reviewer is clearly a spam suspect. We use supports (or joint 
probabilities) to define attribute distribution unexpectedness. Let 
the attribute be Aj and the class of interest be ci. The attribute 
distribution of Aj with respect to class ci is denoted by: 

Aj → ci  
It represents all the rules, vjk → ci, k = 1, 2, …, | Aj|, where |Aj| is 
the total number of values in dom(Aj).   
Expectation: We can use the expected value of Pr(vjk, ci) 
computed above (Equation (3)) for our purpose here.  
Attribute Distribution Unexpectedness (ADu): It is defined as 
the sum of normalized support deviations of all values of Aj.  

 ∑
>∧∈

=→
0)(: )Pr(

)(
)(

DevAdomvv i

jk
ij

jjkjk
c
vDev

cAADu  (5) 

where )),(Pr(),Pr()( ijkijkjk cvEcvvDev −=  (6) 



We use Pr(ci) in Equation (5) because )Pr(),Pr(||
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Note that in this definition negative deviations are not utilized 
because positive and negative deviations (Dev(vjk)) are symmetric 
or equal as Pr(ci) is constant and )Pr(),Pr(||

1 i
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considering one side is sufficient. 

2.1.4 Attribute Unexpectedness 
In this case, we want to discover how the values of an attribute 
can predict the classes. This is denoted by  

Aj → C, 
where Aj represents all its values and C indicates all classes. Given 
no knowledge, our expectation is that Aj and C are independent. In 
the ideal case (or the most unexpected case), every rule vjk → ci 
has 100% confidence. Then, the values of Aj can predict the 
classes in C completely. For example, we may find that a reviewer 
wrote only positive reviews to one brand, and only negative 
reviews to another brand, which is clearly suspicious.  

Conceptually, the idea is the same as measuring the discriminative 
power of each attribute in classification learning. The information 
gain measure can be used for the purpose. The expected 
information is computed based on entropy. Given no knowledge, 
the entropy of the original data D is (note that Pr(ci) is the 
confidence of the zero-condition rule on class ci): 
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Expectation: The expectation is the entropy of the data D: 

E(Aj → C) = entropy(D) 
Attribute Unexpectedness (Au): Attribute unexpectedness is 
defined as the information gained by adding the attribute Aj. After 
adding Aj, we obtain the following entropy: 
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Based on the values of Aj, the data set D is partitioned into |Aj| 
subsets, D1, D2, …, D|Ai| (i.e., each subset has a particular value of 
Aj). The unexpectedness is thus computed with (which is the 
information gain measure in [10]):  
 )()()( DentropyDentropyCAAu
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2.2 Unexpectedness of Two-Condition Rules 
We now consider two-condition rules. Although we can still 
assume that the expected confidence of a rule is the class prior 
probability of its class as for one-condition rules, it is no longer 
appropriate as a two-condition rule is made up of two one-
condition rules, which we already know. As mentioned earlier, it 
is possible that the unexpectedness of a two-condition rule is 
caused by a one-condition rule. It is thus not suitable to attribute 
unexpectedness to the two-condition rule.  
For example, let us consider confidence unexpectedness. We have 
a data set with two classes and each class has 50% of the data, i.e., 
the class prior probabilities are equal, Pr(c1) = Pr(c2) = 0.5. For a 
rule v1 → c1 with 100% confidence (Pr(c1 | v1) = 1), it is highly 
unexpected based on Equation (2). Now let us look at a two-
condition rule, v1, v2 → c1, which clearly also has 100% 
confidence (Pr(c1 | v1, v2) = 1). If we assume no knowledge, its 
expected confidence should be 50%. Then, we say that this rule is 
highly unexpected. However, if we know v1 → c1, 100% 

confidence for rule v1, v2 → c1 is completely expected. The 100% 
confidence of rule v1 → c1 is the cause for rule, v1, v2 → c1, to have 
the 100% confidence. More importantly, this example shows that 
ranking rules according to confidence unexpectedness is not 
equivalent to ranking rules purely based to their confidences.  

With the knowledge of one-condition rules, we define different 
types of unexpectedness of two-condition rules of the form: 

vjk, vgh → ci. 

2.2.1 Confidence Unexpectedness 
We first compute the expected confidence of the two-condition 
rule based on two one-condition rules:  
 vjk → ci and vgh → ci 
Expectation: Given the confidences of the two rules, Pr(ci | vjk) 
and Pr(ci | vgh), we compute the expected probability of Pr(ci | vjk, 
vgh) using the Bayes’ rule and obtain:  
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The first term of the numerator can be further written as   
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Conditional independence assumption: With no prior knowledge, 
it is reasonable to expect that all attributes are conditionally 
independent given class ci. Formally, we expect that 

)|Pr(),|Pr( ijkighk cvcvv =  (12) 

Based on Equation (10), the expected value of Pr(ci | vjk, vgh) is: 
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Since we know Pr(ci | vjk) and Pr(ci | vgh), we finally have:  
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Confidence Unexpectedness (Cu):  

 
)),|(Pr(

)),|(Pr(),|Pr(
),(

ghjki

ghjkighjki
ighjk vvcE

vvcEvvc
cvvCu

−
=→  (15) 

2.2.2 Support Unexpectedness 
As above, we first compute the expected support of vjk, vgh → ci. 

Expectation: The expected support Pr(vjk, vgh, ci) is computed 
based on the following: 
 ),Pr(),|Pr(),,Pr( ghjkghjkiighjk vvvvccvv =  (16) 

Using the conditional independence assumption above, we know 
the value for Pr(ci | vjk, vgh). Let us compute the value for Pr(vjk, 
vgh) based on the same assumption:  
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By combining Equations (10) and (17), we obtain, 
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Support Unexpectedness (Su): 
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2.2.3 Attribute Distribution Unexpectedness 
Since for two-condition rules, two attributes are involved. To 
compute attribute distribution unexpectedness, we need to fix an 
attribute. Without loss of generality, we assume vjk is fixed, and 
include (or vary) all the values of attribute Ag. We thus compute 
the unexpectedness of: 

igjk cAv →,  

This attribute distribution represents all rules, vjk, vgh → ci, h = 1, 
2, …, |Ag|, where |Ag| is the number of values of attribute Ag.  

Expectation: We can make use of the expected value of Pr(vjk, 
vgh, ci) computed above in Equation (18).  

Attribute Distribution Unexpectedness (ADu): 
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2.2.4 Attribute Unexpectedness 
In this case, we compute the unexpectedness of an attribute given 
a constraint, which is of the form:  
 vjk, Ag → C. 
Attribute unexpectedness can be defined easily (see [3]). 

3. A CASE STUDTY 
We present a case study to show the effectiveness of the proposed 
system. We used reviews of manufactured products from Amazon 
crawled in 2006 [2]. The class attribute is the review rating. Three 
classes are made from the ratings. Table 1 shows the classes, 
ratings and class prior probabilities. Note that we only assigns the 
rating of 5 to positive, and assigns the rating of 4 to neutral as we 
want to study extreme behaviors of reviewers.   
Table 1. Classes, ratings and  Table 2: The review data set 
 class prior probabilities 
Class (ci) Ratings Pr(ci)  # of Reviews 415179 

Positive Rating = 5 0.47  # of Products 32714  
Neutral Rating = 3 or 4 0.29  # of Reviewers 311428 

Negative Rating = 1 or 2 0.24  # of Product Brands 3757  

In our data, each review forms a data record with three attributes 
and a class, i.e., reviewer-id, product-id, brand-id and class. We 
have a total of 475K reviews, out of which 50K were written by 
anonymous reviewers, which were removed in our analysis. Then, 
we have about 415K data records. A brief description of the data 
set is given below in Table 2. Due to space limitations, we only 
show some findings of unexpected confidences and unexpected 
supports. For other results, see [3].  

One-Condition Rules 
Confidence Unexpectedness: The top ranked rules show that out 
of 17863 reviewers with at least 3 reviews (support threshold), 
4340 of them have the confidence of 1, meaning they always gave 
only one class of rating. Those reviewers who wrote only positive 
(2602 reviewers) and only negative (807 reviewers) reviews are 
somewhat suspicious or unexpected. Some may be involved in 

spam activities, writing fake reviews. Since the negative class had 
the lowest expectation (Pr(negative) = 0.24), the reviewers who 
wrote many negative reviews had the highest unexpectedness. For 
example, the top ranked reviewer wrote 16 all negative reviews 
(for rules with the same unexpectedness values, we also sort them 
using their supports). This reviewer is quite abnormal.  

Support Unexpectedness: In this case, people who write more 
reviews will have higher support unexpectedness. The top ranked 
rule shows a particular reviewer wrote 626 reviews and all of 
them have positive ratings, which is highly unusual or suspicious.  

Two-Condition Rules 
Confidence Unexpectedness: Here we also found many 
unexpected/interesting rules. Although in one-condition rules, we 
know that many people write a combination of positive, neutral 
and negative reviews, here we found many such reviewers 
actually wrote only positive or only negative reviews on some 
specific brands. This is suspicious. For example, the top ranked 
reviewer wrote 27 positive reviews on products of a particular 
brand (confidence is 1 for positive class), while the expected 
confidence is only 0.45 as this reviewer wrote many other reviews 
with varied ratings (the average rating for this brand from all 
reviewers is only 3.6). There are hundreds of such reviewers.  

Support Unexpectedness: Since the data is sparse in the brands 
and the reviewers, the expected support of a reviewer writing on a 
brand is low. So, the support unexpectedness is generally high. 
Using 80% as the confidence cutoff, the top ranked rule shows 
that a reviewer wrote 30 positive reviews for a particular brand.  

4. CONCLUSIONS 
This paper studied the problem of identifying atypical behaviors 
of reviewers. The problem was formulated as finding unexpected 
rules and rule groups. A set of expectations was defined, and their 
corresponding unexpectedness measures were proposed. 
Unexpected rules and groups represent abnormal or unusual 
behaviors of reviewers, which indicate spam activities. In our 
experiment, we reported a case study using reviews from 
Amazon.com, where we found many suspicious reviewers. 
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